
that our attack can bypass these defense mechanisms with
high success rates.

To summarize, we make the following contributions in
this paper:

€ We propose a novel attack approach to generate 3D adver-
sarial point clouds that can form objects with reasonable
shapes in different adversarial settings.

€ In our experiments, we illustrate that our attack can by-
pass existing defenses against adversarial 3D point clouds
with high success rates.

€ We demonstrate that our attack generates not only robust
adversarial points in the digital domain, but also creates
printable adversarial objects in physical world.

The source code of this paper is released at https://github.
com/jinyier/ai pointnetattack.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work. Our proposed method is intro-
duced in Section 3. Experiments are given in Section 4, and
Section 5 concludes this paper.

2 Related Work
Deep Learning on 3D Points.Point cloud data, as a popu-
lar data format that contains 3D coordinates information of
points sampled from the surface of physical or virtual ob-
jects, are widely applied in 3D vision areas such as indus-
trial modeling, surveying, and autonomous driving. Unlike
images with ordered pixels, point cloud data are unordered,
making analysis dif“cult via popular deep learning tech-
niques. The “rst practical deep learning model to process
point cloud data circumvents this issue by using a voxel-
based method (Maturana and Scherer 2015; Qi et al. 2016).
Since then, more methods based on deep neural networks
arise to decrease the computation cost and improve the abil-
ity to deal with sparsity. However, these methods can not di-
rectly process raw point cloud data, but rely on transforma-
tion techniques to convert the raw point cloud data into the
form that can be easily processed. Though easy to operate,
the performance of these schemes is limited by information
loss.

To address those issues, PointNet (Qi et al. 2017a) and
its subsequent work, PointNet++ (Qi et al. 2017b), apply
max-pooling and transformations to reduce the unordered
and dimensionally ”exible input data to “xed-length global
feature vectors, and by doing so, enable end-to-end neural
network learning on raw point cloud data. They demonstrate
the robustness of the proposed PointNet by introducing the
concept of critical points and upper bounds. The point sets
laying between critical points and upper bounds yield the
same global features. Thus, PointNet is robust against miss-
ing points and random perturbations. Due to their end-to-
end learning architecture and high performance, PointNets
are widely adopted in different applications such as 3D ob-
ject detection (Qi et al. 2018; Shi, Wang, and Li 2019) as
backbone feature generation networks.
Adversarial Attacks and Defenses in Deep Learning.The
phenomenon of adversarial examples was “rst found by
Szegedy (Szegedy et al. 2013), who observed that adding

slight but intentionally generated perturbations to legal in-
puts can mislead deep learning models into making in-
correct decisions in 2D image classi“cation. Since then,
more algorithms (Goodfellow, Shlens, and Szegedy 2014;
Papernot et al. 2016a; Carlini and Wagner 2017; Moosavi-
Dezfooli, Fawzi, and Frossard 2016) have been proposed
to launch increasingly ef“cient and effective adversarial at-
tacks in different domains.

As a result of this issue, several approaches have been
proposed to defend against adversarial examples. Adversar-
ial training (Tram̀er et al. 2017) attempts to create a more
robust model during the initial training stage by augment-
ing the original training dataset with pre-crafted adversar-
ial examples. Defensive distillation (Papernot et al. 2016b)
re-trains the model, smoothing the potential adversarial gra-
dients which may be used to craft adversarial inputs. The
intuition of distillation is to extract the knowledge of orig-
inal training data and force the output vectors of the DNN
model converge at a large number. As the result adversary
will “nd it hard to distract the output of the DNN model from
the correct one. Guo (Guo et al. 2017) explores some pre-
processing methods to defend against potentially adversar-
ial inputs, such as compression and transformations. How-
ever, these defense mechanisms have each been proven to
be ineffective against certain methods of adversarial attacks
(Carlini and Wagner 2017).
Adversarial 3D Points. Despite the dangers of adversarial
examples being successfully demonstrated in many applica-
tions such as: 2D images (Szegedy et al. 2013), automatic
speech recognition (Yuan et al. 2018), natural language (Jia
and Liang 2017), and network ”ows (Yang et al. 2018), the
vulnerability of deep learning models applied to 3D point
data has remained comparatively unexplored. However, re-
cently, Xiang (Xiang, Qi, and Li 2019) proposed the “rst
practical method to generate 3D adversarial point clouds.
Since then, Liu (Liu, Yu, and Su 2019) expands this area by
proposing further attack methods and metrics. Cao (Cao et
al. 2019) studies adversarial 3D point clouds capturable by
LiDAR, which is commonly used in autonomous driving.

Though adversarial 3D point clouds for deep learning
models have been proven to exist, current techniques to gen-
erate them are still at a preliminary stage and thus attacks
can be easily detected, removed, or invalidated by simple
defense mechanisms such as random sampling and outlier
removal, as described by the corresponding defense mecha-
nisms in (Zhou et al. 2018). In addition, current works on
generating adversarial 3D data focus on altering original
point clouds but neglect the feasibility of reliably manufac-
turing these adversarial examples in real world. To the best
of our knowledge, we are the “rst to launch robust adversar-
ial attack for 3D machine learning models that can bypass
existing defense mechanisms and be used to construct real
adversarial objects.

3 Proposed Methodology
3.1 Point-wise Adversarial Perturbation
Our algorithm follows the adversarial attack proposed by
Carlini and Wagner (Carlini and Wagner 2017). We apply
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Table 4: Attack Success Rates (%) against Different PointNet++ Models Using Random Sampling Strategy with (a) Untargeted
Attack (b) Most Likely Attack (c) Random Target Attack.

SSG-1024 SSG-2048
Attack airplane bottle car chair monitor sofa airplane bottle car chair monitor sofa

(a) 89.38 92.50 18.12 58.75 15.62 26.87 42.19 67.19 10.94 41.25 2.81 20.31
(b) 73.12 94.37 14.37 47.81 21.25 30.00 40.31 42.81 0.63 38.44 3.75 19.69
(c) 27.81 0.0 2.81 2.50 7.19 0.31 5.94 0.0 0.0 5.31 0.0 0.0

Figure 2: Visualization of the Adversarial Point Clouds Gen-
erated by Our Attack Algorithm.

mechanisms are evaluated using SSG-1024 model with clos-
est sampling due to the higher success rates, and we believe
that it is a better choice to evaluate the defense mechanisms
against our adversarial examples.
Voting Classi“cation by Rotations. This mechanism is im-
plemented in of“cial PointNet++ codebase, which applies
rotations on point clouds before they are fed into the models.
Although PointNets are designed to be invariant to point or-
dering, they are sensitive to rotations. We evaluate our exam-
ples to see whether our point clouds are robust to such data
augmentations. In our experiments, numbers of rotations
from 2 to 10 are tested, and the results are shown in Table
5. Since this procedure is not considered during our attack
process, the success rates drop by about 10…30%, especially
for the models with lower success rates originally. However,
we still achieve reasonable and stable success rates in most
test cases.
K-Nearest Neighbor Outlier Removal.This defense aims
to weaken the adversarial attacks by removing the points that
locate relatively far away from other points. It is considered

Table 5: Attack Success Rates (%) Using Voting Classi“ca-
tion with SSG-1024.

#Rotations 1 2 3 4 5
Untargeted 95.31 90.10 87.86 86.88 86.88
Most Likely 92.14 81.93 79.58 78.12 77.71

Random 60.78 39.53 32.92 32.29 30.36
#Rotations 6 7 8 9 10
Untargeted 86.46 85.21 86.35 86.09 86.51
Most Likely 76.04 76.93 76.56 76.15 75.73

Random 30.83 29.74 31.35 29.11 29.84

that prior adversarial attacks mostly rely on those •outlierŽ
points, so that this removal process should invalidate the at-
tacks. As a quick review, for each pointp, its kNNs can be
found by utilizing Euclidean distances, and let the averaged
distance bedp. Then, the meanµ and standard deviation�
of all dp are calculated. A pointp will be removed if:

dp > µ + � × � (7)

To “nd the hyper-parameters in (7), we perform grid search
on bothk and� . Fork, we test the values2, 4, 6, 8, 10, and
for � , we test the values0.0, 0.2, 0.4, ..., 1.0. The results are
shown in Table 6 withuntargeted, most likely, andrandom
targetattacks. We believe that, in addition to kNN smooth-
ing, applying randomized input during attacks (i.e., use dif-
ferent subsets of points in each iteration) also helps us by-
pass this defense mechanism. Note thatk greater than10
are not evaluated because the classi“cation accuracy using
benign examples will be dropped lower than 80%, accord-
ing to (Zhou et al. 2018) (e.g.,for k = 10 and� = 0 .5, the
accuracy of benign examples is lower than 0.8).
Statistical Defense Through Random Gaussian Noise.In
contrast to the previous two defenses, which try to make
the adversarial examples be correctly classi“ed, this method
aims to •detectŽ whether an input is adversarial or not. In
our case, this mechanism can be considered as a •black-
boxŽ defense as we do not take this into consideration during
our attack. As a quick review, letx be an input point cloud
(which can be benign or adversarial), we add random Gaus-
sian noise to generate a set of perturbed point clouds:

x�
i = x + � i s.t. � i � N (0, � 2) (8)

where the noise� i is i.i.d. sampled from the Gaussian distri-
butionN (0, � 2). It is considered that adding non-directional
noise helps the inputs escape from the narrow adversarial
subspace, leading to unstable attack results. Then, given a
set of perturbed point cloudsx� , we leto� be the output set
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Figure 3: Visualization of the Physical 3D Objects and Corresponding Point Clouds with Classi“cation Results.

Table 8: Attack Success Rates against Existing Defenses Us-
ing Point Sets Sampled from Physical Objects.

Voting Outlier Removal Statistical1

86.71% 80.47% 71.43%, 42.86%
1Success rates in botht = 5 andt = 10 settings.

Table 9: Comparison of Existing 3D Adversarial Attacks.
Approach Success Rate Defense Physical

Xiang, et al. 100%
Liu, et al. 91.2…96.6% �

Ours 60.8…95.3% � �

attack performance as it forces the points to be distributed
more uniformly along the object, and many points located in
the vulnerable regions of the point cloud are lost.

We use the successful results (7 objects) to evaluate the
defense mechanisms previously mentioned using the hyper-
parameters we found. For voting classi“cation, we apply 10
rotations. For outlier removal, we setk = 10 and� = 0 .0.
For statistical defense using Gaussian noise, we let� 2 =
0.01. The results can be found in Table 8, which shows that
our attack can still achieve reasonable success rates while
considering existing defenses.

To summarize, we address the limitations that remain un-
resolved in previous works, and the major differences be-
tween our work and previous studies are shown in Table
9. Although it is dif“cult to compare the success rates di-
rectly due to different adversarial settings, the experiments

shown that our attack can still obtain comparable success
rates while considering existing defensive mechanisms and
physical constraints in real world.

5 Conclusion
In this paper, we presented an attack algorithm that gener-
ates adversarial 3D objects against PointNet++, a widely-
used 3D object classi“cation model. Different metrics were
proposed to deal with the unsolved constraints in previous
work, including random sampling and surface reconstruc-
tion. In the experiments, our algorithm was tested under
several conditions and defensive mechanisms which are de-
signed especially for adversarial 3D examples, and the re-
sults showed that our attack can bypass such mechanisms
with high success rates. In addition, several physical objects
were 3D printed and evaluated. The results showed that our
attack can successfully generate physical objects while pre-
serving adversarial properties.
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