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Abstract

Multilayer networks allow for modeling complex relation-
ships, where individuals are embedded in multiple social net-
works at the same time. Given the ubiquity of such relation-
ships, these networks have been increasingly gaining atten-
tion in the literature. This paper presents the first analysis
of the robustness of centrality measures against strategic ma-
nipulation in multilayer networks. More specifically, we con-
sider an “evader” who strategically chooses which connec-
tions to form in a multilayer network in order to obtain a low
centrality-based ranking—thereby reducing the chance of be-
ing highlighted as a key figure in the network—while ensur-
ing that she remains connected to a certain group of people.
We prove that determining an optimal way to “hide” is NP-
complete and hard to approximate for most centrality mea-
sures considered in our study. Moreover, we empirically eval-
uate a number of heuristics that the evader can use. Our re-
sults suggest that the centrality measures that are functions of
the entire network topology are more robust to such a strate-
gic evader than their counterparts which consider each layer
separately.

Introduction

Owing to several incidents in the past few years, most no-
tably those concerning the American presidential elections
of 2016, the general public has become increasingly con-
cerned with the privacy and security of their online ac-
tivities (Persily 2017). Experts, however, had been warn-
ing about such potential risks long ago. For instance, Mis-
love et al. (2010) famously showed that, by coupling the
social network of a given Facebook user with publicly-
known attributes of some other users, it is possible to infer
otherwise-private information about that user. Worryingly,
this is true not only for typically innocuous data, but also for
potentially-sensitive confidential information such as polit-
ical preferences (as demonstrated in the case of Cambridge
Analytica), or even sexual orientation (Kitchin 2016).
Various proposals on how to deal with such privacy chal-
lenges have already been put forward. Among those propos-
als is the General Data Protection Regulation, implemented
in May 2018, which is perhaps the most well-known attempt
to use state-enforced, legal instruments (EU 2016). On the
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other hand, there have been a plethora of algorithmic solu-
tions for privacy protection (Lane et al. 2014; Kearns et al.
2016). Perhaps the most well-known such solutions come
from the network anonymization and de-anonymization lit-
erature (Zhou, Pei, and Luk 2008; Narayanan and Shmatikov
2009; Kayes and Iamnitchi 2015), which studies the prob-
lem faced by a data trustee who publishes anonymized net-
work data to be analyzed for various purposes. In this lit-
erature, the responsibility of protecting the privacy of the
network members lies solely on the shoulders of the data
trustee, while the network members are implicitly assumed
to be passive in this regard. In contrast, a recent body of work
studies ways in which the network members can themselves
protect their own privacy by acting strategically to evade var-
ious tools from the social network analysis toolkit (Micha-
lak, Rahwan, and Wooldridge 2017). In this context, three
fundamental classes of tools have been considered: (1) cen-
trality measures, (2) community detection algorithms; and
(3) link prediction algorithms. More specifically, Waniek et
al. (2018; 2017) studied how key individuals in a social net-
work could rewire the network to avoid being highlighted by
centrality measures while maintaining their own influence
within the network. The authors also studied how a group of
individuals could avoid being identified by community de-
tection algorithms. Furthermore, Yu et al. (2018), Waniek et
al. (2019), and Zhou et al. (2019) studied how to hide one’s
sensitive relationships from link prediction algorithms.

The aforementioned literature on the strategic behaviour
of network members demonstrates that it is indeed possible
to develop reasonably effective heuristics to escape detec-
tion by fundamental network analysis tools. However, the
main limitation of this literature is that it focuses only on
standard, single-layered networks. In contract, people of-
ten interact with each other via a complicated pattern of re-
lationships, thereby creating multiple subsystems, or “lay-
ers”, of connectivity. This is even more so nowadays when
many of us belong to multiple social media platforms si-
multaneously. Furthermore, multilayer networks are increas-
ingly being recognized not only in the context of human
interactions, but also in many natural and engineered sys-
tems (De Domenico et al. 2013). For instance, to travel from
one point to another in many urban transportation networks,
one can choose between a road subnetwork (car or taxis),
bus or tram subnetwork, subway subnetwork, local train



subnetwork, bike subnetwork, footpath subnetwork, or any
combination thereof. Each such subnetwork has its own dis-
tinct characteristics, which become difficult, or even impos-
sible, to account for if modelled as a single layer due to the
interdependencies between the different layers. The theoret-
ical and empirical analysis of multilayer networks has re-
cently attracted significant attention (see the work by Kiveld
et al. (2014) for a comprehensive review). This new body of
research is primarily driven by the fact that, due to the much
more complex nature of multilayer networks, many results
for singlelayer networks become obsolete.

Motivated by these observations, we present in this pa-
per the first analysis of how to protect ones’ privacy against
centrality measures in multilayer networks. Specifically, we
consider an evader who wishes to connect to a certain group
of individuals, without being highlighted by centrality mea-
sures as a key member in the multilayer network. To this end,
the evader has to strategically choose at which layer(s) to
connect to those individuals. We prove that the correspond-
ing optimization problem is NP-complete and hard to ap-
proximate for most centrality measures considered in our
study. Furthermore, we empirically evaluate a number of
heuristic algorithms that the evader can use. The results of
this evaluation suggest that the centrality measures that are
functions of the entire network topology are more robust to
such a strategic evader than their counterparts which con-
sider each layer separately.

Preliminaries

Basic Network Notation and Definitions: Let G
(V, E') denote a simple (single-layer) network, where V is
the set of n nodes and £ C V x V the set of edges. We
denote an edge between nodes v and w by (v, w).

In this paper we consider multilayer networks, i.e., net-
works where edges can represent different types of re-
lations. We will denote a multilayer network by M
(Vi,Er,V,L) € M, where V is the set of nodes, L is the
set of layers (i.e., types of relations), V;, C V x L is the set
of occurrences of nodes in layers (e.g., having (v, ) € Vp,
means that node v appears in layer o), and £y, C Vi x V,
is the set of edges. We will denote an occurrence of node
v in layer o by v®. Note that V' = {v : J,epv® € V. }.
Let V' be the set of nodes occurring in layer «, i.e., V¢ =
{v € V :v* € V.}, and let G* denote the simple net-
work consisting of all the nodes and edges in layer «, i.e.,
G* = (Ve {(v,w) : (v*,w*) € EL}).

We focus on undirected networks, i.e., we do not discern
between edges (v, w?) and (w?®, v®). Moreover, we do not
consider self-loops, i.e., Vyaey, (v*,0v%) ¢ Er. Multilayer
network allow for inter-layer edges, which are edges be-
tween two layers; they may connect two different nodes,
or may connect two occurrences of the same node. We re-
strict our attention to networks with diagonal couplings, i.e.,
networks where every inter-layer edge connects two occur-
rences of the same node, i.e., V(ya wo)ycp, @ # 8 — v = w.

Notice that, in some literature, multilayer networks with
diagonal couplings are called multiplex networks. However,
it is also typically assumed that the multiplex networks are
node-aligned (i.e., every node occurs in every layer), which
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is not the case in our setting. Hence, we will use the more
general term “multilayer networks”. For a comprehensive
discussion of the nomenclature, see Kiveld et al. (2014).

A path in a simple network is an ordered sequence of
nodes in which every two consecutive nodes are connected
by an edge. A path in a multilayer network is an ordered se-
quence of node occurrences in which every two consecutive
occurrences are connected by an edge. The length of a path
is the number of edges in that path. The set of all shortest
paths between a pair of nodes, v, w € V will be denoted by
7w (v, w). The distance between a pair of nodes v, w € V' is
the length of a shortest path between them, and is denoted
by Ag (v, w). We assume that if there does not exist a path
between v and w then Ag (v, w) = co. In a multilayer net-
work we consider distance between v and w to be the short-
est distance between an occurrence of v in any layer o and
an occurrence of w in any layer /3 (possibly o # [3).

For any node, v € V, in a simple network, G, we denote
by Ng(v) = {w € V : (v,w) € E} the set of neighbors of
v in G. Similarly, given a multilayer network M, we write
Ny (v) = {w € V : (v¥,wP) € Er}. Finally, we denote
by N§ (v) the set of neighbors of v in layer «v, i.e., N{; (v)
{w e V: (v*,w*) € EL}. We will often omit the network
itself from the notation whenever it is clear from the context,
e.g., by writing A(v, w) instead of Ag (v, w).

Centrality Measures: A centrality measure (Bavelas
1948) is a function that expresses the importance of a given
node in a given network. Arguably, the best-known central-
ity measures are degree, closeness and betweenness.
Degree centrality (Shaw 1954) assumes that the impor-
tance of a node is proportional to the number of its neigh-
bors, i.e., the degree centrality of node v in network G is:

Cdegr(G? U) = ‘NG(U”

Closeness centrality (Beauchamp 1965) quantifies the im-
portance of a node in terms of shortest distances from this
node to all other nodes in the network. Formally, the close-
ness centrality of node v in network G can be expressed as:

Cclos(va) = Z #

weV\{v} Ac (U7 ’U))

Betweenness centrality (Anthonisse 1971; Freeman 1977)
states that, if we consider all the shortest paths in the net-
work, then the more such paths traverse through a given
node (it is often stated that the node controls such paths),
the more important the role of that node in the network.
More formally, the betweenness centrality of node v € V
in network G is:

>

w,u€V\{v}

Hp € ma(w,u) : v € p}|
|mG (w, u)| '

Chetw (Ga 'U) =

The definitions of degree and closeness centrality can be
generalized to multilayer networks using the definitions of
neighbors and distance for multilayer networks (see above).
As for the betweenness centrality of node v in a multilayer
network M, it grows with the number of occurrences of v



on the shortest paths between pairs of other nodes:

Chetw (M, v) = Z {(v*,p)

w,ueV\{v}

s € p,p € ma(w,u)}
|7 as (w, w)|

To avoid any potential confusion, the measures that are de-
signed for simple networks will be referred to as “/ocal cen-
trality measures”, since they can be applied to only a single
layer. Conversely, the measures that are designed for mul-
tilayer networks will be referred to as a “global centrality
measures”, since they take all layers into consideration.

Theoretical Analysis

In this section we formally define our computational prob-
lems and then move on to analyse them.

Definitions of Computational Problems

We define the decision problems before defining the corre-
sponding optimization problems. Here, the “group of con-
tacts” is the set of individuals to whom the evader wishes to
connect while remaining hidden from centrality measures.

Decision Problems: We will define two different decision
versions of this problem, starting with the global version.

Definition 1 (Multilayer Global Hiding). This problem is
defined by a tuple, (M, v, F, c,d), where M is a multilayer
network M = (V,,Ep,V,L), v € V is the evader, F C
V' is the group of contacts, c is a centrality measure, and
d € N is a safety margin. The goal is to identify a set of
edges to be added to the network, A* C {(0*,v*) : v €
FAD™ € Vi, ANv* € VLY, such that in the resulting network
M = (Vi,, ELUA* V| L) the evader is connected with every
contact in at least one layer and there are at least d nodes
with a centrality score greater than that of the evader; i.e.:

vveFaaeL(%\a,UO‘) (S A*,

Swev (W] 2 dAVoewe(M,v) > o(1,5)) .

We say that “v is hidden” when there are at least d nodes
whose centrality is greater than that of v.

Definition 2 (Multilayer Local Hiding). This problem is
defined by a tuple, (M,v,F,c,(d*),c), where M =
(Vi, Er,V, L) is a multilayer network, v € V is the evader,
F C V is the group of contacts, c is a centrality measure,
and d* € N is a safety margin for layer o« € L. The goal
is to identify a set of edges to add, A* C {(v*,v*) : v €
FAD* € VI, Av™ € Vi}, such that in the resulting net-

work M = (Vp, Ep U A*,V, L) the evader is connected
with every contact in at least one layer and for each layer o
the network G contains at least d* nodes with a centrality
score greater than that of the evader, i.e.:

vveFaaeL(i]\a,UQ) (S A*,

Vaerdweve (W] 2 d* AVoewe(M*,0) > o(M*,7))
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We say that “v is hidden in o if there are at least d* nodes
whose centrality in layer « is greater than that of ¥ in a.

In the global version of the problem we assume that the
seeker is able to observe and analyze the entire multilayer
network using centrality measures, hence the evader’s goal
is to minimize her centrality ranking in the network as a
whole. On the other hand, the local version of the problem
models situations where the seeker analyzes only one of the
layers, e.g., if the seeker gains access to the email commu-
nication network, but not to the phone-call network. In such
situations, the evader’s goal is to attain an adequate level of
safety in each layer separately.

The approach to hiding represented by the two prob-
lems differs from the one developed for simple networks by
Waniek et al. (2017; 2018). Their hiding algorithms focus
on choosing which edge(s) to add or remove from the single
layer, often causing the evader to lose the direct connection
with some of the neighbors. The algorithms presented in our
paper focus on choosing the layer in which to maintain the
connection, and allow the evader to keep direct links with
all contacts. Notice that this approach cannot be applied to
simple networks, as there is only one way to have a direct
link between the evader and every contact in a single layer.

Optimization Problems: We now define the correspond-
ing optimization problems. They take into consideration a
situation when it is impossible to connect the evader with all
the contacts.

Definition 3 (Maximum Multilayer Global Hiding). This
problem is defined by a tuple, (M,v, F,c,d), where M =
(Vi, EL,V, L) is a multilayer network, v € V' is the evader,
F C V is the group of contacts, c is a centrality measure,
and d € N is a safety margin. The goal is then to identify a
set of edges to be added to the network, A* C {(0%,v%) :
v e FADY €V Av® € V}, such that in the resulting

network M = (Vi,, Er, U A*,V, L) the evader is connected
with as many contacts as possible, while there are at least d
nodes with a centrality score greater than that of the evader.

Definition 4 (Maximum Multilayer Local Hiding). This
problem is defined by a tuple, (M, v, F,c, (d) . ), where
M = (Vi, Er,V, L) is a multilayer network, v € V is the
evader, ' C 'V is the group of contacts, c is a centrality
measure, and d* € N is a safety margin for layer o € L.
The goal is then to identify a set of edges to be added to the
network, A* C {(v*,v*):v € FAD* € V[, ANv* € V.},
such that in the resulting network M = (Vi,, EL UA*,V, L)
the evader is connected with as many contacts as possible,
while for each layer « the network G contains at least d*
nodes with a centrality score greater than that of the evader.

Intuitively, the goal is to connect the evader with as many
contacts as possible, while keeping the evader hidden.

Complexity Analysis

The complexity results for both the global and local ver-
sions of the problem are listed below (see Table 1 for a sum-
mary). Due to space constraints, we present here only the

proof of Theorem 5; all the remaining proofs can be found
in Waniek et al. (2019).



Table 1: Summary of our computational complexity results.

Centrality Multilayer Global Hiding  Multilayer Local Hiding
Degree P NP-complete
Closeness NP-complete NP-complete
Betweenness NP-complete NP-complete

Vs
b,
b3§
Vg H

Figure 1: An illustration of the network used in the proof of
Theorem 5. The red node represents the evader, while the
white nodes represent the contacts. Dashed (green) edges
represent the solution to this problem instance.

Observation 1. The problem of Multilayer Global Hiding
is in P given the degree centrality measure. In fact, for a
given problem instance either any A* that connects U with
all contacts is a solution, or there are no solutions at all.

Theorem 1. The problem of Multilayer Global Hiding is
NP-complete given the closeness centrality measure.

Theorem 2. The problem of Multilayer Global Hiding is
NP-complete given the betweenness centrality measure.

Theorem 3. The problem of Multilayer Local Hiding is NP-
complete given the degree centrality measure.

Theorem 4. The problem of Multilayer Local Hiding prob-
lem is NP-complete given the closeness centrality measure.

Theorem 5. The problem of Multilayer Local Hiding is NP-
complete given the betweenness centrality measure.

Proof of Theorem 5: The problem is trivially in NP, since
after the addition of a given A* the betweenness centrality
rankings for all layers can be computed in polynomial time.

Next, we prove that the problem is NP-hard. To this end,
we show a reduction from the NP-complete problem of
Finding k-Clique. The decision version of this problem is
defined by a simple network, G = (V, E), and a constant,
k € N. The goal is then to determine whether there exist &k
nodes in G that form a clique.

Let us assume that k& < n — 1 (if this assumption does
not hold then the solution can be computed in polynomial
time). Furthermore, let us assume that G is connected (if
this does not hold, the problem can be considered separately
for each connected component). Given an instance of the
problem of Finding k-Clique where k < n — 1, and given
a simple network G = (V, E), let us construct a multilayer
network, M = (Vy, Er,, V', L), as follows (Figure 1 depicts
an instance of this network):

e The set of nodes V': This consists of the following sets
of nodes: V- = {vy,...,u,}, A = {a1,...,a,}, B =
{bl, ey bn,]ﬁLQ}, and C = {Cl, ey Cn+2}.

e The set of layers L: We create two layers, o and /3.
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e The set of occurrences of nodes in layers V7 : Layer o
contains all nodes in {v} UV U A U C, while layer /3
contains all nodes in {v} UV U B.

e The set of edges E: In layer o we create an edge be-
tween two nodes v;,v; € V if and only if this edge was
present in GG. We also create an edge (v;, a;) for every v;,
and an edge between every pair a;, a;41. Finally, for ev-
ery node ¢; € C : i < n, we create edges (¢;, ¢p,4+1) and
(¢i, cna2)- In layer 8 we create an edge (b;, by,—+2) for
everynodeb; € B:i<n—k+2.

Now, consider the following instance of the problem
of Multilayer Local Hiding, (M, %, F ¢, (d*),c ), where:
M is the multilayer network we just constructed; v is the
evader; ' = V is the set of contacts; ¢ is the betweenness
centrality measure; and d* = 3n + 2 and d° = 1 are the
safety margins. Given this, let us consider what are the sets
of edges that can be added between the evader v and the
contacts F'in each layer, so that the evader is hidden.

Since d* = 3n + 2, then apart from the evader v, the be-
tweenness centrality of every node in layer oo must be greater
than that of v; otherwise the evader © would not be hidden in
«. Also note that the betweenness centrality of every node
c¢; € C i < nequals %, and all nodes other than v have
non-zero betweenness centrality.

Now if U gets connected to any two nodes v;, v; € V' that
are not connected to one another, then © controls one shortest
path of length 2 between v; and v;. Note that there can be at
most 1 — 2 other shortest paths of length 2 between v; and v;
(each such path goes through some node v, € V' \ {v;,v;}
if and only if v}, is connected to both v; and v;). Thus, the
betweenness centrality of ¥ is at least nlr Consequently,
all nodes that ¥ is connected to in layer o must form a clique
in order for ¥ to be hidden in «.

Consider a situation in which the evader v is connected
to x nodes from V in layer S (notice that z < n). Its be-

tweenness centrality is then %, as it controls all shortest
paths between pairs of its neighbors, but not any other short-
est paths. At the same time, the betweenness centrality of
the node b,,_ 42 is w (as it controls all shortest
paths between pairs of other nodes from B), which is greater
than the betweenness centrality of v if and only if z < n—k.
All other nodes in the layer have betweenness centrality 0.
Thus, ¥ is hidden in 3 iff it has at most n — & neighbors.
Now we will show that if there exists a solution to the
given instance of the problem of Finding k-Clique, then
there also exists a solution to the constructed instance of the
problem of Multilayer Local Hiding. To this end, let V* be a
group of k nodes forming a clique in GG. Let us create A* by
connecting v to nodes from V* in layer « and to nodes from
F\ V*inlayer . As argued above, for such A*, the evader
v is hidden in both layers, hence A* is a solution to the con-
structed instance of the Multilayer Local Hiding problem.
To complete the proof we have to show that if there exists
a solution A* to the constructed instance of the problem of
Multilayer Local Hiding, then there also exists a solution to
the given instance of the problem of Finding k-Clique. Since
v can be connected in layer 3 to at most n — k nodes from
V, it has to have at least k£ neighbors from V in layer «




As shown above, in order for ¥ to be hidden in «, all of its
neighbors must form a clique. Hence, the neighbors of v in
layer o form a clique in G. This concludes the proof. O

Approximation Analysis

In this section we present the analysis of optimization ver-
sions of our problems (see Table 2 for a summary). Again,
due to space constraints, we present only the proof of Theo-
rem 9; all remaining proofs are in Waniek et al. (2019).

Theorem 6. The Maximum Multilayer Global Hiding prob-
lem can be solved in polynomial time.

Theorem 7. Maximum Multilayer Global Hiding prob-
lem given the closeness centrality cannot be approximated
within | F|'~¢ for any € > 0, unless P=NP.

Theorem 8. Both Maximum Multilayer Global Hiding and
Maximum Multilayer Local Hiding problems given the be-
tweenness centrality cannot be approximated within |F|*~¢
Jfor any € > 0, unless P=NP.

Theorem 9. The greedy algorithm is a 2-approximation for
the Maximum Multilayer Local Hiding problem given the
degree centrality. The bound is tight.

Proof of Theorem 9: First, let us analyze the structure of a
solution to the Maximum Multilayer Local Hiding problem
given the degree centrality. Let §¢ be the degree of the d*-th
node in the degree centrality ranking of the nodes in V¢, let
0y be the initial (i.e., before any edges to the contacts are
added) degree of the evader in layer «, and let F'* be the set
of occurrences of contacts in layer o, i.e., F* = {v® : v €
F'}. An algorithm solving the Maximum Multilayer Local
Hiding problem can either:

a) connect the evader to at most k% = 6% — 1 — 4§ of freely
selected nodes from F'*, as this way the degree of the
evader is increased to at most 0 — 1, and the nodes from
the first d* positions of the degree ranking before the
addition continue to have greater degree than the evader
when the new edges are added;

b) connect the evader to exactly 6% — J§ nodes from F'¢
(notice that 0 — 0§ = k£ +1). This increases the degree
of the evader to J%, hence the new connections must in-
clude at least d* — [{v®* € V* : [N%(v)| > §“}| nodes
with degree exactly d%. As a result, there will now ex-
ist d* nodes with degree at least 0 + 1 and the safety

margin will be maintained.

First, notice that the sets of potential connections in both
a) and b) can be easily computed in polynomial time, hence
the greedy algorithm can use them to optimize the choice of
edges added in a single layer.

Notice also that the evader can never add more than k% +1
edges in layer «, as her degree will then increase to at least
0 +2. Since adding a set of connections between the evader
and the contacts cannot increase the degree of any contact
by more than one, the d®-th node in the degree centrality
ranking of the nodes in V' will have degree at most 0% + 1.
Hence, the safety margin cannot be maintained.

Finally, notice that if £ < 0, then the degree of the
evader is at least % before adding any edges, which puts
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her within the top d positions of the degree centrality rank-
ing. Since increasing the degree of any other nodes can be
realized only by adding an edge to the evader (which in turn
increases the evader’s degree even more), the problem does
not have a solution if k% < 0 for any layer a.

The greedy algorithm iterates over the layers and for each
layer it connects the evader with maximum possible number
of contacts that the evader has not been connected with yet.
Notice that it is never beneficial to connect the evader with
a given contact in more than one layer, hence any solution
doing so has an equivalent solution without the redundant
edge(s). In what follows, we will only consider solutions
without the redundant edges.

Let us now compare a solution A% returned by the greedy
algorithm with an optimal solution A*. We will denote by
Ai the set of contacts connected to the evader by the greedy
algorithm in layer o, i.e., A3 = {v € Vo : (3%,0%) € A%},
and by A’ the set of contacts connected to the evader by
the optimal algorithm in layer «, ie.,, A}, = {v € V< :
(0%, v*) € A*}. We iterate over the layers of the network
in the same order as the greedy algorithm; let this order be
ai, ..., a ). Contacts that the optimal solution connects the
evader to in a given layer «y; can be grouped into three pair-
wise disjoint sets:

e Contacts that could not have been selected in layer «; by
the greedy algorithm, as they were selected by it in one of
the previous layers, i.e.:

X ={ve A, ivg A5 AJjcwe A )

e Contacts that are not selected by the greedy algorithm in
layer «;, but they could have been selected, i.e.:

Y¥ ={ve A}, v¢ Ai A —3jciv € Aij};

e Contacts that are selected by both the greedy algorithm
and the optimal solution in layer «, i.e.:

Z% ={ve A} ve Aii}.

We will show that |4}, | — |45 | < |Xi, ie., the dif-
ference between the number of edges added in layer «; by
the optimal solution and by the greedy algorithm cannot be
greater than | X ®|. We will prove this by contradiction. To
this end, assume that in some layer «; the said difference
is greater than | X[, ie., |[A% | > |AS | + |X . Since
|Aj;l\ = |X%| 4+ |Y*]| + |Z%], we get that in this layer:
|AS | < |Y@i| + |Z%|. However, since none of the nodes
from Y% UZ % were selected by the greedy algorithm in the
previous layers, the greedy algorithm would have chosen to
connect the evader with contacts from Y% U Z“¢, as it con-
nects the evader with a greater number of nodes in layer «;
than the solution AS. Therefore, the difference between the
number of edges added in layer «; by the optimal solution
and by the greedy algorithm cannot be greater than | X “i|,

e. |4z | —|AS | < |X°|. Summing over all layers yields:

STl S A+ Y .

a; €L a; €L a;eL




Table 2: Summary of our results regarding approximation algorithms.

Centrality Maximum Multilayer Global Hiding Maximum Multilayer Local Hiding
Degree can be solved in polynomial time greedy algorithm is 2-approximation
Closeness - cannot be approximated within | F|1 =€ for any € > 0
Betweenness  cannot be approximated within |F|'*~€ forany € > 0  cannot be approximated within |F'|*~¢ for any € > 0

Figure 2: An illustration of the network showing the tight-
ness of the bound given in Theorem 9. The red node repre-
sents the evader, while white the nodes represent the con-
tacts. Dashed (green) edges represent the optimal solution
to this problem instance, while dotted (blue) edges represent
the solution returned by the greedy algorithm.

Since any v is a member of only a single set X (as we
assumed that the optimal solution does not contain any re-
dundant edges) and since from the definition of X ** we have
that 3;c;v € A, we getthat 3, |[X 7| < |A®|. Given

that 3, o [A%L [ =|A"and >, o, | X[ = |A®| we get:

47| < 2] 4%).

Since we consider solution without redundant edges, the size
of each solution is equal to the number of contact connected
with the evader by each solution. Therefore, the greedy al-
gorithm is a 2-approximation.

Figure 2 presents an example of the network, where the
bound is tight, i.e., the optimal solution connects the evader
with exactly twice as many contacts as the greedy algorithm.
The green edges represent the optimal solution, connecting
the evader with all eight contacts, while the greedy algo-
rithm (the result of which is represented by the blue edges)
connects the evader to only four contacts. 0

Heuristics & Empirical Analysis

Given that most computational results are negative, we shift
now our attention towards developing heuristic algorithms
that provide efficient, albeit not optimal, solutions.

Heuristic Algorithms

Recall that the “group of contacts” refers to the set of indi-
viduals whom the evader wishes to connect to. We will refer
to each member of this group as a “contact”. Notice that a
typical member of a social network does not have complete
knowledge about the network’s structure. Hence, we assume
that the evader’s knowledge is limited to the connections be-
tween the contacts, as well as the degree of each contact. All
of our heuristic algorithms take only this information into
account. Specifically:

e Random—This heuristic connects the evader to every
contact in a layer chosen uniformly at random out of all
layers in which both the evader and that contact occur.
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e All in one—This heuristic (Algorithm 1) focuses on cre-
ating edges between the evader and her contacts in as few
layers as possible. The intuition is that, by focusing all ac-
tivities of the evader in a small number of layers (if pos-
sible, in only one layer), the global centrality measures
would assign low importance to the evader. Even though
this heuristic might seem overly simplified, we include it
as a reasonable baseline—a “rule of thumb” that could be
readily implemented by members of the general public.

e Fringe—This heuristic (Algorithm 2) focuses on mini-
mizing the number of nodes that are in close vicinity of
the evader. The main idea behind this heuristic is to maxi-
mize the average distance between the evader and other
nodes, in the hope of achieving low ranking according
to closeness centrality. Given the limited knowledge of
the evader about the network topology, the heuristic can-
not analyze any nodes whose distance from the evader is
greater than 2. Therefore, the heuristic simply focuses on
minimizing the number of neighbors of the contacts.

o Density—This heuristic (Algorithm 3) is meant to link the
evader to densely connected groups in each layer. Here,
the underlying idea is that edges between the contacts act
as “shortcuts”, preventing the shortest paths in the net-
work from running through the evader, thus reducing her
betweenness centrality. Intuitively, the heuristic prefers to
connect the evader to a contact v in layers where v is con-
nected to many nodes that are already connected to the
evader (the term |[{w € F : (v*,w®) € A} N N*(v)|
in the numerator), as well as layers where v has many
connections with other contacts (the term |F' N N%(v)]
in the numerator) to increase the chance of creating ad-
ditional “shortcuts”. Finally, the heuristic prefers layers
with fewer contacts connected to the evader (the term
Hw € F : (v*,w*) € A}|) to distribute the evader’s
connections among layers more uniformly, thereby help-
ing her hide from local centrality measures.

The Simulation Process

In our simulations, we consider local degree, closeness and
betweenness centrality, as well as global closeness and be-
tweenness centrality. The reason behind excluding global
degree centrality is that, as stated in Observation 1, for any
given group of contacts, the centrality ranking of the evader
does not depend on the way in which connections are dis-
tributed across the different layers. The simulation process is
as follows. For every network, we pick as potential evaders
the nodes that are ranked among the top 10 according to at
least one of the five considered centrality measures. We then
simulate the hiding process for each one of those evaders
separately. To this end, we choose the group of contacts to
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Algorithm 1 “All in one” heuristic

Algorithm 3 Density heuristic

Input: Multilayer network M, the evader v, contacts F’
Output: Edges to be added to the network, i.e., the set A

1. A+ 0

2 F* + F

3 L*+—{aeL:veV*}

4: while |[F*| > 0 do

50 af - argmax,cp- [F* NV
6: forvec F*NV<do

7: A=AU{@ ,v*)}

g Fr=F*\ Ve

9: return A

Algorithm 2 Fringe heuristic

Input: Multilayer network M, the evader v, contacts F'
Output: Edges to be added to the network, i.e., the set A

A
"+ {aeLl:veV*}
s forve FNV*do
a* «—argmin, ;. [IN*(v) \ F|
A=AU{@ ,v*)}
return A

SAR AN

be the neighbors of the evader in the original network. Af-
ter that, we remove all original edges between the evader
and those contacts, and act as if the evader was never con-
nected to those individuals, but rather wants to connect to
them while remaining hidden from centrality analysis. Fi-
nally, we connect the evader to the contacts using edges cho-
sen by one of our heuristics. We record the difference be-
tween the ranking of the evader in the original, unchanged
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Input: Multilayer network M, the evader v, contacts F’
Output: Edges to be added to the network, i.e., the set A

A0

t L+ {aeL:veVe}

: forve FNV O e F (5% ™) AYN™ ()| 4| FAN ()|
o arg max L o we e AT
A:AU{(b\a*ava )}

return A

T

*

AN

network, and in the network after running the heuristic. In so
doing, we quantify the impact of strategically choosing the
relationships to be formed with the group of contacts. Note
that for the local centrality measures, we need to aggregate
the centrality scores for each layer into a single ranking for
the entire network. We do so by assigning to each node v the
following centrality score: where 7 (v) is the

ranking of v in layer a.

minger 7% (v)°

Simulation Results

The results of our simulations are presented in Figure 3 (see
Waniek et al. (2019) for the description of the datasets). Each
row corresponds to a network, and each column corresponds
to centrality measure. Each bar represents the change in the
evader’s ranking after using a particular heuristic (the color
of the bar corresponds to the heuristic being used). A nega-
tive change implies that the ranking of the evader decreased,
i.e., she became more hidden. In contrast, a positive change
implies that the heuristic backfired, i.e., the evader actually
became more exposed.

As can be seen, there is no heuristic that dominates the
others, i.e., no heuristic is superior against all centrality mea-



sures. The “All in one” heuristic proves to be effective in
hiding from global closeness centrality in many cases. Un-
fortunately, if the network is analyzed with one of the local
centrality measures, the evader may become even more ex-
posed. For every considered centrality measure, either the
Density or the Fringe heuristic is among the most effective
methods for hiding, and they never make the evader more
exposed. Finally, commenting on the results of the Random
heuristic, they demonstrate that it is relatively effective to
simply get rid of excess links (i.e., avoid connecting with
each node in more than one layer) and spread the remaining
connections uniformly.

Our results show also that the global centrality measures
are on average much harder to hide from than their local
counterparts. This demonstrates the importance of analyz-
ing the entire structure of a multilayer network, rather than
focusing on each layer separately.

Regarding the size of the networks used in the simula-
tions, note that the heuristics use only local information and
can be easily applied in much larger networks. However, the
cost of computing complete rankings of the multilayer cen-
trality measures, which is necessary for us to present our
results, grows quickly with the size of the network. Hence,
we present results for the networks of moderate size.

Conclusions

We studied the problem of evading centrality analysis in
multilayer networks, and analyzed this problem both the-
oretically and empirically, thereby initiating the study of
evading social network analysis tools in multilayer net-
works. Interesting future directions include developing more
sophisticated heuristics for evading centrality measures, and
analyzing the problem of evading link-prediction algorithms
in multilayer networks.
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