
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Representative Solutions for Bi-Objective Optimisation

Emir Demirović
School of Computing and Information Systems

University of Melbourne
Melbourne, Australia

emir.demirovic@unimelb.edu.au

Nicolas Schwind
National Institute of Advanced

Industrial Science and Technology
Tokyo, Japan

nicolas-schwind@aist.go.jp

Abstract

Bi-objective optimisation aims to optimise two generally
competing objective functions. Typically, it consists in com-
puting the set of nondominated solutions, called the Pareto
front. This raises two issues: 1) time complexity, as the Pareto
front in general can be infinite for continuous problems and
exponentially large for discrete problems, and 2) lack of deci-
siveness. This paper focusses on the computation of a small,
“relevant” subset of the Pareto front called the representa-
tive set, which provides meaningful trade-offs between the
two objectives. We introduce a procedure which, given a pre-
computed Pareto front, computes a representative set in poly-
nomial time, and then we show how to adapt it to the case
where the Pareto front is not provided. This has three im-
portant consequences for computing the representative set: 1)
does not require the whole Pareto front to be provided ex-
plicitly, 2) can be done in polynomial time for bi-objective
mixed-integer linear programs, and 3) only requires a poly-
nomial number of solver calls for bi-objective problems, as
opposed to the case where a higher number of objectives is
involved. We implement our algorithm and empirically illus-
trate the efficiency on two families of benchmarks.

Introduction
Bi-objective optimisation aims to optimise two competing
objective functions. For instance, in supply-chain manage-
ment, the goal is to simultaneously minimise delivery time
and delivery cost (Trisna et al. 2016). In the design of wire-
less sensor networks, both energy consumption and data col-
lection time must be kept at a minimum (Caillouet, Li, and
Razafindralambo 2011). An “ideal” option generally does
not exist and trade-offs must be made.

The set of nondominated solutions, called the Pareto
front, is exponentially large in the general case. This brings
forth two main issues. First, enumerating the Pareto front
can be computationally infeasible. Second, providing a large
number of options might hinder decision making, as pro-
viding an overwhelming number of choices can be counter-
productive (Iyengar and Lepper 2000; Shafir, Simonson, and
Tversky 1993; Dhar 1997).

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

x

y

(a) Diverse Solutions

x

y

(b) Representative Solutions.

Figure 1: Two notions of Pareto front filtering when two so-
lutions are to be selected in each case. The dashed lines il-
lustrate the radius of the corresponding representative set

A reasonable alternative is then to consider a subset of
the Pareto front. Two main notions of such Pareto front fil-
tering have been introduced in the literature. Both notions
depend on a number k which is assumed to be “small”
and given in input of the problem. The first one, called di-
versity (or uniformity) (Sayin 2000; Hebrard et al. 2005;
Petit and Trapp 2015; Vaz et al. 2015; Masin and Bukchin
2008), aims to select k solutions from the Pareto front that
are “spread out” as much as possible. The second one, called
representativity (or coverage) (Sayin 2000; Vaz et al. 2015;
Schwind et al. 2016), considers a set S of k solutions from
the Pareto front with minimum radius, where the radius of
S is the maximal distance between any solution p from the
Pareto front and the solution from S that is the closest to p;
such a set S is called a representative set (cf. Fig. 1).

In this paper, we focus on the computation of a represen-
tative set of solutions in the bi-objective case. In particular,
we pose the following research questions:

1. Is it possible to efficiently compute a representative set
without computing the whole complete Pareto front?

2. Can a representative set be computed even if the Pareto
front is infinite?

Our contribution provides a positive answer to both ques-
tions. This is done constructively: we provide a generic pro-
cedure for bi-objective optimisation that computes a rep-

1436

resentative set using only a polynomial number of solver
calls. The notion of a solver call depends on the structure
of the considered optimisation problem and refers to either
a sub-procedure that solves the single-objective version of
the problem, e.g. interior-point method for linear programs,
or an oracle for problems whose decision counterpart is NP-
complete. In general, the Pareto front is infinite for linear
programs and exponentially large for discrete optimisation
problems. Considering only a polynomial number of solver
calls is a clear advantage over enumerating the Pareto front
when computing a representative set. As a proof-of-concept,
we implement our procedure and empirically show that it
computes the representative set in reasonable time.

In the next section, we position our paper with respect to
related work and provide further motivation. We then follow
up with preliminaries and our main contributions.

Related Work
We assume that the reader is familiar with the complexity
classes P and NP (see (Papadimitriou 2003) for more de-
tails). Higher complexity classes are defined using oracles,
i.e. abstract machines that solve problems from a particu-
lar class in constant time. In particular, PNP (resp. NPNP) is
the class of decision problems that are solved in polynomial
time by a deterministic (resp. non-deterministic) Turing ma-
chine using an oracle for NP.

In (Schwind et al. 2016), the authors introduced the notion
of representative solutions for multi-objective constraint op-
timisation problems. They proved that the decision problem
underlying the computation of a representative set of k solu-
tions (k being given in unary form) is NPNP-hard in the gen-
eral multi-objective case. They also introduced a procedure
that first enumerates the Pareto front, then solves the NP-
hard task of computing a represented set of k solutions. Our
aim is to show the computational advantages of focussing on
only two objectives. This is motivated by the fact that when
the Pareto front is given in input, computing a representa-
tive set is an NP-hard task in the general multi-objective
case (Schwind et al. 2016), but can be done in polynomial
time in the bi-objective case. Our goal is then to investigate
whether the restriction to two objectives also leads to a com-
putational shift in the case when the Pareto front is not ex-
plicitly given. As presented in the following sections, this is
indeed the case.

To the best of our knowledge, computing a representa-
tive set for the dedicated bi-objective case has not been ad-
dressed in the literature. Instead, the research efforts have
been focussed on developing heuristics to compute (not nec-
essarily representative) subsets of the Pareto front for bi-
and multi-objective problems. In this context, heuristic ap-
proaches compute (Pareto optimal) solutions that aim to
cover the Pareto front, but do not guarantee the optimality
of the set with respect to the desired filtering notion.

There is a number of works aiming to filter the Pareto
front by selecting only a few Pareto optimal solutions
and obtain a “good” representation (Eusébio, Figueira,
and Ehrgott 2014; Vaz et al. 2015; Schwind et al. 2016;
Raith and Sedeño-Noda 2017; Masin and Bukchin 2008;

Ceyhan, Köksalan, and Lokman 2019). How well a Pareto
front is represented by means of a few solutions depends on
the context. As mentioned in the introduction, there are two
main such quality measures (Fig. 1b): diversity (or unifor-
mity) and representativity (or coverage). There is also a third
measure called ε-indicator considered in (Zitzler et al. 2003;
Vaz et al. 2015), which is closely related to the one of rep-
resentativity. However, this measure consists in computing
a restricted set of solutions that are “close enough” to the
Pareto front, but that are not necessarily Pareto optimal. An
orthogonal diversity measure can be considered over deci-
sion variables rather than objectives, i.e., computing near-
optimal solutions with a structure of diverse nature (Ado-
mavicius and Kwon 2014). The authors in (Petit and Trapp
2019) provide a detailed survey on related diversity mea-
sures. One of the motivations for diversity is that it might
not be easy to capture the true preferences of users in the
form of an objective function, and thus providing a variety
of solutions, which can be further filtered offline and on-
line, is beneficial. In our work, in contrast, we assume that
qualitative measures are possible for two objectives, for in-
stance production time versus cost. In these cases, the ob-
jectives functions can be used to succintly explain the differ-
ences among solutions and their trade-offs to the user. Note
that a discrimination based on both decision variables and
objectives is not incompatible. Indeed, one could consider
computing a representative set, which provides meaningful
trade-offs between two objectives, and afterwards search for
diverse solutions among those, in an attempt to capture other
important solution features that were not given explicitly.

In (Bazgan, Jamain, and Vanderpooten 2017), the authors
introduce the notion of ε-Pareto front (ε-PF), which is a set
of solutions that dominate each Pareto optimal solution in
an ε-relaxed sense. The authors discuss algorithms for gen-
erating the smallest ε-PF with additional properties and vari-
ations. This notion is related but is not directly comparable
to the representative set, as the goals are different: it aims
to approximate the Pareto front rather than compute a repre-
sentation with a few solutions.

Focussing on the bi-objective optimisation, network flow
problems are solved in (Eusébio, Figueira, and Ehrgott 2014;
Raith and Sedeño-Noda 2017) by computing only a subset
of the Pareto front. However, the quality measure is again
different from the representativity measure. In (Raith and
Sedeño-Noda 2017), so-called “extreme” solutions are se-
lected, i.e. the Pareto optimal solutions that lie on the bound-
aries of the convex hull of the solution space. In (Eusébio,
Figueira, and Ehrgott 2014), the notion of representativity
is the same as the one considered here, but only heuristics
are provided: a subset of the Pareto front is computed in an
online fashion, and does not necessarily result in a repre-
sentative set. The number of returned solutions is not de-
cided as an upstream step; instead, the user is required to
provide the desired distance betweens solutions in a semi-
interactive process. For representative solutions of multi-
objective problems with continuous variables, the authors in
(Karasakal and Köksalan 2009) propose a heuristic to sam-
ple a surface that approximates the Pareto front.

Closely related to our work is (Vaz et al. 2015): the au-

1437

thors introduce two complete algorithms to compute a rep-
resentative set of k solutions for bi-objective optimization
problems, under the assumption that the Pareto front is avail-
able in input. Their most efficient algorithm is based on
Dynamic Programming and runs in Opk ¨ |PF | ` |PF | ¨
log |PF |q, where |PF | is the size of the Pareto front. Simi-
larly to our procedure presented in the next section, the first
step is to re-order the Pareto front in an increasing order
according to their values projected to first objective. Then,
roughly speaking, their algorithm iteratively computes the
radius of a representative set of size k1 where k1 ranges over
t1, . . . , ku. This departs from our method which, in a nut-
shell, consists in computing a representative set of a mini-
mum number of k1 solutions given a fixed radius R, and do-
ing so iteratively by performing a dichotomic search over the
radius values ranging between two bounds until some opti-
mality conditions are met and k1 coincides with the value k
required in input. Most importantly, in (Vaz et al. 2015) the
authors focussed on the case where the Pareto front is given
in input, and did not consider the case where it is charac-
terised succinctly, e.g. by means of constraints.

Two constraint programming approaches have been pro-
posed for multi-objective optimisation. In (Gavanelli 2002),
the author introduces a data structure for storing the Pareto
front. This is used in an anytime depth-first search algorithm
that eventually enumerates the whole Pareto front. The ap-
proach has been refined into a so-called global constraint
(Schaus and Hartert 2013), which is suitable for constraint
programming solvers, and used in a large neighbourhood
search framework. The idea is to maintain a list of nondomi-
nated solutions and to iteratively select one solution from the
set, relax and optimise it so as to improve the hypervolume
surrounding the maintained nondominated set of solutions.
While related, the nature of our paper is very different to
(Schaus and Hartert 2013): they consider a heuristic to ap-
proximate the Pareto front with many solutions, while we
consider a complete algorithm for representing the Pareto
front with few solutions.

The most popular algorithms for enumerating bi-objective
Pareto frontiers are the ε-method (Haimes 1971) and the
two-phase approach (Ulungu and Teghem 1995). The ε-
method systematically enumerates the complete Pareto front
for bi-objective problems: it computes an initial solution by
lexicographically minimising fx and fy and iteratively com-
putes lexicographical solutions that minimise the first and
then the second objective function while requiring the value
according to the first objective function to be greater than
previously computed. In the two-phase algorithm, the deci-
sion variables are assumed to be binary. It consists of two
steps: 1) to compute the nondominated solutions that lie on
the convex hull of the Pareto front, and 2) to compute the
missing solutions by considering the space in between two
consecutive nondominated solutions of the convex hull. The
first stage is generic, but the second one is problem-specific.
Indeed, in our experiments, the ε-method gave better results
than the two-phase approach with a generic second-stage
implementation. A refinement of the two-phase approach
(Stidsen, Andersen, and Dammann 2014) may have a better
performance depending on the problem. We refer to (Stid-

sen, Andersen, and Dammann 2014) for a survey of others
techniques and references for problem-specific variants.

In (Bergman and Cire 2016), a binary-decision diagram
(BDD) approach is applied to compute the Pareto front for
multi-objective optimisation. The strength of the method is
that once a combinatorial problem is represented as a BDD,
a multi-objective shortest path algorithm can be used to
compute an optimal solution. The main drawback is that not
all problems admit a compact BDD representation.

Preliminaries
We are given a fixed set V of integer variables and a set of
constraints C. An assignment of all variables V to a value
is called a solution if it satisfies all constraints from C. We
assume that checking whether a given assignment is a so-
lution can be done in polynomial time. For simplicity, we
use C˚ as the (succintly characterised) set of solutions. We
are also given two objective functions fx, fy of the form
f : C˚ Ñ Q, which are to be minimized simultaneously. A
solution p P C˚ dominates another solution p1 P C˚ when-
ever fxppq ď fxpp1q and fyppq ď fypp1q. We say that p
strictly dominates p1 if p dominates p1 and p1 does not dom-
inate p. And p is said to be Pareto optimal if there is no
solution p1 that strictly dominates p. The set PF denotes the
Pareto front, i.e., the set of all Pareto optimal solutions.

The Manhattan distance (or L1-norm) between two solu-
tions p, p1 P C˚ is defined as distpp, p1q “ |fxppq´fxpp1q|`
|fyppq ´ fypp1q|. In the following, we focus on the Manhat-
tan distance and simply refer to it as the “distance”.

The radius of a set of Pareto optimal solutions S Ď PF ,
denoted as ΩpSq, is defined as

ΩpSq “ max
p1PPF

min
pPS distpp, p1q.

We say that a set S Ď PF is optimally representative of PF
(representative for short) if S has a minimal radius among
all sets S1 Ď PF such that |S1| “ |S|. When |S| “ k
and S is a representative set, we also say that S is a k-
representative set. Intuitively, a representative set S is such
that every Pareto optimal solution is as close as possible to
some solution of S. Our ultimate goal is given a bi-objective
optimisation problem and positive integer k, to find a k-
representative set of solutions.

Computing a Representative Set When the
Pareto Front is Available

We introduce a procedure for computing a k-representative
set of solutions, given k and assuming that the Pareto front
is also given e.g. when it has been computed as an upstream
step. The advantage of our procedure is that it can then be
adapted to the case where the Pareto front is not given ex-
plicitly but by means of a set of variables V and a set of con-
straints C. This will be shown in the next section, roughly
speaking, by substituting some of the operations with solver
calls. The signature of our procedure is as follows:

Definition 1 (RepSetpPF, kq)
• Input: Pareto front PF , integer k.

1438

• Output: A k-representative set of solutions.

The key step of our procedure is, given a fixed radius R,
to compute a k1-representative set S such that ΩpSq ď R
while minimizing k1. This step is denoted hereafter by RS-
RpPF,Rq, where R is a radius and PF is a sorted Pareto
front, i.e. a Pareto front where all solutions are sorted in a
non-decreasing order according to fx.

The following helper methods are used in RS-RpPF,Rq:

• furthest within radiuspp, PF,Rq, or fwrpp, PF,Rq
for short: given a Pareto front PF , a solution p P PF ,
and a radius R, it is defined as

fwrpp, PF,Rq “ argmax
p1PPF

tfxpp1q | distpp, p1q ď Ru.

Note that the method is guaranteed to produce a solution:
the reference solution p can be returned.

• filterpp, PF,Rq: given a Pareto front PF , a solution p P
PF and a radius R, it computes a new Pareto front PF 1,
which contains solutions from PF that are distant from p
by at least R, i.e. it is defined as

filterpp, PF,Rq “ tp1 | p1 P PF ^ distpp, p1q ą Ru.
• pxminpPF q: given a Pareto front PF , it is defined as

pxminpPF q “ argmin
pPPF

tfxppqu.

Algorithm 1: RS-RpPF,Rq
input: Sorted Pareto front PF , radius R
output: A k1-representative set S such that ΩpSq ď R

and k1 is minimal
1 begin
2 S Ð H
3 while PF ‰ H do
4 pďR Ð fwrppxminpPF q, PF,Rq
5 S Ð S Y tpďRu
6 PF Ð filterppďR, PF,Rq
7 return S

The method RS-RpPF,Rq is described in Algorithm 1.
The representative set S is initially set to empty (line 2).
The first solution pďR to be added to S is defined as the
most distant solution from the leftmost solution pxminpPF q
within the distance range R (lines 4 and 5). Then all solu-
tions within the range of R from the selected solution pďR

are removed from the Pareto front (line 6), and the process is
repeated until the Pareto front becomes empty. The method
is illustrated in Fig. 2 (a-c) through an example. In the fig-
ures, pďR and pxmin denote respectively the solutions pďR

and pxminpPF q at the corresponding step (lines 4 and 5 in
Algorithm 1), i.e. when PF is updated accordingly (line 6
from the previous iteration in Algorithm 1).

Proposition 1 Algorithm 1 is correct, i.e. it computes a k1-
representative set RS-RpPF,Rq of solutions S such that
ΩpSq ď R and k1 is minimal.

x

y pxmin

pďR

R

(a) Initial step

x

y

pxmin
pďR

R

(b) Second step

x

y

(c) Last step

Figure 2: Illustration of Algorithm 1

Proposition 2 Algorithm 1 runs in k1 ¨ logp|PF |qq time,
where k1 is the cardinality of the smallest representative set
S with ΩpSq ď R.

We are now ready to describe our main procedure
RepSetpPF, kq, which uses the method RS-RpPF,Rq it-
eratively by performing a dichotomic search on the radius
between two bounds. At each such iteration step, 1) the
radius R is increased or decreased depending on whether
the value k1 resulting from the computation in the previ-
ous step is lower or greater than the required number k; and
2) the two bounds are updated accordingly. The procedure
RepSetpPF, kq terminates once the two bounds meet.

The following helper methods are used:
• pxmaxpPF q: given a Pareto front PF , it is defined as

pxmaxpPF q “ argmax
pPPF

tfxppqu.

• sortpPF q: given a Pareto front PF , it sorts the solutions
from PF in a non-decreasing order according to fx.
The procedure RepSetpPF, kq is described in Algo-

rithm 2. We assume integer-valued objectives. Initially, the
Pareto front is sorted in a non-decreasing order according to
fx (line 2). This step allows one to reduce the time complex-
ity of the subsequent methods. The bounds are initially set
in lines 3 and 4 for the purpose of efficiency, i.e. in such a
way that the initial radius defined in line 7 implies the rep-
resentative set computed at the first iteration step (line 8) to
contain at most k solutions. Given these bounds, the algo-
rithm performs a classical dichotomic search.
Proposition 3 Algorithm 2 is correct, i.e. it computes a k-
representative set RepSetpPF, kq.
Proposition 4 Algorithm 2 runs in Opk ¨ logp|PF |q ¨
logpRUBq ` |PF | ¨ logp|PF |qq, where RUB “
tdistpp

x
min,p

x
maxq

k u.

1439

Algorithm 2: RepSetpPF, kq
input: Pareto front PF of an bi-objective optimisation

problem with integer-valued objectives, integer k
output: A k-representative set

1 begin
2 PF Ð sortpPF q
3 ub Ð tdistpp

x
minpPF q,px

maxpPF qq
k u

4 lb Ð 0
5 Sbest Ð H
6 while lb ď ub do
7 middle Ð t lb`ub

2 u
8 S Ð RS-RpPF,middleq
9 if |S| ą k then

10 lb Ð middle ` 1
11 else
12 Sbest Ð S
13 ub Ð middle ´ 1
14 return Sbest

For rational objective functions, the algorithm needs to be
modified to use dichotomic search defined on rational num-
bers (Kwek and Mehlhorn 2003). In this case, the complex-
ity would substitute RUB with maxpp, qq, where p and q are
the maximum denominator and numerator out of all con-
sidered rational numbers. Alternatively, the floor functions
can be removed from lines 3 and 7, an up-to-precision small
ε ą 0 can be used instead of the constant 1 in lines 10 and
13, and the procedure could stop once the lower and upper
bounds are within a predefined distance (line 6).

As in (Vaz et al. 2015), the obtained complexity is domi-
nated by the complexity of sorting. The advantage of our al-
gorithm, however, is that it can be extended to the implicitly-
defined Pareto front, as shown in the next section.

Computing a Representative Set in
Constraint-Based Bi-Objective Optimisation

We adapt the procedure RS-RpPF,Rq presented in the pre-
vious section to the case when the Pareto front is not avail-
able, but instead succinctly characterised by means of a bi-
objective optimisation problem. The adapted procedure, de-
noted now by RS-R2pxX,C, fx, fyy, Rq, follows the same
scheme as presented in Algorithm 1, but the helper func-
tions fwr, filter, and pxmin used in defining the method
RS-R must be updated since the Pareto front is no longer
available. The following helper methods are used in RS-
R2pxX,C, fx, fyy, Rq. These methods are similar as pre-
sented in the previous section, but updated to new signatures.

Helper method fwr2ppref , xX,C, fx, fyy, Rq: Given a
Pareto optimal solution pref “ pprefx , prefy q, a bi-objective
optimisation problem xX,C, fx, fyy, and a radius R, the
task is to compute the Pareto optimal solution pďR:

pďR “ argmax
p1PPF

tfxpp1q | distppref , p1q ď Ru.

The Pareto front PF is not given. We do not need to com-
pute it entirely, but rather solve a series of optimisation prob-
lems. Prior to this, let us discuss necessary subproblems.

To compute pďR, we only need to consider as candidates
the solutions p1 that are not dominated by other solutions p
such that distppref , pq ą R. Ensuring Pareto optimality is
one of the main challenges. This is done by initially comput-
ing a bound for the second objective fy for Pareto optimal
solutions p1 such that distppref , p1q ď R. The bound is used
to compute the Pareto optimal solution pąR that is the clos-
est one to pďR but outside the range of pref w.r.t. the radius
R. Lastly, we compute the solution pďR by searching for
the Pareto optimal solution that is maximal w.r.t. fx while
remaining within the range of pref w.r.t. the radius R and
nondominated by pąR. The bound is computed as:

ybound “ min
pPC˚

fyppq (1)

prefy ´ fyppq ` fxppq ´ prefx ď R (2)

Eq. 2 constrains the solution to be within the range of pref
w.r.t. the radius R. Please note that the distance is defined as
a norm, but we simplified the equation by taking into ac-
count that solutions are computed in increasing fx value.
The Pareto optimal solution pąR that is the closest one to
pďR but outside the range of pďR w.r.t. the radius R, is com-
puted using lexicographical optimisation:

pąR “ argmin
pPC˚

fxppq : argmin
pPC˚

fyppq (3)

prefy ´ fyppq ` fxppq ´ prefx ą R (4)

fyppq ă ybound (5)

Please note that the solution pąR is Pareto optimal, since
we have that pąR

y ă ybound and pąR is minimised. The last
step is to compute the Pareto optimal solution pďR using
lexicographical optimisation:

pďR “ argmin
pPC˚

fyppq : argmin
pPC˚

fxppq (6)

prefy ´ fyppq ` fxppq ´ prefx ď R (7)

fxppq ă pąR
x (8)

Eq. 7 constrains the resulting solution pďR to be within
the range of pref w.r.t. the radius R, while Eq. 8 ensures the
solution is not dominated by pďR.

Note that minimising fx or fy within or outside of radius
R is not enough to guarantee Pareto optimality. As previ-
ously discussed, the Pareto optimal solution pąR, which is
the closest Pareto optimal solutions to pref that is outside
of radius R, is used in the computation of pďR, the further
Pareto optimal solution from pref (with greater fx) within
radius R. To see that importance of the solution pąR, con-
sider a bi-optimisation problem that implicitly defines points
p2, 4q, p3, 3q, p4, 2q, p4, 0q and let pref “ p2, 4q and R “ 4.
The solution pďR “ p3, 3q, but merely minimising fy within

1440

radius R yields p4, 2q, which is not correct since it is domi-
nated by pąR “ p4, 0q. However, to compute pąR we need
ybound (Eq. 1-2), i.e., the minimum fy within the radius.
Consider another example with p2, 4q, p3, 1q, p4, 1q, p5, 0q
and pref “ p2, 4q and R “ 4. Minimising fx outside ra-
dius R produces p4, 1q, which is dominated by p3, 1q, but
the correct solution pąR is p5, 0q. Once ybound is enforced,
pąR “ p5, 0q is correctly computed.

As in the explicit fwr case, the method fwr2 is guaran-
teed to produce a solutions since the reference solution pref

can be returned.

Helper method filter2ppref , xX,C, fx, fyy, Rq: Given a
Pareto optimal solution pref , a bi-objective optimisation
problem xX,C, fx, fyy, and a radius R, the task is to solve
a restriction xX,C 1, fx, fyy of the problem, i.e. C Ď C 1, so
that to discard the Pareto optimal solutions from C˚ that are
within the range of pref w.r.t. the radius R. The updated set
C 1 of constraints is defined as C 1 “ C Y c1 Y c2, where c1,
c2 are defined as follows:

c1 : prefy ´ fyppq ` fxppq ´ prefx ą R (9)

pďR “ fwr2ppref , xX,C, fx, fyy, Rq (10)

c2 : fyppq ă pďR
y (11)

Eq. 11 enforces that the solutions are not dominated by
pďR, while Eq. 9 ensures that the solutions are outside the
range of pref w.r.t. the radius R.

Helper method p2xminpxX,C, fx, fyyq: Given a bi-
objective optimisation problem xX,C, fx, fyy, the task is to
compute the Pareto optimal solution p2xmin with a minimum
value for fx. This is done by a lexicographical problem:

p2xmin “ argmin
pPC˚

fxppq : argmin
pPC˚

fyppq (12)

The procedure RS-R2pxX,C, fx, fyy, Rq, which com-
putes the representative set given a bi-objective optimisation
problem xX,C, fx, fyy, can be analogously defined as in Al-
gorithm 1 using the helper methods defined in this section.
In a similar fashion, RepSet2pPF, kq can be derived from
Algorithm 2 by using RS-R2. Note that none of the steps
in the algorithm requires to compute the Pareto front PF
of the bi-objective optimisation problem xX,C, fx, fyy, but
the resulting output is the k-representative set.

Proposition 5 The procedure RepSet2pxX,C, fx, fyy, kq
computes a k-representative set by using Opk ¨ logpRUBqq
solver calls, where RUB “ tdistpp

x
min,p

x
maxq

k u.

Note that RUB represents a value that is exponential in the
input size, but the overall complexity remains polynomial
as it relies on logpRUBq. The proof of the proposition is
analogous to Prop. 2, but individual elements of the Pareto
front are computed using solver calls rather than accessed in
constant time.

An interesting consequence of Prop. 5 is that focussing
on the bi-objective case to compute representative solutions
leads to a computational shift in comparison to the general
multi-objective case. Indeed, let us consider the decision
problem related to the computation of representative solu-
tions introduced in (Schwind et al. 2016):

Definition 2 (DP2 (Schwind et al. 2016)) Given a multi-
objective optimisation problem P “ xX,C, F y where F is
a set of objective functions, and two integers α, k where k
is bounded by a polynomial in the size of P , does there exist
S Ď PF such that |S| “ k and ΩpSq ď α?

Proposition 6 ((Schwind et al. 2016)) DP2 is NPNP-hard.

Proposition 7 If P “ xX,C, F y and F consists of at most
two objective functions, DP2 is in PNP.

This result shows that, even though there may be an expo-
nential number of Pareto optimal solutions, computing the
representative set only requires at most a polynomial num-
ber of solver calls, regardless of the size of the Pareto front.
Thus, computing a representative set is done more efficiently
than enumerating the Pareto front. This also shows that for
linear bi-objective programs, representative solutions can be
computed in polynomial time despite infinite-sized Pareto
fronts. To the best of our knowledge, this is the first result
of this kind for bi-objective optimisation, as previous works
compute either an approximate set or the complete Pareto
front. We illustrate the practicality of our algorithm in the
next section.

Experimental Results
We implemented our algorithms and performed a numerical
study. The goal was to verify the theoretical result and evalu-
ate the empirical performance. The computational study has
a supporting role and is meant as a proof-of-concept rather
than a rigorous comparison of solving paradigms and tech-
niques, which is out of the scope of the paper. To the best of
our knowledge, this is the first time a theoretical result (Prop.
5) and algorithm have been provided for computing provably
optimal representative solutions without resorting to a com-
plete Pareto front enumeration. Possibly better results could
be achieved with further algorithmic improvements, in par-
ticular by exploiting problem-specific features, but this does
not demean our main results: a theoretical result and princi-
pled algorithms to compute representative solutions for bi-
objective optimisation.

Our code and benchmarks are available online:
bitbucket.org/EmirD/representative-solutions-for-bi-
objective-optimisation. The input format for our program
is an MPS file. MiniZinc (Nethercote et al. 2007) users
can convert MZN/DZN files to the MPS format using the
built-in conversion feature of MiniZinc.

Computational Setting and Benchmarks
Experiments were performed on a machine with an i7-
7700HQ CPU @ 2.80GHz processor and 32 GB of RAM,
running one instance at a time with a time limit of ten hours.
We used Gurobi as the optimisation solver and experimented
with two benchmark families with varying instance size:

1441

• Resource-constrained project scheduling problems with
weighted earliness and tardiness objectives, labelled as
RCPSP-wet in the MiniZinc Challenge 2016 and 2017.
The instances are naturally bi-objective as the objective
consists of two parts: earliness and tardiness. For ease
of presentation we partitioned the benchmarks in three
groups: RCPSP-30, -60, and -90, containing six small,
three medium, and three large instances. We excluded the
large j90-10 benchmark as none of the techniques could
produce meaningful results within ten hours.

• Generated large bi-objective set covering benchmarks.
Similar instances were used in other single- and multi-
objective works (Musliu 2006; Bergman and Cire 2016).
The characteristics of the benchmarks are as follows: the
number of columns n “ t1000, 2000u, number of rows
n
5 , each row can be covered by ten (n “ 1000) or twenty
(n “ 2000) randomly selected columns, and each column
has a random weight from the interval r1, 1000s for each
objective. The task is to cover each row while minimising
the cost of the selected columns as a bi-objective problem.
We created twenty benchmarks, ten for each value of n.

In the following, we consider the implicit Pareto front
case. For the explicit case, the k-representative solutions can
be computed in seconds, as the dominating complexity fac-
tor is sorting, and is thus not further considered.

Results and Discussion
We compare our approach with two techniques that com-
pute the Pareto front: the ε-method (Haimes 1971) and the
two-phase approach (Ulungu and Teghem 1995). Although
somewhat old, these techniques are the two most widely
used generic methods for Pareto front enumeration in bi-
objective optimisation for integer programming according
to a recent survey (Stidsen, Andersen, and Dammann 2014).
As the time required to compute a representative set given a
Pareto front is negligible for bi-objective problems, we com-
pare against generating the complete Pareto front. In further
text, we discuss the results in comparison to the ε-method
since it was an order-of-magnitude faster than the two-phase
approach in our experiments. The discrepancy is likely be-
cause we used a generic implementation of the second phase
in the two-phase approach, which is typically tailored to par-
ticular applications. We would like to note that we are not
aware of other techniques that directly compute the repre-
sentative set: this is our main contribution.

The results are given in Table 1. We consider values
r1, 2, 3, 4, 5s for k, the number of desired representative so-
lutions. There is a correlation between k and the runtime of
our approach. Similarly, the number of iterations are kept
low (recall that each iteration solves a decision problem).
These observations are in accordance with the computa-
tional complexity (Prop. 5).

Our method uses a fewer number of solver calls compared
to Pareto front enumeration for the considered benchmarks.
This results in better performance. The conclusion holds ir-
respective of k, the size of the representative set. The gain in
time is roughly proportional to the difference in the number
of solver calls. Furthermore, the number of intermediate so-

time (seconds) # of NP-hard calls additional stats
Bench # k |PF | ε-PF k-Rep k-Relax ε-PF k-Rep #int #unique #iter

SC(n=1,000) 10 1 703 678 72 1 1,407 83 34 19 17
2 115 3 198 76 41 16
3 170 4 307 117 60 16
4 222 5 406 154 85 15
5 264 7 495 187 99 15

SC(n=2,000) 10 1 2,095 13,541 460 4 4,191 88 36 22 18
2 535 8 210 81 49 17
3 795 14 321 122 76 16
4 1,088 17 432 164 100 16
5 1,382 22 530 200 124 16

RCPSP-30 6 1 66 56 13 1 133 43 18 12 9
2 22 3 96 37 24 8
3 30 4 137 52 31 8
4 43 5 183 70 40 7
5 56 6 221 83 44 7

RCPSP-60 3 1 244 2,632 511 14 489 52 21 16 11
2 391 29 125 49 36 10
3 615 57 166 63 48 9
4 788 64 220 84 65 9
5 898 70 300 114 83 9

RCPSP-90˚ 2 1 507 9,334 514 144 1,015 64 26 20 13
2 1,551 346 133 51 38 11
3 2,041 706 214 82 59 11
4 2,101 872 256 97 74 10
5 3,210 1,036 337 128 93 10

Table 1: Comparison of the ε-method and our k-
representative approach. The column 1#1 shows the number
of benchmarks; |PF | is the size of the PF; k-Relax refers to
the k-representative solution of the linear relaxation; #int
and #unique is the number of intermediate and unique so-
lutions found during the search; #iter denotes the number
of iterations. Results are averaged. ˚The Pareto front could
not be generated for one benchmark (j-90-19) within ten
hours, but we could compute the representative solutions.

lutions generated throughout the search is typically consid-
erably smaller than the number of Pareto optimal solutions.
These results are in line with our main claim, i.e., computing
the representative solutions can be done efficiently without
resorting to the complete Pareto front.

During the search, the same Pareto optimal solution can
be computed more than once, i.e., the number of unique so-
lutions is smaller than the number of intermediate solutions.
This indicates an overlap between the iterations.

We considered the linear relaxation of the benchmarks,
i.e. the integrality constraints of the variables are relaxated
to continous variables. In these instances, the Pareto front
is of infinite size, but our approach can compute the k-
representative set. The lower run time for the relaxed in-
stances is expected, given that in general linear programs
are easier to solve than integer programs.

Conclusion
We provide a novel algorithm for computing the represen-
tative solutions for bi-objective optimisation. We show an
improved complexity result over the general multi-objective
case. Moreover, the numerical study illustrates the practi-
cality of our approach. For future work, we would reduce
potential redundancy in subsequent iterations of our algo-
rithm by taking into account previously computed solutions,
and incorporate other properties of Pareto optimal solutions,
such as those proposed in (Bazgan, Jamain, and Vander-
pooten 2017), to further refine the representative set.

References
Adomavicius, G., and Kwon, Y. 2014. Optimization-based
approaches for maximizing aggregate recommendation di-
versity. INFORMS Journal on Computing 26(2):351–369.

1442

Bazgan, C.; Jamain, F.; and Vanderpooten, D. 2017. Discrete
representation of the non-dominated set for multi-objective
optimization problems using kernels. European Journal of
Operational Research 260(3):814–827.
Bergman, D., and Cire, A. A. 2016. Multiobjective opti-
mization by decision diagrams. In Proc. of the 22nd Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP’16), 86–95. Springer.
Caillouet, C.; Li, X.; and Razafindralambo, T. 2011. A
multi-objective approach for data collection in wireless sen-
sor networks. In Proc. of the 10th International Confer-
ence on Ad-hoc, Mobile, and Wireless Networks (ADHOC-
NOW’11), 220–233.
Ceyhan, G.; Köksalan, M.; and Lokman, B. 2019. Find-
ing a representative nondominated set for multi-objective
mixed integer programs. European Journal of Operational
Research 272(1):61–77.
Dhar, R. 1997. Consumer Preference for a No-Choice Op-
tion. Journal of Consumer Research 24(2):215–231.
Eusébio, A.; Figueira, J.; and Ehrgott, M. 2014. On find-
ing representative non-dominated points for bi-objective in-
teger network flow problems. Computers and Operations
Research 48:1–10.
Gavanelli, M. 2002. An algorithm for multi-criteria opti-
mization in CSPs. In Proc. of the 15th European Conference
on Artificial Intelligence (ECAI’02), volume 2, 136–140.
Haimes, Y. 1971. On a bicriterion formulation of the prob-
lems of integrated system identification and system opti-
mization. IEEE transactions on systems, man, and cyber-
netics 1(3):296–297.
Hebrard, E.; Hnich, B.; O’Sullivan, B.; and Walsh, T. 2005.
Finding diverse and similar solutions in constraint program-
ming. In Proc. of the 20th National Conference on Artificial
Intelligence (AAAI’05), 372–377.
Iyengar, S. S., and Lepper, M. R. 2000. When choice is de-
motivating: Can one desire too much of a good thing? Jour-
nal of personality and social psychology 79(6):995.
Karasakal, E., and Köksalan, M. 2009. Generating a rep-
resentative subset of the nondominated frontier in multiple
criteria decision making. Operations research 57(1):187–
199.
Kwek, S., and Mehlhorn, K. 2003. Optimal search for ratio-
nals. Information Processing Letters 86(1):23–26.
Masin, M., and Bukchin, Y. 2008. Diversity maximization
approach for multiobjective optimization. Journal of Oper-
ations Research 56(2):411–424.
Musliu, N. 2006. Local search algorithm for unicost set
covering problem. In Proc. of the 19th International Con-
ference on Industrial, Engineering and Other Applications
of Applied Intelligent Systems (IEA/AIE)’06, 302–311.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack, G. 2007. Minizinc: Towards a standard
cp modelling language. In Proc. of the 13th International
Conference on Principles and Practice of Constraint Pro-
gramming (CP’07), 529–543. Springer.

Papadimitriou, C. H. 2003. Computational complexity. John
Wiley and Sons Ltd.
Petit, T., and Trapp, A. C. 2015. Finding diverse solutions of
high quality to constraint optimization problems. In Proc. of
the 24th International Joint Conference on Artificial Intelli-
gence (IJCAI’15), 260–267.
Petit, T., and Trapp, A. C. 2019. Enriching solutions to com-
binatorial problems via solution engineering. INFORMS
Journal on Computing 31(3):429–444.
Raith, A., and Sedeño-Noda, A. 2017. Finding extreme
supported solutions of biobjective network flow problems:
An enhanced parametric programming approach. Comput-
ers and Operations Research 82:153 – 166.
Sayin, S. 2000. Measuring the quality of discrete represen-
tations of efficient sets in multiple objective mathematical
programming. Mathematical Programming 87:543–560.
Schaus, P., and Hartert, R. 2013. Multi-objective large
neighborhood search. In Proc. of the 19th International
Conference on Principles and Practice of Constraint Pro-
gramming (CP’13), 611–627.
Schwind, N.; Okimoto, T.; Clement, M.; and Inoue, K. 2016.
Representative solutions for multi-objective constraint opti-
mization problems. In Proc. of the 15th International Con-
ference of Principles of Knowledge Representation and Rea-
soning (KR’16), 601–604.
Shafir, E.; Simonson, I.; and Tversky, A. 1993. Reason-
based choice. Cognition 49(1-2):11–36.
Stidsen, T.; Andersen, K. A.; and Dammann, B. 2014. A
branch and bound algorithm for a class of biobjective mixed
integer programs. Management Science 60(4):1009–1032.
Trisna, T.; Marimin, M.; Arkeman, Y.; and Sunarti, T. 2016.
Multi-objective optimization for supply chain management
problem: A literature review. Decision Science Letters
5(2):283–316.
Ulungu, E. L., and Teghem, J. 1995. The two phases
method: An efficient procedure to solve bi-objective combi-
natorial optimization problems. Foundations of Computing
and Decision Sciences 20(2):149–165.
Vaz, D.; Paquete, L.; Fonseca, C. M.; Klamroth, K.; and
Stiglmayr, M. 2015. Representation of the non-dominated
set in biobjective discrete optimization. Computers and Op-
erations Research 63:172–186.
Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C. M.; and
Da Fonseca, V. G. 2003. Performance assessment of multi-
objective optimizers: An analysis and review. IEEE Trans-
actions on evolutionary computation 7(2):117–132.

1443

