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Abstract

In addition to using signatures, antimalware products also de-
tect malicious attacks by evaluating unknown files in an emu-
lated environment, i.e. sandbox, prior to execution on a com-
puter’s native operating system. During emulation, a file can-
not be scanned indefinitely, and antimalware engines often set
the number of instructions to be executed based on a set of
heuristics. These heuristics only make the decision of when
to halt emulation using partial information leading to the ex-
ecution of the file for either too many or too few instructions.
Also this method is vulnerable if the attackers learn this set
of heuristics.
Recent research uses a deep reinforcement learning (DRL)
model employing a Deep Q-Network (DQN) to learn when
to halt the emulation of a file. In this paper, we propose a new
DRL-based system which instead employs a modified actor
critic (AC) framework for the emulation halting task. This AC
model dynamically predicts the best time to halt the file’s exe-
cution based on a sequence of system API calls. Compared to
the earlier models, the new model is capable of handling ad-
versarial attacks by simulating their behaviors using the critic
model. The new AC model demonstrates much better perfor-
mance than both the DQN model and antimalware engine’s
heuristics. In terms of execution speed (evaluated by the halt-
ing decision), the new model halts the execution of unknown
files by up to 2.5% earlier than the DQN model and 93.6%
earlier than the heuristics. For the task of detecting malicious
files, the proposed AC model increases the true positive rate
by 9.9% from 69.5% to 76.4% at a false positive rate of 1%
compared to the DQN model, and by 83.4% from 41.2% to
76.4% at a false positive rate of 1% compared to a recently
proposed LSTM model.

Introduction
The detection of malware (i.e., malicious software) is a
significant problem for the world’s computer users, and
deep learning-based systems have been proposed for this
task (Dahl et al. 2013; Pascanu et al. 2015; Athiwaratkun and
Stokes 2017). To avoid infecting computers in a production
test environment, unknown files are either emulated within
the antimalware engine itself or executed in a special vir-
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tual machine (VM) (i.e., virtualization) which includes ad-
ditional monitoring. In the remainder of this paper, we focus
on emulation, but the methods can be directly applied to vir-
tualization as well.

One important aspect of a malware detection system is
determining when to halt the execution of the unknown file
during emulation. Malware often delays the execution of its
malicious actions in an attempt to evade detection by the
emulation engine. The antimalware engine’s emulator em-
ploys heuristics to determine when to halt the execution of
a file. Recently, the authors in (Wang, Stokes, and Mari-
nescu 2019) proposed a model based on deep reinforcement
learning (DRL) which learns when to halt the file’s execu-
tion during emulation. Their system uses a Deep Q-Network
(DQN) to learn a policy to either continue or halt execution
using the operating system’s application programming inter-
face (API) calls made by the file. In addition to being able
to halt the execution of 91.3% files earlier than the antimal-
ware engine’s heuristics, the inclusion of the DQN model
improved the binary classification of unknown files by over
61.5% compared to a recent recurrent deep learning model.

In this work, we propose a new deep reinforcement learn-
ing model which uses an Actor Critic (AC) model instead
of the DQN model (Wang, Stokes, and Marinescu 2019).
The Actor Critic method utilizes two interactive models: an
actor and a critic. The actor determines the best action to
take based on the current environment information. In ad-
dition, the critic plays an evaluation role for the actor by
considering the environment state and returning a score that
represents how good the action is for that state. Unlike pre-
vious models employing RNNs (Pascanu et al. 2015; Athi-
waratkun and Stokes 2017) or a DQN (Wang, Stokes, and
Marinescu 2019) which cannot handle adversarial learning-
based attacks (Hu and Tan 2017), this new structure fits
much better into our antimalware detection scenario, par-
ticularly for adversarial cases where the malware can dy-
namically change its action based on the antimalware sys-
tem’s performance. In this paper, we propose a new modified
critic structure which can simulate the malware’s responses
with adversarial attacks, and then train the actor to handle
these simulated adversarial learning-based attacks generated
by the critic.
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The improvements for the new AC-based malware execu-
tion halting system are significant compared to the antimal-
ware engine’s heuristics and the previously proposed DQN-
based system. The AC-based model halts the execution of
2.5% of the files earlier than the DQN-based model and
93.6% earlier than antimalware engine’s heuristics. In ad-
dition for the task of malware classification, the new model
has a true positive rate of 76.4% compared to 69.5% for the
DQN system and 41.2% for a baseline file classifier (Athi-
waratkun and Stokes 2017).

The contributions made by this work include the follow-
ing:
1) We propose an actor critic, deep reinforcement learning-
based model to halt the execution of an antimalware engine’s
processing of an unknown file.
2) We evaluate this new model on a large corpus of malicious
and benign files. The results show significant improvement
over all previously proposed models.

Emulation System Call Events
During scanning, the antimalware engine processes and
records all of the assembly-level instructions of an unknown
executable file. Some of these instructions correspond to op-
erating system API calls. Since malware often utilizes the
native operating system functions to implement malicious
activity, these system API calls can be used as events to de-
tect malware. The functionality employed by malware in-
cludes using network functions to implement command and
control, reading and writing to the registry, and saving tem-
porary files to the hard drive.

Analysts provided the data for this study which was col-
lected by scanning malware and benign files in a production
pipeline. In total, there are 114 events corresponding to var-
ious high-level representations of operating system activity.

Malware often employs polymorphism in an attempt to
avoid detection. Multiple APIs can be called to accomplish
the same task, and polymorphic malware uses different com-
binations of these APIs to make one instance appear to be
different from another. To combat this threat, the emulator
in the antimalware engine reports a high-level event when-
ever a low-level API call which corresponds to the event is
made by the file.

The event sequence lengths of the malware tend to be
longer than those for the benign files. The distribution of
the lengths of the malicious files is shown in Figure 1, while
Figure 2 depicts of the lengths of the benign files.

In order to better understand the underlying behavioral
nature of the files, we plot the event sequences of two mal-
ware files in Figure 3 and two benign files in Figure 4. All of
these files were randomly selected from our dataset. The x-
axis is the time index (i.e., sequence event number) in a file,
and the y-axis represents the event IDs corresponding to the
high-level events. Similar to results from Figures 1 and 2, the
malware traces tend to contain more events than the benign
files. Furthermore, malware tends to contain long loops after
executing the first several events, i.e., the parallel lines in the
figures. Benign files, on the other hand, tend to exhibit more
random behavior. While they do contain loops, these tend to
be shorter and less repetitive. Ideally, our execution control

Figure 1: Distribution of the lengths of the malware files.

Figure 2: Distribution of the lengths of the benign files.

model can leverage these patterns to decide when to stop the
emulator and perform the evaluation. Our main hypothesis is
that the DRL algorithm will be able to learn these malicious
patterns and be able to halt the execution of an unknown file
earlier than the antimalware engine’s heuristics.

System Overview
In this paper, we extend the deep reinforcement learning sys-
tem originally proposed by (Wang, Stokes, and Marinescu
2019) which uses a Deep Q-Network to halt a file’s emula-
tion. One of the issues of this DQN-based structure is that it
is still vulnerable to adversarial attacks as stated in their pa-
per, i.e. “malware can learn the antimalware engine’s behav-
ior and change its attack strategy adaptively”. In our work,
we instead replace the DQN with a modified Actor Critic
model for DRL. In this new model, we leverage a modified
critic structure to simulate the adversarial learning-based at-
tacks, and train the actor based on this signal. Hence, the
system can handle these adversarial attacks much better than
the DQN model.

The proposed system is depicted in Figure 5. Initially, the
antimalware engine processes an unknown input file and ex-
tracts a sequence of file events, E, which correspond to indi-
vidual system API calls. The system contains two high-level
modules, the execution control model and the improved in-
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Figure 3: Event sequences of two malware files. These files were randomly selected from the test dataset. The y-axis represents
the event IDs while the x-axis is the time index of each event.

Figure 4: Event sequences of two benign files chosen at random from the test dataset.

ference model, which process these file events. The execu-
tion control model is responsible for halting the emulation of
the file, while the improved inference model produces an im-
proved probability estimate of whether or not the unknown
file is malicious.
Execution Control Model. The individual file events et are
processed by an event classifier which provides the proba-
bility, ye,t, that the event, et, is malicious. The event clas-
sifier includes three components: a long, short-term mem-
ory (LSTM) language model, a Max Pooling layer and
a classifier which processes the embedding generated by
the LSTM and Max Pooling layer (Pascanu et al. 2015;
Athiwaratkun and Stokes 2017). The embedding consists of
three parts: a DLM = 1500 section corresponding to the lan-
guage model’s output, a DMP = 1500 section for the output
of the Max Pooling layer, and a DBW = 114 section for the
bag of words of the recent events (Pascanu et al. 2015).

The output of the event classifier is the probability that an
individual file event is malicious based on its recent history.
However as noted by (Wang, Stokes, and Marinescu 2019),
we found that the performance of event classifier is not ad-

equate to halt the execution of the file, ye,t, and therefore
we use a deep reinforcement model to augment the event
classifier’s prediction. To do so, we first construct the DRL’s
state, st. The state and ye,t are input to the Actor Critic DRL
model to construct its reward function. We discuss the AC
DRL model in detail in the following section. The execution
control model also produces an execution control signal, ht,
which indicates whether or not the file’s emulation has been
halted.
Improved Inference Model. Once a file’s emulation has
been halted, it is then classified using the improved inference
model which refines the event classifier’s score to produce
the final improved file classifier score, yRL,t. The improved
inference model also includes a baseline file classifier which
produces a score yf based on the first 200 events and pro-
vides an initial probability estimate if the file is malicious. If
ht is equal to 1,

yRL,t = max{ye,t−K+1, · · · , ye,t} if yf > 0.5

yRL,t = min{ye,t−K+1, · · · , ye,t} if yf ≤ 0.5
(1)

where ye,i is the event classifier’s prediction at step i, K
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Figure 5: The full system structure based on DRL for halting the execution of an unknown file and improved malware classifi-
cation, with its input as et and outputs are ht and ye,t.

is the number of most recent event probabilities to consider
and yRL,t is the improved inference model’s output, i.e., the
final prediction probability that the unknown file is mali-
cious.

Actor Critic Model
In this section, we present how to construct an actor critic-
based, deep reinforcement learning model to control the an-
timalware engine’s execution. Also, we show that the critic
can be treated as an adversarial learning-based attack simu-
lator. Hence, the system can train a stronger actor to handle
these dynamic attacks in addition to commodity malware be-
havior.

Our actor critic system generates two actions {a1, a2} to
control the file’s execution in the sandbox environment. One
action is to continue running the software and another is to
halt the execution, a1 = Continue, a2 = Halt. It is possible
for many different models to generate the actions includ-
ing RNN-based models or the DQN-based model (Wang,
Stokes, and Marinescu 2019). However, there is one diffi-
culty that has not been previously addressed. After our an-
timalware system takes an action at, the executing file may
change its next event behavior based on this action. Thus,
it is very difficult for the system to run a static model to
handle these dynamic behaviors without training. One rea-
son why the actor critic system is useful for our purposes is
because it has two models: an actor and a critic. The critic
model can take the malware’s dynamic adversarial behav-
ior into consideration and output an evaluation score based
on the action in the last step, while the actor can be trained

against it. Another reason why we use an actor critic model
is because it is known to converge more smoothly and have
better training performance on a system with a large state
space like our scenario (Wawrzyński and Tanwani 2013;
Lillicrap et al. 2015).

Unlike a value-based or policy-based DRL model, an AC
model leverages two neural networks to model the actor and
critic, separately. At each step, the actor model takes a state
st as its input and generates a sample action at state st. After
performing the action, the system reaches a new state st+1.
Next, the critic model looks back and estimates the sum of
expected rewards using a value function by taking any pos-
sible actions ait from state st to st+1. Then, we can generate
the adversarial-attack modified signal V ′(st|θt) based on the
output of the value function, V (st|θt):

V ′(st|θt) = V (st|θt)− ε · sign(∇at
V (st|θt)). (2)

The new adversarial-attack, modified value function signal
V ′(st|θt) is generated by subtracting an action-based per-
turbation ε · sign(∇at

V (st|θt)) in the direction of the neg-
ative gradient, where ε ∈ (0, 1) is a user selected parameter
corresponding to the strength of the adversarial attack. The
gradient of V is the feedback to the actor model and is used
as an attack signal.

Formally, an action-value function in a conventional actor
critic model is given as:

Q(st, a
i
t|θt) = r(st, a

i
t) + V̂ πt(st+1|θt)− V̂ πt(st|θt) (3)

where r(st, a
i
t) is the reward from taking action ai at time

step t and state st. V̂ (st|θt) is the estimated value function
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for state st, i.e. the maximum reward that can be obtained at
state st. Hence, the adversarial-attack modified action-value
function estimator is derived as:

Q′(st, ait|θt) = r(st, a
i
t)+V̂ ′πt

(st+1|θt)−V̂ ′πt
(st|θt) (4)

where V̂ ′(st|θt) is the estimated adversarial-attack modified
value function for state st as defined in (2).

As mentioned previously, the actor model and the critic
model are both neural network-based estimators. The ac-
tor neural network is used to estimate the policy πt at
time step t. The critic model estimates the value function
V̂ (st|θt), hence generating the adversarial-attack modified
signal V̂ ′(st|θt). The gradient for adjusting its parameters
θt by leveraging the policy generated by the actor network
and the adversarial-attack modified action-value function
Q′(st, ait|θt), is given as:

∇θJ(θt) =
∑

i

∇θ log πθ(a
i
t|st)Q′(st, ait|θt)

θt+1 = θt + α∇θJ(θt).

(5)

It can be observed that an AC model calculates its action-
value function Q′(st, ait|θt) by using the adversarial-attack
modified estimated value function V̂ ′(st|θt), instead of us-
ing V̂ (st|θt) to estimate Q(st, a

i
t|θt) directly. This poten-

tially gives the system an ability to handle the generated ad-
versarial attacks based on the estimated rewards or penalty.
States, Actions and Rewards. As a deep reinforcement
learning system, our actor critic model contains several key
parameters, including the state (st), the action (at) and the
reward (rt). Their detailed definitions are given below and
follow (Wang, Stokes, and Marinescu 2019).

States st: Our system’s state takes three types of informa-
tion into consideration including the event type, the location
of this event in the file and the information of all previously
seen events in the file. A graphical illustration of an indi-
vidual state is given in Figure 6. The first item contains the
event information itself, and the concatenation of the other
two can be considered as its feature embedding. The event
position in the file is represented by ρt, which will be later
used to define the reward as well. The information of all
events observed in the file up to time t is then represented
by the histogram containing the frequency of these events.

Figure 6: A graphical representation of states st.

Actions at: As mentioned previously, the actor model is
making a decision at each timestep t to choose one action out
of two: one is the Continue action (i.e. at = Continue), and
the other is the Halt action (i.e. at = Halt). This decision
generation procedure is also called policy generation. With
the state st and adversarial critic model’s output as the input,

the actor model learns a policy π to decide which action to
take at each timestep.

To represent this mathematically:

πt = argmax
ai
t

Q′(st, ait|θt) (6)

where i = {1, 2}, i.e. a1t = Continue and a2t = Halt. As
illustrated in Figure 5, the actor network selects an action at
for timestep t based on the policy as given in (6).

Rewards rt: In our actor critic model, the reward is de-
fined to guide our system to achieve two targets: 1) We as-
sign a larger reward if the true label is correctly predicted by
the event classifier, and 2) One of our performance criteria
is based on the number of events executed before we make
the correct decision. Hence, we assign a larger reward if a
correct decision is made earlier rather than later. The reward
is defined as:

rt = (0.5− |ye,t − L|)e−βρt (7)

where ye,t is event prediction generated by the most recent
200 events, L ∈ {0, 1} is the ground truth file label, and β is
a decay factor which is between 0 and 1. For L = 0, the file
is benign, while L = 1 corresponds to a malicious file.
Action State Model. The action state model in Figure 5
takes the sequential action outputs from the actor model and
then generates the execution control signal, ht, to stop the
program’s execution. Although the actor model can already
generate the Halt action, it is not a perfect response with
high confidence if the AC model is not fully trained and
noisy (considering the long training time for a DRL system).
Hence, we use a trace-back setup to only halt the antimal-
ware system’s execution if there are at least K consecutive
actions with value Halt, i.e. at−K+1 to at are all equal to
Halt. In this case, the action state model then stops the file’s
execution.

Experimental Results
In this section, we evaluate the performance of the proposed
actor critic-based deep reinforcement learning model. The
two baselines used in this work include the DQN system
presented in (Wang, Stokes, and Marinescu 2019) and the
antimalware engine’s heuristic model. We first describe the
setup and the datasets that are used for the experiments.
Next, we evaluate the performance of the system in halt-
ing the execution of the unknown file. Finally, we compare
the classification performance of the AC system with the
DQN system and a recurrent deep learning malware clas-
sifier which classifies the events directly.
Setup. When possible, we follow the experimental setup
used in (Wang, Stokes, and Marinescu 2019) for our DQN
experiments and the hyperparameters which are shared be-
tween our AC model and the DQN model. For all ex-
periments, the deep learning system is implemented with
Keras (Chollet and others 2015) and Theano (Al-Rfou et al.
2016). The DQN model uses a deep neural network with 3
dense hidden layers of dimension 200. The last layer is a
softmax layer which generates two outputs representing the
expected rewards by taking the two actions.
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For the actor critic model, there are two networks: one is
for the actor model and the other is for the critic model. Both
networks also contain three dense layers with a layer size of
200. The action model is followed by a softmax layer which
generates the action to perform.

The minibatch size in all experiments is BRL = 50. We
set μ = 50,000 for the replay memory length. For the reward
function, we set the decay factor γ = 0.01 in both models.
Datasets. The event datasets used in this study are derived
from a collection of 75,000 emulation scans which is evenly
split between malware and benign files. All of the files have
distinct sequences. This collection is then randomly split
into 50,000, 10,000 and 15,000 for training, validation, and
testing, respectively.
Improved Stopping Performance. We next compare the
halting performance of the AC DRL model to the DQN DRL
model as well as the antimalware engine’s heuristics. We
use the production, Microsoft Windows Defender antimal-
ware engine to collect our datasets. All the events are gener-
ated before the antimalware engine terminates its execution.
Hence, the file length represents the number of events that
were executed based on the engine’s heuristics. When the
file’s execution is controlled by a deep reinforcement learn-
ing model, one possibility is that the model does not termi-
nate before reaching the end of the event sequence. In this
case, the DRL model was not able to make a decision be-
forehand, and the antimalware engine would have been per-
mitted to continue execution after the heuristics would have
stopped the processing of the file.

Table 1 provides the statistics about the percentage of files
which were halted earlier than the engine’s heuristics using
the Actor Critic model and Deep Q-Network model (Wang,
Stokes, and Marinescu 2019). In the table, N is the number
of training files, and K is the number of consecutive Halt
actions generated by the actor model. The percentage of files
that each of the DRL models halts execution before the end
of the file, α, is computed as:

α =
100% ∗ (Total number of early halted files)

(Total number of files)
. (8)

We make three observations from the results presented in
the table. First, the percentage of files whose execution is
halted by both the AC DRL model and the DQN DRL model
earlier than by the heuristics continues to increase as the
number of training file N increases. A better trained model
allows the engine to halt execution earlier. Second, the mod-
ified AC model’s performance is better than the DQN model
for all K and N values. Third, the proportion of early halted
files decreases with a larger K. Recall that K is number of
consecutive actions where at = Halt before the DRL model
stops the file’s execution. Therefore, both DRL models fail
to achieve larger number of K consecutive halting actions
before reaching the end of the sequence. However, it can be
observed that the AC model’s performance is still very good.
Over 93.6% of the files in the test set are halted early when
K = 20 and the AC DRL model is only trained with N =
2000 files.
Improved File Classification. While the results in Table 1
indicate that emulation of the majority of the files can be

Model
Structure

# of Files K=10 K=15 K=20

N=30 71.5% 64.1% 58.3%
DQN N=200 82.9% 75.2% 69.2%

N=2000 98.2% 95.1% 91.3%

N=30 73.2% 69.6% 63.5%
Actor
Critic

N=200 85.4% 77.8% 73.2%

N=2000 99.4% 96.9% 93.6%

Table 1: The percentage of files that are halted earlier by
using the proposed Actor Critic model and the DQN model,
compared to the production antimalware engine heuristics.

Figure 7: Comparison between the proposed DRL-based
(DQN and Actor Critic) model for K ∈ {15, 20} and the
baseline file classifier.

halted earlier than the heuristics employed in the engine by
using AC deep reinforcement learning, it is important to
understand how early stopping affects the detection perfor-
mance.

We compare the LSTM-based baseline file classifier in
(Athiwaratkun and Stokes 2017), the DQN model in (Wang,
Stokes, and Marinescu 2019) and the Actor Critic model,
where the two different DRL-based models choose K ∈
{15, 20} as shown in Figure 7. The figure clearly indicates
that the AC-based model with K = 20 offers significantly
better performance compared to other systems, including
both the DQN based models and the LSTM-based model. In
particular, the Actor Critic DRL-based model with K = 20
offers a relative improvement of 83.4% for the true positive
rate (TPR) at an false positive rate (FPR) of 1% compared to
the LSTM-based file classifier, and a relative improvement
of 9.9% for the TPR at an FPR of 1% compared to the best
performing DQN model.

Related Work
Prior work that is related to the proposed DRL-based mal-
ware detection system generally falls into two areas: deep
learning for malware classification and deep reinforcement
learning.

Deep Learning for Malware Classification. A number
of authors have explored using deep learning for malware
classification, and these works typically use either stan-
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dard deep neural networks or recurrent models. The first
paper on malware classification used a shallow neural net-
work (Kephart 1994). Dahl et al. (Dahl et al. 2013) explored
the performance of a deep neural network for malware clas-
sification. This architecture was extended by (Huang and
Stokes 2016) to include multi-task learning. Another DNN
model was proposed for malware classification by (Saxe and
Berlin 2015).

Behavioral-based malware detection using recurrent neu-
ral networks and echo state networks was first proposed
by Pascanu et al. (Pascanu et al. 2015). The baseline file
classifier and event classifier employed in this work use
the LSTM-based recurrent neural network architectures pro-
posed by (Athiwaratkun and Stokes 2017). Recurrent mod-
els which proposed combining a CNN and an LSTM were
proposed by (Kolosnjaji et al. 2016) and (Agrawal et al.
2018).

Deep Reinforcement Learning. Deep reinforcement
learning has been an active research topic since the 1990s,
and most of the early works are in the system and con-
trol field, including optimal control and robotic system con-
trol (Sutton 1984; Williams 1992; Littman 1994; Kaelbling,
Littman, and Moore 1996; Sutton and Barto 1998).

One of the main reasons limiting the applicability of re-
inforcement learning in other domains is due to the com-
putational complexity when the state-space becomes large.
During the last decade, researchers have leveraged deep neu-
ral networks to tackle this issue, such that reinforcement
learning can be used in other applications. For example, a
deep neural network-based Q-learning (DQN) model, pro-
posed by Mnih, et al. (Mnih et al. 2013; 2015), has been
successfully used to train an AI system to play Atari games.
By utilizing Monte Carlo tree search, Silver, et al. (Silver
et al. 2016; 2017) proposed an actor critic deep reinforce-
ment learning model which can handle large state-spaces.
The model has been successfully trained to play Go games
and even beat human Go masters for the first time in history.

Progress has also been made in all three types of deep
reinforcement learning: value-based algorithms (Van Has-
selt, Guez, and Silver 2016; Wang et al. 2016), policy-
based algorithms (Schulman et al. 2015; Duan et al. 2016;
Gu et al. 2017; O’Donoghue et al. 2017), and actor critic
based algorithms (Lillicrap et al. 2015; Mnih et al. 2016;
Haarnoja et al. 2018). Some recent work also leverages the
concepts of multi-agent and multi-model to boost a DRL
system’s performance through multiple model or agent co-
operation and information sharing (Narendra, Mukhopady-
hay, and Wang 2015; Narendra, Wang, and Mukhopadhay
2016; Foerster et al. 2018; Wang and Jin 2018; Zhang et al.
2018).

In (Wang, Stokes, and Marinescu 2019), Wang et al. pro-
pose a Deep Q-Network reinforcement learning model for
malware classification. This model achieves good perfor-
mance when there are no adversarial attack signals. The ac-
tor critic DRL model introduced in this paper is the first deep
reinforcement learning model that can handle adversarial at-
tacks for file emulation control.

Conclusion
A recently proposed system (Wang, Stokes, and Marinescu
2019) utilizing a Deep Q-Network offered significant im-
provement over the heuristics employed in a production an-
timalware engine for the task of determining when to halt
the emulation of an unknown file. This DQN model also led
to significant improvements for the task of predicting if the
file is malicious or benign.

In this work, we extend (Wang, Stokes, and Marinescu
2019) by replacing the DQN with an actor critic-based, deep
reinforcement learning model. This new AC DRL execu-
tion halting model yields significant gains compared the the
DQN approach. First for the task of halting execution, 93.6%
of the files are stopped earlier than when controlled by the
engine’s heuristics. Similarly, the AC model halts 2.5% ear-
lier than the DQN model. In addition, our results for the task
of file classification, the AC model shows an improvement in
the true positive rate of 9.9% from 69.5% to 76.4% at a false
negative rate of 1% compared to the DQN model. Thus, we
believe that the AC-based execution halting model can lead
to increased protection for an extremely large numbers of
computer users.
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