
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Deep Spiking Delayed Feedback Reservoirs and Its Application
in Spectrum Sensing of MIMO-OFDM Dynamic Spectrum Sharing

Kian Hamedani,1 Lingjia Liu,1 Shiya Liu,1 Haibo He,2 Yang Yi1

1Department of Electrical and Computer Engineering, Virginia Tech, USA
{hkian, ljliu, shiyal, yangyi8}@vt.edu

2Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, USA
{haibohe}@uri.edu

Abstract

In this paper, we introduce a deep spiking delayed feedback
reservoir (DFR) model to combine DFR with spiking neuros:
DFRs are a new type of recurrent neural networks (RNNs)
that are able to capture the temporal correlations in time se-
ries while spiking neurons are energy-efficient and biolog-
ically plausible neurons models. The introduced deep spik-
ing DFR model is energy-efficient and has the capability of
analyzing time series signals. The corresponding field pro-
grammable gate arrays (FPGA)-based hardware implemen-
tation of such deep spiking DFR model is introduced and
the underlying energy-efficiency and recourse utilization are
evaluated. Various spike encoding schemes are explored and
the optimal spike encoding scheme to analyze the time series
has been identified. To be specific, we evaluate the perfor-
mance of the introduced model using the spectrum occupancy
time series data in MIMO-OFDM based cognitive radio (CR)
in dynamic spectrum sharing (DSS) networks. In a MIMO-
OFDM DSS system, available spectrum is very scarce and
efficient utilization of spectrum is very essential. To improve
the spectrum efficiency, the first step is to identify the fre-
quency bands that are not utilized by the existing users so that
a secondary user (SU) can use them for transmission. Due to
the channel correlation as well as users’ activities, there is
a significant temporal correlation in the spectrum occupancy
behavior of the frequency bands in different time slots. The
introduced deep spiking DFR model is used to capture the
temporal correlation of the spectrum occupancy time series
and predict the idle/busy subcarriers in future time slots for
potential spectrum access. Evaluation results suggest that our
introduced model achieves higher area under curve (AUC) in
the receiver operating characteristic (ROC) curve compared
with the traditional energy detection-based strategies and the
learning-based support vector machines (SVMs).

1 Introduction

Recurrent neural network (RNNs) have shown to be very
powerful tools to analyze time series data. However, Due
to the vanishing gradients, the traditional RNNs are very
challenging or even impossible to train. Reservoir comput-
ing (RC) is a new generation of RNNs that is much eas-
ier to train, and in many cases have shown equivalent or
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even improved performances compared to the traditional
RNNs (Palumbo et al. 2016; Antonelo, Schrauwen, and
Stroobandt 2008). There are three different types of RC sys-
tems, echo state networks (ESN), delayed feedback reser-
voirs (DFR), and liquid state machines (LSM) (Lukoševičius
and Jaeger 2009). The RC paradigms avoid the gradient
vanishing problem through generating a recurrent reservoir
layer where the weights of the connections between neu-
rons are randomly created and remain fixed during the train-
ing (Schrauwen, Verstraeten, and Van Campenhout 2007).
DFRs are the most recent generation of RC models and are
constructed through a single neural model and a delay loop
which performs as the reservoir layer (Antonik et al. 2017).
It is shown to be powerful for attack detection in smart
grids (Hamedani et al. 2018) and video based face recogni-
tion in cyber physical systems (CPS) (Hamedani et al. 2019;
Bai et al. 2018).

Various mathematical models have been introduced to
represent artificial neurons. The spiking neural networks
(SNNs) are the most biologically plausible model with ex-
tremely high energy-efficiency since the spikes are the main
signal format that the neurons of our brains adopt to com-
municate with each other(Uzzell and Chichilnisky 2004).
Truenorth is a SNN chip which was developed by IBM in
2014 (Esser et al. 2016), and it forms a network composed
of 1 million artificial neurons with 256 million synapses.
Despite this large number of neurons and synapses, the
Truenorth consumes only 70 milli-Watts (mW) in power.

It is known that neurons use spikes to communicate in
our brains, however, the exact encoding approach the neu-
rons adopt to encode the information is still unclear. Rate
encoding and temporal encoding are the two major neural
encoding schemes that have been introduced where tempo-
ral encoding schemes have drawn more attention recently
due to their superior performance over rate encoding (Panz-
eri et al. 2010). Therefore, in this paper, we adopt temporal
encoding for neural encoding.

To evaluate the introduced deep spiking DFR (DSDFR)
model we focus on the application of spectrum occupancy
prediction of a dynamic spectrum sharing (DSS) system
using multiple-input-multiple-output (MIMO) orthogonal-
frequency-division multiplexing (OFDM) technologies. The
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mobile data traffic is predicted to grow 46 percent every year
between 2017 to 2022 due to the vast popularity of smart
phones and upcoming fifth generation (5G) mobile broad-
band networks (Cisco 2019). Due to the spectrum scarcity
several solutions including network densification, DSS, and
massive MIMO have been introduced in 5G networks (Atat
et al. 2017).

In this paper, we focus on DSS which resolves the spec-
trum scarcity in 5G systems through sharing the spectrum
among the users. The combination of MIMO and OFDM
technologies improves the spectral efficiency, as the MIMO
utilizes the spatial multiplexing gain and the OFDM avoids
frequency selective fading. MIMO-OFDM has already been
adopted in fourth generation (4G) LTE/LTE-Advanced (Liu
et al. 2012) and will remain as the dominant technology
in 5G as well. However, in a MIMO-OFDM system not
all subcarriers are utilized simultaneously by the primary
user (PU) leading to low spectrum utilization efficiency. The
MIMO-OFDM based cognitive radios (CRs) in a DSS envi-
ronment introduces a solution to resolve this problem where
the under-utilized subcarriers can be used by the secondary
users (SUs)/CRs. In DSS environments the SUs monitor the
spectrum utilization of PUs through spectrum sensing and
transmit data on the idle subcarriers (Chen et al. 2016). The
main contributions of this paper are :
• Develop an energy efficient DSDFR model that can be

used to analyze the time series in a DSS system.
• Explore different temporal encoding schemes and identify

the optimal one.
• Develop a FPGA-based hardware implementation of

DFRs and evaluate its efficiency and performance.
The organization of this paper is as follows. In Section

II, our introduced model and the MIMO-OFDM DSS envi-
ronment are presented. Section III shows the performance
evaluation and corresponding FPGA implementation. Sec-
tion IV concludes the paper and discusses the future work.

2 Deep Spiking Delayed Feedback Reservoirs
Figure 1 shows the model of the introduced DSDFR. There
are three major layers in this model: 1) the input layer where
the spectrum occupancy time series are received and prepos-
sessed; 2) the reservoir layer is where the memory is formed
and the temporal correlation of the time series is extracted;
3) the temporal information that is extracted by the reservoir
layer is used for training the output layer.

2.1 MIMO-OFDM Input Time Series

In OFDM multi-carrier transmissions, L−point inverse dis-
crete Fourier transform (IDFT) is applied to the modulated
PU symbols. In this paper, we assume Quadrature Phase
Shift Keying (QPSK) is used to modulate the transmit sym-
bols. Subsequently, the cyclic prefix (CP) is added to the
symbols and the symbols are transmitted over a wireless
channel. Eq. 1 represents the kth QPSK symbol generated
by the PU after passing through the IDFT

s (t− kTi) =
L−1∑
l=0

Sk,le
j2πl(t−kTi)

Ti ej2πfi(t−kTi), (1)

Figure 1: Architecture of DSDFR model.

where Sk,l is the PU symbol that is modulated on the lth sub-
carrier, fi is the QPSK carrier frequency, and Ti is the QPSK
symbol duration. This symbol is transmitted over a fading
Rayleigh channel and the received signal is down converted
to the baseband and then passes through the P−point dis-
crete Fourier transform (DFT). The nth OFDM symbol can
be written as,

y (t− nTs) = e−j2πfs(t−nTs)
M−1∑
m=0

hms(t− kTi −mTs),

where hm is the coefficient of the Rayleigh channel, Ts is
the OFDM symbol period, and fs is the OFDM carrier fre-
quency. The signal transmitted on the pth subcarrier is (Tse
and Viswanath 2005):

Yp(n) =
L−1∑
l=0

Xk,lHle
j2π(−kfiTi+nfsTs)ejπβl,p(P−1)

× sin(πβl,pP )

sin(πβl,p)
1 ≤ p ≤ P,

(2)

where Hl =
∑M−1

m=0 hme−j2πm(fiTs+lTs/Ti), βl,p =
(k/Ti + fi − fs)Ts/M − m/M , and M is the number of
subcarriers. Therefore, the received signal at the CR which
is transmitted on the pth subcarrier can be written as,

Rp(n) = Yp(n) +Np(n), (3)

where Np(n) is the DFT of complex additive white Gaus-
sian noise (AWGN) with zero mean and unit variance. The
main objective of this paper is to determine the presence or
absence of the signal on the pth subcarrier. The presence and
absence of the received signal are denoted as two hypothe-
sis, H1 and H0 respectively. Therefore, the received signal
can be expressed as

Rp(n) =

{
Np(n) H0

Yp(n) +Np(n) H1 n = 1, . . . , N,
(4)

where N is the number of OFDM received symbols. In the
energy detection based spectrum sensing, the decision statis-
tics of each subcarrier is formed based on the average re-
ceived energy of N symbols and is expressed as follows,

Ep =

⎧⎪⎨
⎪⎩

1

N

∑N
n=1

∣∣Np(n)
∣∣2 H0

1

N

∑N
n=1

∣∣Yp(n) +Np(n)
∣∣2 H1.

(5)
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The decision statistics, Ep, is compared with a threshold
value, if the Ep is larger than the threshold then the subcar-
rier is considered as busy, otherwise the subcarrier is denoted
as idle. The threshold is calculated based on the given proba-
bility of false alarm, Pf . It is ideal to have a high probability
of detection for each subcarrier, P p

d , while maintaining a low
P p
f . P p

d and P p
f are defined as (Liang et al. 2008),

P p
f = Pr (Ep > εp|H0) = Q

((
ε

σ2
n

− 1

)√
N

)
,

P p
d = Pr (Ep > εp|H1) = Q

((
ε

σ2
n

− γp − 1

) √
N

γp + 1

)
,

where εp is the energy detection threshold for subcarrier
pth, γp is the signal-to-noise ratio (not in dB) of the pth

subcarrier, Q(·) is the complementary function of a standard
Gaussian distribution, and σ2

n is the noise variance which in
this paper is assumed to be 1. The εp is calculated based on
the given P p

f .
For the case where there are multiple antennas at the CR

receiver, the received signal of the pth subcarrier at the jth

antenna can be expressed,

Rj
p(n) = Y j

p (n) +N j
p (n) j = 1, . . . , NR, (6)

where NR is the number of CR antennas. The corresponding
decision statistics, Ep, can be expressed as

Ep =

⎧⎪⎨
⎪⎩

1

NNR

∑NR

j=1

∑N
n=1

∣∣N j
p (n)

∣∣2 H0

1

NNR

∑NR

j=1

∑N
n=1

∣∣Y j
p (n) +N j

p (n)
∣∣2 H1.

The corresponding P p
f and P p

d can be written as

P p
f = Q

((
ε

σ2
n

− 1

)√
NNR

)

P p
d = Q

((
ε

σ2
n

− γp − 1

) √
NNR

γp + 1

)
.

(7)

In most of the literature, it is assumed that the PU activ-
ity follows a Markov chain which is not very practical. To
incorporate the temporal correlation of the PU activity, in
this paper, instead of using Markov chains we use real world
spectrum occupancy data to represent the PU activity. Static
spectrum occupancy measurement campaign (Wellens, de
Baynast, and Mahonen 2008) has been conducted by RWTH
Aachen University to measure the PU activity in different
frequency bands and time slots. Their results show that in
each frequency band, a significant temporal correlation ex-
ists in the PU activity in different time slots. In this paper, the
occupancy of each subcarrier is modeled based on its corre-
sponding frequency occupancy model that is extracted from
RWTH Aachen University’s spectrum occupancy database.
The input time series are generated using the energy of the
received signals by the SUs.

2.2 Encoding

In order to process the time series using the artificial spik-
ing neurons, the input signals have to be first encoded. As

Figure 2: TTFS encoding.

mentioned in Section 1, we focus on temporal encoding due
to their superior performance. There are two major temporal
encoding schemes: 1) latency or time to first spike (TTFS)
encoding and; 2) interspike interval (ISI) encoding. In this
section, we will study how to apply them on time series
MIMO-OFDM data.

TTFS Encoding In latency or TTFS encoding approach,
the stimulus is encoded as the latency between the stimulus
onset and the observation time of the first spike in an encod-
ing time window.

Accordingly, TTFS can be expressed as (Hu et al. 2013):

TTFS = ti = tmax − ln (α× ri + 1) , (8)

where tmax is the length of the encoding window; α is the
scaling factor; and ri is the value of the stimulus (in our
case, ri is the received energy at the SUs/CRs). An exam-
ple of TTFS encoding is demonstrated in Figure 2. As it can
be seen, for the stimulus with higher intensity the latency
is shorter. In this paper, tmax is a hyperparemeter that re-
quires tuning. For each received signal in the spectrum oc-
cupancy time series, its corresponding TTFS is calculated
using Equation 8 and is fed into the next block.

ISI Encoing ISI encoding is another category of tempo-
ral encoding where the relative distance between multiple
spikes is used for encoding the stimulus (Zhao et al. 2015).
In Figure 3, an example of ISI encoding is demonstrated. We
leverage a nonlinear neuron model for ISI encoding. Equa-
tion 9 shows the ISI encoding strategy,

Di = g (ri, Ci, Vi)− g (ri, Ci−1, Vi−1) , (9)

where Di is the time distance between two consecutive
spikes; g is the nonlinear ISI encoding neuron; Ci and Vi are
the capacitance and threshold voltage of the ith encoding
neuron, respectively. The number of the ISI encoding neu-
rons is a hyperparameter that requires tuning. In this paper,
for the sake of computational simplicity, the number of ISI
encoding neurons are considered to be 3. The relationship
between the number of ISI encoding neurons and the num-
ber of spikes can be expressed as NS = 2N−1 where NS is
the number of spikes. Setting N = 3, we have NS = 4.

2.3 Spike to Current

After the input time series are encoded, they need to be con-
verted to an analog current to be processed by other neurons.
This is inspired by how the information is processed in our
brains. The sensory neurons receive the stimulus and encode
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Figure 3: ISI encoding.

the information. Consequently, the encoded information is
converted to analog current and then fed into the information
processing neurons (Follmann, Goldsmith, and Stein 2018;
Yu et al. 2013). The following equation can be leveraged to
convert the encoded information to an analog current,

IPSAC(t) =
∑
tj

κ(t− tj)H(t− tj), (10)

where IPSAC(t) is the postsynaptic analog current; H is the
Heaviside function; tj is the time of spiking; and κ(t − tj)
is a kernel function and is defined in Equation 11.

κ
(
t− tj

)
= V0 ×

(
exp

(
− t− tj

τs

)
− exp

(
− t− tj

τf

))
,

(11)
where V0 is the normalization factor which helps us make
sure that the magnitude of the kernel always remains less
than 1; τs and τf are the slow and fast decay constants and
are set to 10 ms and 4 ms in this paper, respectively. For each
received signal in the time series, its corresponding analog
current is produced and then is fed to the delay reservoir
layer to be explained in more details in Section 2.4.

2.4 Delay Reservoir Layer

Delay exists in almost every system.
The delay can affect the performance of the neurons and

it is essential to study the effects of the delay on the infor-
mation processing neurons. In delay systems, the state of the
system does not only depend on the current time but also on
previous times. Delayed differential equations (DDEs) can
be used to express the underlying relationship (Appeltant et
al. 2011),

dx(t)

dt
= f [x(t), x(t− τ)] , (12)

where f(·) is a nonlinear function, and τ is delay value. It
is shown that the delayed feedback loops can serve as RC
models are capable of capturing the temporal correlations in
the time series (Appeltant et al. 2011). The reservoir layer
acts as the recurrent layer of the system, and extracts the
temporal correlation of the input time series. The temporal
features that are extracted from the reservoir layer, are used
for training the weights of output layer.

The delay loop is composed of a nonlinear node (NL)
and a set of virtual nodes. The nonlinear node in our case is

leaky-integrate and fire (LIF) neuron, and the virtual nodes
are separated by a fixed delay, θ. The LIF neuron is one of
the major mathematical models that represents the behavior
of spiking neurons (Wu et al. 2019). Equation 13 shows the
mathematical representation of LIF neurons:

τm
dVm

dt
= − (Vm − E) + (Inoise + Is)Rm, (13)

where Vm is the membrane voltage of the LIF neuron; E
is the rest potential; τm is the time constant of the neuron
and τm = RmCm; Rm and Cm are the resistance and ca-
pacitance of the neuron which are 1 mega ohms (MΩ) and
10 nano Farads (nF ), respectively; Inoise is the background
noise; Is is the stimulus current (in our case, it is the analog
currents of each received signal in the time series).

The total delay that the delay loop goes through equals
to τ , and θ = τ/V is the corresponding delay of each vir-
tual node where V represents the number of virtual nodes.
The delayed version of each virtual node is stored in the next
virtual node, and the output of the last virtual node is mul-
tiplied by a feedback gain (g), and then is converted to an
analog current so that it can be added to the corresponding
current of the next temporal sample in the time series. It is
shown that the DFRs can show high dimensional behavior
and short-term memory if θ, τ , and g are tuned such that
the DFR performs at the edge of chaotic region (Ikeda and
Matsumoto 1987; Bertram et al. 2003). Therefore, the vir-
tual nodes are the reservoirs of the DFRs and their job is
to form a short-term memory and map the data from a low-
dimensional space to a high-dimensional space.

2.5 Output layer

The third layer of the DFR is the output or readout layer. In
this layer, the states extracted by the reservoir (virtual) nodes
undergo a training algorithm such that the desired output can
be estimated by the DFR. After making sure that the training
is completed successfully, the data that has not been seen
by the DFR is used for testing. The estimated output is the
weighted sum of the tapped reservoir states as the readout
layer and is expressed as

ô(t) =
V∑
i=1

wix
(
t− τ

V
(V − i)

)
, (14)

where ô(t) is the estimated output, x(t − τ/V (V − i)) is
the reservoir state, wi is the set of training weights. The role
of the training algorithm is to find a set of weights such that
the mean square error (MSE) between the estimated outputs
and the desired outputs is minimized. The MSE is defined
as ||WX − O||2 where W is the training weight matrix, X
is the reservoir state matrix , and O is the desired output
matrix. In (Appeltant et al. 2011), a simple Moore-Penrose
pseudo-inverse approach has been introduced to estimate W .
To further improve the performance, we introduce a hybrid
learning algorithm where we use a multi-layer perceptron
(MLP) instead of the Moore-Penrose pseudo-inverse to find
the optimal set of output weights. We will use stochastic gra-
dient descent (SGD) to train the readout MLP and the cross-
entropy will be the loss function. The spectrum sensing is a
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binary classification task, and for each class its correspond-
ing label is assigned. In this paper, the label of the busy sub-
carriers is assigned to be 1, and the label of the idle sub-
carriers is 0. The temporal features that are extracted by the
reservoir layer are used for training a MLP with one hidden
layer of 20 neurons.

The number of the input nodes of the MLP equals to the
number of the reservoir nodes in the delay loop of the DFR.
To avoid over-fitting the cross-validation and regularization
are also utilized during the training process.

The feature that we use for training our hybrid spiking
DFR and MLP structure is the energy of each received signal
in the time series. The DFRs can be superior over other ma-
chine learning algorithms in scenarios where the PU activity
at each time slot is temporally correlated with its activity in
previous and future time slots.

3 Performance Evaluation & Hardware

Implementation

3.1 TTFS vs ISI

We use receiver operating characteristics (ROC) curve to
evaluate the prediction performance of the introduced DS-
DFR model. The ROC curve plots the P p

d with respect to
the P p

f and the detection algorithm that achieves the high-
est area under the curve (AUC) is the best spectrum sensing
algorithm. We perform our simulations for different signal-
to-noise ratios (SNR(dB)), and number of transmit (Tx) and
receive (Rx) antennas in a MIMO-OFDM DSS based CR.

In Section 2 TTFS and ISI are introduced as two temporal
neural encoding schemes. In this section, we compare the
performance of these encoding strategies. Table 1 contains
the AUC of DSDFR for TTFS and ISI. As shown in the table,
the AUC of ISI achieves significantly higher values. This ob-
servation implies the superiority of ISI over TTFS in neural
spike encoding. In TTFS, the information is encoded with

Table 1: TTFS vs ISI, Tx = 2 , Rx = 2
Method SNR(db) AUC

DSDFR-TTFS -10db 0.92
DSDFR-TTFS -20db 0.7
DSDFR-TTFS -30db 0.51

DSDFR-ISI -10db 0.97

DSDFR-ISI -20db 0.76

DSDFR-ISI -30db 0.54

respect to the stimulus onset. Therefore, an external tempo-
ral reference is required in TTFS. In ISI, the stimulus is en-
coded with respect to the relative temporal distance between
consecutive spikes in a spike train. Any imprecision in de-
termining the external temporal reference of TTFS can result
in lower performances. On the other hand, ISI has shown to
convey more information than TTFS (Brasselet et al. 2012).
Therefore, it is generally known that ISI is superior to TTFS
where our evaluation confirms this understanding.

Figure 4: Phase Portrait.

3.2 Effect of Delay on Performance

The delay value of the reservoir layer is an important
hyperparameter that requires tuning. It has been shown
in (Bertram et al. 2003) that the delay feedback loop can
form short-term memory and show high-dimensional behav-
ior only if their delay value is tuned somehow that they can
operate at the edge of chaos. The dynamic behavior of the
delay loop shifts from periodic to edge of chaos and to com-
pletely chaotic. There are several evidences that the neurons
of our brain also operate at the edge of chaos (Chua, Sbitnev,
and Kim 2012). Therefore, it is essential to tune the delay
value of our introduced DSDFR model so that it can oper-
ate at the edge of chaos. Plotting the phase portraits is one
common method to analyze the dynamic behavior of delay
feedback loop systems.

Solving the DDE equation of a delay system helps us to
further investigate the dynamic behavior. In fact, by using
the phase portraits we can visualize the dynamic behavior of
a delay feedback system in long term run.Figure 4 demon-
strates an example of a phase portrait corresponding to a
delay feedback system. As it can be seen in the figure by
increasing the delay value the dynamic behavior of a delay
feedback system can shift from ordered to edge of chaos,
and completely chaotic.

We investigate the effect of the delay value on DSDFR
and identify the optimal delay value in this section. Figure 5
shows the AUC of DSDFR for different values of the de-
lay. AUC is very low for small values of the delay, however,
it improves as the delay increases. From the figure We can
see that our introduced model achieves the highest AUC for
τ = 30ms. Furthermore, when τ > 30ms, the AUC starts to
reduce. This observation along with the phase portrait imply
that τ ≈ 30ms is the optimal delay value of our introduced
model to analyze the MIMO-OFDM DSS CR spectrum oc-
cupancy time series. Therefore, we can conclude that for
τ ≈ 30ms DSDFR operates at the edge of chaos and can
form a short-term memory and show high-dimensional be-
havior. Accordingly, we set τ = 30ms in this paper.

3.3 Comparison with other methods

We compare our results with square law combining
(SLC) (Kuppusamy and Mahapatra 2008; Chen et al. 2015)
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Figure 5: Delay effects: SNR(dB)=−20dB, Tx=4, Rx=4.

Figure 6: ROC curves for different sensing approaches and
different number of antennas at SNR(dB) = −20dB.

which is an energy detection based spectrum sensing ap-
proach and SVM with radial basis function (RBF) kernel.
Note that in the literature, SVMs have shown the high-
est detection performance in machine learning-based spec-
trum sensing (Davaslioglu and Sagduyu 2018; Thilina et al.
2013). Therefore, we will compare our results with SVM-
based spectrum sensing strategies. The ROC curve of our
simulation results at SNR(dB) = −20dB for different num-
bers of Tx and Rx antennas are presented in Figure 6 for
Rayleigh fading channels. As it can be seen in the figure
that the DSDFR with ISI encoding outperforms the SLC and
SVM for all scenarios because DSDFR covers more AUC
compared with the other two approaches.

It can also be observed that as the number of antennas in-
creases, the detection performance improves. A larger num-
ber of antennas will increase the spatial multiplexing gain
and this helps to achieve higher detection performance as
well. Furthermore, we can see in the figure that the SLC and
DSDFR achieve the same performances when the number of

Tx and Rx antennas equal to 6. However, for lower numbers
of Tx and Rx antennas the DSDFR outperforms the other
two methods. Table 2 presents the AUC for all these meth-
ods.

Table 2: AUC of Different MIMO-OFDM Spectrum Sensing
Methods at SNR(dB)=−20 dB

Method Tx antenna Rx antenna AUC
SLC 2 2 0.11
SLC 4 4 0.7
SLC 6 6 0.97
SVM 2 2 0.71
SVM 4 4 0.92
SVM 6 6 0.98

DSDFR-ISI 2 2 0.76

DSDFR-ISI 4 4 0.95

DSDFR-ISI 6 6 0.99

3.4 Architecture of FPGA Implementation

The DFR system is composed of three blocks: a mapping
block, a delayed loop block and a readout block. As soon as,
an input is received, it is firstly sent to the encoding block. In
the encoding block, a one-dimensional input is mapped to 10
neurons. It is achieved by multiplying the input with a vector
of synapse weights with size 10. These synapse weights are
stored in block RAMs (BRAMs) to minimize the latency.
Then, the output neurons are buffered in BRAMs and later
will be used by DFR loop block. DFR loop block has two
inputs. One input is the output neurons from encoding block
and another input is the output of DFR loop block from pre-
vious time sample. To minimize the latency, weights of these
fully-connected layers and intermediate data between these
two layers are stored in BRAMs.

3.5 FPGA-based DFR Hardware Implementation

To show the energy-efficiency of our scheme, we imple-
ment the DFR-based spectrum sensing platform on FPGAs
and evaluate its speed and energy consumption. The intro-
duced DFR system is implemented on the Xilinx Zynq R©-
7000 FPGA with Dual ARM R©Cortex R©-A9 MPCoreTM

with CoreSightTM. Vivado HLS is the tool we used to imple-
ment the DFR system. Vivado HLS is a high-level synthe-
sis tool that convert C/C++ into RTL. We exported the DFR
system implementation in Vivado HLS as an IP core which
is imported and synthesized by Vivado. Finally, Vivado will
generate bitstream and program the FPGA board.

Our hardware architecture is memory efficient: Only 3
out of 280 available BRAMs are used leading to 1% of the
BRAM utilization rate. In terms of flip-flop, our DFR sys-
tem consumes 6070 out of 106400 available flip-flops and
the utilization rate is 5%. The LUT (Look-Up Table) utiliza-
tion rate is 18% with 9976 out of 53200 LUTs are used in
the DFR system. In terms of DSP, our DFR consumes 44
of 220 available DSP and the utilization rate is 20%. Mean-
while, the speed of our DFR system is fast: It is able to com-
plete the inference of 5102 samples in 0.302 seconds(s). The
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Figure 7: ROC curve of MATLAB simulations and FPGA
Implementation platform.

power consumption of our DFR system block is 0.199 Watts
(W). Figure 7 shows that the result of the FPGA implemen-
tation and that of software implementations are very simi-
lar: the FPGA and MATLAB implementations achieve the
same AUC. Table 3 summarizes the speed and power con-
sumption performance and Table 4 summarizes the resource
utilization of our DFR system. We can see that the resource
utilization and power consumption of this model is low, de-
spite the large time series dataset that is being processed.

Our introduced DFR model can not only improve the
AUC in spectrum sensing but reduce the computational
complexity as well leading to an efficient design. The low
computational complexity of DFR is due to the fact that the
delay loop of DFR can extract the temporal correlation that
exist in the data, and as a result of that the readout layer of
DFR which in our case is a MLP can use this temporal in-
formation and identify the decisions boundaries more easily.
However, the SVM cannot leverage this temporal informa-
tion and spends more time to identify the decision bound-
aries. The computational complexity of the DFR based spec-
trum sensing comes only from the read out layer, where in
our case is a MLP. The weights of the delay loop of the DFR
are fixed and do not cause any computational complexity.
In order to compute the computational complexity, the total
number of floating point operations (FLOPs) have to be cal-
culated(Hunger 2005). It has been shown in (Mosleh et al.
2017) that the computational complexity of calculating the
output weights of a RC system is approximated by T 3

trian
where Ttrian corresponds to the training time.

Table 3: Performance of DFR System
Blocks Inference time Power Consumption
DFR 0.302s 0.199W

Table 4: Resource Utilization of DFR System
Resource Used Available Utilization(%)

DSP 44 220 20%
BRAMs 3 280 1%
Flip-Flop 6070 106400 5%

LUT 9976 53200 18%

4 Conclusion and Future Work

In this work, we introduced a spiking model of delayed feed-
back reservoirs that can be used for analyzing time series.
RNNs have shown to be very useful for time series analy-
sis. However, the traditional RNNs are not easy to be im-
plemented by hardware. In this paper, we presented a deep
spiking model of DFRs that can capture the temporal cor-
relation, and at the same time is very efficient for hardware
implementation. The spectrum occupancy time series data
of MIMO-OFDM CRs in DSS environments was used to
evaluate the performance of our introduced model. We ex-
plored two temporal neural spike encoding schemes to show
that the ISI encoding outperforms the TTFS significantly in
terms of AUC. Our introduced DSDFR using ISI encoding
achieves better performances compared with SLC which is
an energy detection based spectrum sensing approach, and
SVM as well. The FPGA based hardware implementation
of our introduced DFR model verifies the energy efficiency
of this model, as a very small portion of the computational
resources of FPGA are consumed.

In the future work, we will develop an architecture where
multiple layers of DSDFRs are stacked together. Stacking
more layers of DFRs could potentially increase the AUC.
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