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Abstract

Most current detection methods have adopted anchor boxes
as regression references. However, the detection performance
is sensitive to the setting of the anchor boxes. A proper set-
ting of anchor boxes may vary significantly across different
datasets, which severely limits the universality of the detec-
tors. To improve the adaptivity of the detectors, in this pa-
per, we present a novel dimension-decomposition region pro-
posal network (DeRPN) that can perfectly displace the tra-
ditional Region Proposal Network (RPN). DeRPN utilizes
an anchor string mechanism to independently match object
widths and heights, which is conducive to treating variant
object shapes. In addition, a novel scale-sensitive loss is de-
signed to address the imbalanced loss computations of dif-
ferent scaled objects, which can avoid the small objects be-
ing overwhelmed by larger ones. Comprehensive experiments
conducted on both general object detection datasets (Pascal
VOC 2007, 2012 and MS COCO) and scene text detection
datasets (ICDAR 2013 and COCO-Text) all prove that our
DeRPN can significantly outperform RPN. It is worth men-
tioning that the proposed DeRPN can be employed directly
on different models, tasks, and datasets without any modifica-
tions of hyperparameters or specialized optimization, which
further demonstrates its adaptivity. The code has been re-
leased at https://github.com/HCIILAB/DeRPN.

Introduction

Recently, general object detection has achieved rapid devel-
opment, driven by the convolutional neural network (CNN).
As a significant task in computer vision, general object
detection is expected to detect more object classes (Red-
mon and Farhadi 2017; Singh et al. 2018) and perform im-
pressively on different datasets (Everingham et al. 2010;
Lin et al. 2014). Unfortunately, we notice that most of the
general object detection methods are not very general. When
employing some state-of-the-art methods (Dai et al. 2017;
Lin et al. 2018; Zhang et al. 2018b) on different datasets, it is
usually indispensable to redesign the hyperparameters of re-
gression references, termed as anchor boxes in Region Pro-
posal Network (RPN) (Ren et al. 2015). Even for some spe-
cific object detection tasks, such as scene text detection (Lyu
et al. 2018; Zhang et al. 2018a; Liao, Shi, and Bai 2018), di-
rectly applying state-of-the-art approaches of general object
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Figure 1: Schemas of RPN and DeRPN: (a) RPN adopts
multiple anchor boxes of fixed shapes and scales, (b) DeRPN
divides bounding boxes into flexible anchor strings, decou-
pling width and height.

detection cannot produce their due effects (Liao et al. 2017;
Liu and Jin 2017). This problem stems from presupposed
anchor boxes with fixed shapes and scales. Although RPN
was verified to be an effective method to generate region
proposals in (Ren et al. 2015), the anchor boxes adopted
in RPN are very sensitive, which limits the adaptivity to
variant objects. Once the anchor boxes excessively devi-
ate from the ground truths in a dataset, the performance is
curtailed significantly. This is why many specific methods
for scene text detection (Liao et al. 2017; Ma et al. 2017,
Zhang et al. 2018a) lay emphasis on the design of the anchor
boxes, which are intended to be long, narrow, and consistent
with the text characteristics. However, manually setting the
anchor boxes is cumbersome and it is difficult to guarantee
the best performance. Although (Redmon and Farhadi 2017)
proposed an algorithm based on K-means clustering to pre-
compute anchor boxes, the improvement was still limited.

As illustrated in Fig.1 (a), RPN adopts anchor boxes as
regression references. We argue that anchor boxes of fixed
scales and shapes have extreme difficulty covering thou-
sands of objects. Therefore, we propose a novel dimension-
decomposition region proposal network (DeRPN). In Fig.1
(b), DeRPN divides anchor boxes into several independent
segments that we call anchor strings, inheriting the terminol-
ogy from (Ren et al. 2015). Note that DeRPN decomposes
the detection dimension by decoupling the width and height.
The main contributions of our work are summarized as fol-
lows:



e We propose a novel region proposal network, DeRPN,
which has strong adaptivity. Without any modifications
for hyperparameters, DeRPN can be directly employed on
different models, tasks, or datasets.

e The proposed DeRPN adopts an advanced dimension-
decomposition mechanism. Through flexible anchor
strings, DeRPN can match objects with optimal regres-
sion references, which allows the network to be more
smoothly trained.

e We propose a novel scale-sensitive loss function to tackle
the imbalance of object scales and prevent small objects
from being overwhelmed by lager ones.

e The proposed DeRPN maintains a consistent network and
running time with RPN, and thus it can conveniently be
transplanted to current two-stage detectors.

e The proposed DeRPN has a higher recall rate and more
accurate region proposals than the previous RPN. It out-
performs RPN on different tasks and datasets.

Related Works

In the past several years, early object detection methods
were confined to traditional methods (Viola and Jones 2001;
Felzenszwalb et al. 2010) involving handcrafted features.
With the recent significant progress of CNN, more CNN-
based methods have been put forward and rapidly dominated
the detection task. We introduce some of the works below.

General object detection Object detection methods are
categorized into two streams: two-stage approaches and one-
stage approaches. The two-stage framework contains two
procedures, where the first step is to generate some candi-
date regions of interest (Rols) with region proposal meth-
ods, e.g., Selective Search (SS) (Uijlings et al. 2013) and
RPN (Ren et al. 2015). Then, to determine the accurate re-
gions and clear classes further, the second step resamples
features according to the Rols with a pooling operation (Gir-
shick 2015; Dai et al. 2016). Such two-stage methods (Lin
et al. 2017; He et al. 2017a; Li et al. 2018) have achieved
high detection accuracy on some challenging datasets. Con-
versely, the one-stage methods (Redmon and Farhadi 2017;
Lin et al. 2018; Zhang et al. 2018b) focus more on the run-
ning speed. Without the resampling operation, the procedure
of one-stage methods has been simplified manyfold and thus
benefits the running speed.

Region proposal methods As an important component in
two-stage detectors, region proposal methods have a signif-
icant impact on the final detection result. Formerly, correla-
tive image processing methods were used to generate region
proposals. Some were based on grouping pixels (Uijlings et
al. 2013), and others were based on sliding windows (Zitnick
and Dollar 2014). Note that these methods are independent
of the detectors. Later, Ren et al. proposed a region proposal
network that was integrated in Faster R-CNN to build an
end-to-end detector. Notably, as proven by (Ren et al. 2015),
RPN outperformed other previous proposal methods, for ex-
ample SS (Uijlings et al. 2013) and EdgeBoxes (Zitnick and
Dollar 2014). To date, the vast majority of two-stage detec-
tors have adopted RPN to generate region proposals.

Scene text detection Different from general objects, scene
texts are usually smaller, thinner, and with characteristic tex-
ture and rich diversity in their aspect ratios (Tian et al. 2015).
In addition, scene text detection can be applied to many sce-
narios, for example multilingual translation, document digi-
tization, and automatic driving. For these reasons, scene text
detection has been regarded as another challenging task in
computer vision. Comprehensive survey of scene text detec-
tion can be found in (Ye and Doermann 2015). According to
the basic detection element, methods of scene text detection
are classified into three categories: (1) character based (Hu
et al. 2017), (2) word based (Deng et al. 2018), and (3) text
line based (Zhang et al. 2016).

Methodology

In this section, we describe the details of the DeRPN. The
network and full pipeline are illustrated in Fig. 2.

Modeling

Most current methods regard the object detection as ad-
justment (reg) and filtration (cls) toward complete bound-
ing boxes. Based on a convolutional neural network, these
methods take the features (x) from a CNN and input them
to a regression layer and classification layer. Usually, the
regression layer, implemented by a convolutional or fully
connected layer, is a linear operation to predict the param-
eterized coordinates (t). To acquire the predicted bounding
boxes, these parameterized coordinates are decoded accord-
ing to anchor boxes (B, ). In addition, the classification layer
applies an activation function (e.g. Sigmoid or Softmax, de-
noted as o) on the predicted values to generate the probabil-
ity (Pp) of bounding boxes. The mathematical descriptions
of this procedure are as follows:

t=W,x+b, (D
B(mvyawa h) :,(/)(taBa(xaaya7waaha)) (2)
Pg=0(Wex + b.) 3)

where W, and b,. denote the weights and biases of the re-
gression layer. Similarly, W and b.. are those for the classi-
fication layer. x, y, w, and h are coordinates of the bounding
boxes. 1 represents an anti-parameterized function that is
used to decode coordinates.

However, thousands of objects possess extremely variant
shapes, and harshly setting numerous anchor boxes proves
to be adverse for training and very time-consuming (Ren
et al. 2015; Redmon and Farhadi 2017; Liu and Jin 2017).
The underlying problem is that people are difficult to design
appropriate anchor boxes to treat diverse objects. The ex-
cessive deviations between anchor boxes and ground truths
will aggravate the learning burden of detectors and dramat-
ically curtail performance. A novel solution is to decom-
pose the detection dimension by decoupling the width and
height to alleviate the impact from variant shapes of objects.
With the dimension-decomposition mechanism, we intro-
duce anchor strings (S¥ (24, wa), S?(ya, ha)) that serve as
independent regression references for the object width and
height. Differently, anchor strings predict independent seg-
ments (S, (z,w),Sk(y, h)) and corresponding probabilities
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Figure 2: DeRPN network and pipeline. (a) Object widths and heights are independently matched with anchor strings. Bold
lines represent well-matched anchor strings. This step is employed during the training phase. (b) We apply classification and
regression on anchor strings. Dashed lines are anchor strings of low probability. (c) Predicted width and height segments are
combined to compose bounding boxes. (d) We filter bounding boxes by probability and NMS to generate region proposals.

(PY,Ph), instead of full bounding boxes. We describe the
procedure as follows:

tY=W,"z+b) Sw(z, w) =y (Y, S (2q,ws)) @)

t' =W,z Sh(y, h) =P (", SE(Yasha))) (5)
Pl=0(W"z+bY) Pl=o(W'z+b})  (6)

As the two-dimensional bounding boxes are required for
the detection results, we need to reasonably combine the pre-
dicted segments to recover the bounding boxes. The combi-
nation procedure is given by

B(x7yawah> = f(Sw($,'lU),Sh(y,h)) (7)
Pg = g(PY, Pl (8)

where, f represents a kind of rule or algorithm to combine
predicted segments. Meanwhile, g is a function (e.g., arith-
metic mean, harmonic mean) which evaluates the probabili-
ties of combined bounding boxes.

Through discretization, we assume that the object width
or height in a dataset has n kinds of changes. Fully com-
bining all widths and heights determines approximately n?
object shapes with which the anchor box needs to be faced.
In other words, the matching complexity of the anchor
box is O(n?). Nevertheless, when adopting the dimension-
decomposition mechanism, n kinds of widths and heights
are independently matched with anchor strings, which pro-
duces a lower matching complexity of O(n).

Dimension Decomposition

Anchor strings The previous RPN regarded anchor boxes
as its regression references. For the difficulty of match-
ing various objects with fixed bounding boxes, RPN heav-
ily relies on the design of anchor boxes and further loses
satisfactory adaptivity. By contrast, DeRPN breaks the
two-dimensional boxes into a series of independent one-
dimensional segments called anchor strings. Through this
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dimension decomposition, we separately handle the object
width and height for classification and regression, which can
alleviate the impact from diverse object shapes.

Anchor strings are expected to cover widths and heights
of all objects. We set the anchor strings as a geometric pro-
gression (denoted as {a,}), i.e., (16, 32, 64, 128, 256, 512,
1024). Theoretically, this geometric progression can apply
to widths or heights within a large range of [8v/2, 1024+/2],
which can cover most of the objects in many scenarios. In
this paper, both the width and height use the same but in-
dependent geometric progression as their anchor strings. As
illustrated in Fig. 2 (a), these anchor strings are assigned at
each feature map location. Each anchor string is responsible
for predicting the width segment or height segment, instead
of a full bounding box.

The next concern is how to choose the best-matched an-
chor strings for an object. In RPN, an anchor box is cho-
sen based on the intersection over union (IoU) between the
anchor box and ground truth. If the IoU is over 0.7, or the
IoU is the largest one, that anchor box is regarded as posi-
tive. Owing to the deviation between the anchor box and ob-
ject, sometimes the IoU is very small (less than 0.2). Under
this situation, the anchor box is probably still chosen for its
largest IoU, which produces a significant regression loss in
the training state. Conversely, as shown in Fig. 2 (a), DeRPN
reasonably matches the objects with anchor strings based on
length instead of IoU. The best-matched anchor strings are
evaluated by

M, ={i| arg min |log e; —log a;|} U{3, i+1|

Z_ﬁ‘<ﬁ}

(i=1,2,3,.,N) (9

where M denotes the index set of matched anchor strings
for the j-th object. e; is the object edge (width or height). NV
and q represent the number of terms, and the common ratio



(in this paper, ¢ is set to 2) of geometric progression {a,, },
respectively. Term q; is i-th anchor string in {a,, }. Note that
the first term in this equation represents the closest anchor
string to edge e;. The second term describes a transition in-
terval within [(\/q — ) xa;, (\/q + ) xa;], where 3 is used
to adjust magnitude of interval, which is intended to be 0.1
in our experiments. If e; locates in the transition interval,
both 7 and ¢ + 1 are chosen as matched indexes. We employ
the transition interval to reduce ambiguities resulting from
factors such as image noises and ground truth deviations.

Notably, the anchor string mechanism of DeRPN intro-
duces boundedness that ensures a stable training procedure.
By neglecting the transition interval, it is easy to prove that
the largest deviation (measured by ratio) between the anchor
string and object edge is at most ,/q, which means the re-
gression loss of DeRPN is bounded. Compared to RPN, the
unexpected small IoU usually generates a significant regres-
sion loss. Empirically, RPN cannot even converge if the an-
chor boxes deviate excessively from the ground truths.

Label assignment To assign labels, initially, we define
aligned anchor strings that locate at the object centers on
a feature map. The positive labels are assigned to aligned
anchor strings if they are well matched with corresponding
objects, as identified with Eq. (9). Except for the aligned
ones, we employ an observe-to-distribute strategy to deter-
mine other anchor strings. That is, we first observe the re-
gression results for each anchor string. After regression, the
predicted segments (widths or heights) of the anchor strings
are combined to compose region proposals. If the region pro-
posals have high IoUs (over 0.6) with ground truths, we dis-
tribute positive labels to the corresponding anchor strings.
The detailed combination procedure is introduced in the next
section. Anchor strings that do not satisfy the above condi-
tions will simply be treated as negative.

The previous RPN statically assigns labels merely based
on the ToU. Owing to deviations between the anchor boxes
and objects, sometimes the [oUs are very small, which intro-
duces a huge regression loss. Compared with RPN, DeRPN
has proposed a new kind of secure, dynamic, and reasonable
mechanism for label assignment. In most cases, the features
at the object centers are representative, and thus such a la-
bel assignment method for aligned anchor strings is reason-
able. Except for the centers, we cannot identify whether the
features at other positions are important. Consequently, we
adopt a dynamic observe-to-distribute strategy to determine
the labels at other positions conservatively.

Consistent network DeRPN has maintained the consis-
tent network architecture with RPN, and thus it can conve-
niently be transplanted to current two-stage detectors. Since
it adopts the same network architecture, the running time
of DeRPN is approximately the same as RPN. In addition,
DeRPN also shares convolutional layers with the second-
stage detector. To be more specific, as shown in Fig. 2, the
network is constituted with a 3 x 3 convolutional layer, fol-
lowed by two sibling 1 x 1 convolutional layers (for clas-
sification and regression). The number of terms in geomet-
ric progression {a,,} is denoted as N. Since the width and
height employ independent anchor strings, the classification
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layer predicts 2 x 2N scores to estimate whether an anchor
string is matched or not matched with object edges. Besides,
each anchor string predicts a width segment or height seg-
ment with the coordinates of (x,w) or (y, h), respectively.
Therefore, the regression layer also predicts 2 x 2N values.

Scale-sensitive loss function The distribution of object
scale is often imbalanced (Lin et al. 2014), and there are usu-
ally more large objects than smaller ones. If we simply mix
objects together to evaluate loss, the small objects will be
severely overwhelmed by the larger ones. Benefiting from
the distinct scales of anchor strings, we propose a novel
scale-sensitive loss function to handle objects of different
scales fairly. The scale-sensitive loss function is defined as

N M
L({pl}7{t} ZZ|R| cls pmpz)l{ZeRj}
j=11:i=1
N M
A reg(tist7) -1 10
+ JZEW (t7) - i € Gj} - (10)
in which
R;={k|sy = aj,k=1,2,...,M}, (11)
={k|sx € A, sy, = aj,andp; =1,k=1,2,..., M}.(12)

Here, N is the number of terms in geometric progression
{a,} and M is the batch size. s denotes the anchor string. p;
represents the predicted probability of the i-th anchor string
in a mini-batch. The ground-truth label p; is set to 1 if the
anchor string is positive. Otherwise, p; is 0. ¢; is a predicted
vector representing the parameterized coordinates, and ¢ is
the corresponding ground truth vector. A is the set of aligned
anchor strings. I7; denotes an index set containing those an-
chor strings of the same scale, and j is used to indicate the
scale corresponding to term a; in {ay, }. Similarly, G; is an
index set containing positive aligned anchor strings of the
same scale. The classification loss L.;s is a cross-entropy
loss, and the regression loss L. is designed as a smoothed
L1 loss. A is a balancing parameter for L5 and L,.q4, which
is empirically set to 10.

After regression, we decode the predicted coordinates as
follows:

T =2Tq + Wy X tg, (13)
Y =Ya + ha X 1y, (14)
w = wg X exp(ty), (15)
h = h, X exp(ty), (16)

where (z,w) and (z,,w,) are, respectively, the coordinates
of the predicted width segment and the anchor string. Anal-
ogously, (y, h) and (y,, h,) are those relative to height.

For each scale, we randomly sample at most 30 positive
and negative anchor strings to form a mini-batch. Note that
the anchor strings of the same scale share the same weighted
coefficient, which is calculated by their own number. This
can effectively prevent small objects being overwhelmed by
larger ones. As mentioned before, we set anchor strings as a
geometric progression, and thus different scales of anchor
strings are explicitly distinguished by the common ratio.
Therefore, the scale-sensitive loss function can naturally be
applied to DeRPN.



Dimension Recombination

By using flexible anchor strings, DeRPN can predict accu-
rate segments, serving as the edges (widths or heights) of ob-
jects. However, the final expected region proposals are two-
dimensional bounding boxes. We need to reasonably com-
bine the width and height segments to recover the region
proposals. The process is illustrated in Fig. 2 (c).

Pixel-wise combination algorithm In this paper, we pro-
pose a pixel-wise combination algorithm. First, the predicted
width and height segments are decoded according to Egs.
(13)-(16). We then consider the full set of width segments
(denoted as W' ). We filter the width segments based on prob-
ability to pick out the top-N ones (W ). For each width seg-
ment (z,w) in Wy, we choose the top-k height segments
(y™*), h(¥)) at the corresponding pixels. Then, these pairs
of width and height segments determine a series of spe-
cific bounding boxes {(z,y*), w, h(*))}, denoted as B,,.
The probability of a composed bounding box is given as Eq.
(17). Similarly, we can acquire By, = {(z*),y, w®*) h)} by
repeating the above steps for the height segments. We then
employ non-maximum suppression (NMS) on the union set
of B,, and B}, with an IoU threshold of 0.7. Finally, the top-
M bounding boxes after NMS are regarded as region pro-
posals. In this way, we can obtain a high recall of object in-
stances. Although this combination method introduces some
background bounding boxes, the second-stage detector can
suppress them with a classifier. In addition, as shown in Eq.
(17), the bounding box probability is set as the harmonic
mean of width and height probability. This can dramatically
pull down the box probability as long as the height or width
has a rather small probability, so as to remove this bounding
box. We should also note that the combination algorithms
are not unique. Other algorithms can be explored to achieve
a high recall rate.

1 1
r =2/ (i +
Experiments
In this section, we regarded RPN as the counterpart of our
experiments. To verify the adaptivity, we maintained the
same hyperparameters for DeRPN throughout all of our ex-
periments without any modifications. In addition, we used
the same training and testing settings for RPN and DeRPN
to guarantee a fair comparison. For a comprehensive eval-
uation, we carried out experiments on two kinds of tasks:
general object detection and scene text detection.

a7

General Object Detection

Dataset The experimental results are reported in three
public benchmarks: PASCAL VOC 2007, PASCAL VOC
2012 (Everingham et al. 2010), and MS COCO (Lin et al.
2014). PASCAL VOC and MS COCO contain 20 and 80
classes.

Region proposals evaluation In this subsection, we drew
a comparison for region proposals between DeRPN and
RPN. We selected VGG16 (Simonyan and Zisserman 2015)
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Figure 3: IoU distribution of RPN and DeRPN.

Table 1: Recall rates under different IoUs, evaluated on PAS-
CAL VOC 2007 test set.

IoU 0.5 0.6 07 075 08 085 09
RPN 96.58 93.19 813 648 385 148 3.7
DeRPN  96.60 93.62 855 721 49.0 251 9.2

as our backbone, and appended DeRPN or RPN to its
“conv5” layer. We then trained models on the union set of
VOC 2007 trainval and VOC 2012 trainval (“07+12”, 16551
images). The settings of RPN, training, and testing followed
that of (Ren et al. 2015). The number of output region pro-
posals was fixed at 300. We enumerated the entire train-
ing set with trained DeRPN and RPN to collect their re-
gion proposals. Then, we made statistics of IoU distribution,
which are illustrated in Fig. 3. It can be seen that the fore-
ground (IoU>0.5) ratio of DeRPN is almost twice that of
RPN, which promotes balance between the foreground and
background samples since the former are usually far fewer
than the latter. As demonstrated in previous studies in region
scaling (Zhang et al. 2018a), hard example mining (Shrivas-
tava, Gupta, and Girshick 2016), and sampling strategy (Cai
et al. 2016), the sample balance has a deep impact on the
recall rate, which can significantly influence the training ef-
fect. Without bells and whistles, DeRPN inherently has the
good property of a higher foreground ratio.

According to Fig. 3, we can also evaluate the mean
IoU for all region proposals. The calculated mean IoUs of
DeRPN and RPN are 0.34 and 0.22, respectively. This re-
veals that region proposals of DeRPN are more accurate
and enclose objects more tightly than RPN. Furthermore,
we evaluated the recall rate for DeRPN and RPN on the
VOC 2007 test set (~5k images). Different IoU thresholds
within [0.5, 0.9] were adopted to verify the efficacy of our
method. From Table 1, we can see that the recall rate of
DeRPN surpassed that of RPN by a large margin, especially
for higher IoUs within [0.7, 0.9]. To sum up, our proposed
DeRPN has better properties than RPN, including a higher
foreground ratio, more accurate region proposals, and im-
proved recall rate. The superiority of DeRPN benefits from
its advanced dimension-decomposition mechanism, which



Table 2: Detection results on MS COCO (validation set and test set). Detector is Faster R-CNN (VGG16).

val test
Method | Anchor Type | —xp—xp —xp.-— APy AP, AP, | AP AD:, ADP» ADP; APy APy
RPN cocotype | 243 451 238 77 275 388 | 24 455 B8 77 263 374
RPN vocype | 229 426 222 56 262 378 | 228 427 223 56 249 363
DeRPN fixed 357 469 255 94 282 391 | 255 473 254 92 269 383

Table 3: Detection results on PASCAL VOC 2007 and 2012
test sets. Detector is Faster R-CNN.

VOC 2007 VOC 2012
Method | Backbone Daa AP Daa AP
RPN VGG16 07+12 732 | 07++12 704
DeRPN VGGI16 07+12 76.5 | 07++12 719
RPN Res101 07+12 76.4 | 07++12  73.8
DeRPN Res101 07+12 78.8 | 07++12  76.5

considerably reduced the heavy burden from variant object
shapes. Through flexible anchor strings, the object width and
height independently seek the most appropriate regression
references. After combining accurate predicted segments,
DeRPN is able to produce high-quality region proposals for
diverse objects.

Experiments on PASCAL VOC In order to verify the
overall improvement, DeRPN was integrated into a classi-
cal framework, Faster R-CNN (FRCN) (Ren et al. 2015).
Note that the original FRCN adopts RPN to generate re-
gion proposals. We replaced RPN with DeRPN to constitute
a new detector, and then conducted comparisons. We still
fixed the hyperparameters of DeRPN without any modifica-
tions. All other settings including RPN, training, and test-
ing were maintained to be the same as FRCN. The models
were implemented based on the famous networks VGG16
and ResNet-101 (He et al. 2016).

First, we trained our models on the set of “07+12” and
tested them on the VOC 2007 test set. The experimental re-
sults are presented in Table 3. The VGG16 result of DeRPN
is 76.5%, which is higher than the 73.2% of RPN. Likewise,
the ResNet-101 result of DeRPN surpassed that of RPN by
2.4%. In addition, we used the union set of VOC 2007 train-
val+test and VOC 2012 trainval (“07++12”, 21503 images)
to train our models. The test set is VOC 2012 test (10991 im-
ages). From Table 3, we can see DeRPN still retains its supe-
riority, i.e., 71.9% against 70.4% and 76.5% against 73.8%.

Experiments on MS COCO In addition, we verified our
method on MS COCO 2017, which consists of a training
set (~118k images), test set (~20k images) and validation
set (5k images). We utilized the Faster R-CNN (VGG16) to
evaluate the performance of DeRPN and RPN. It is worth
noticing that, to handle small objects in MS COCO, Ren et
al. redesigned the anchor boxes of RPN, changing the scales
from [8,16,32] to [4,8,16,32]. We call the anchor boxes used
in MS COCO the coco-type, with voc-type for PASCAL
VOC. To investigate the gap between these two types of an-
chor boxes, we implemented RPN with coco-type and voc-
type anchor boxes on MS COCO. In addition, the hyperpa-
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rameters of DeRPN including the anchor strings were still
unchanged, which are denoted as “fixed”. The results are
listed in Table 2, from which we see that DeRPN still outper-
forms RPN on both the test and validation sets. The perfor-
mance of the RPN-based detector was significantly curtailed
when we used voc-type anchor boxes on MS COCO. This
phenomenon demonstrates that the anchor boxes in RPN
are very sensitive. Improper settings of anchor boxes will
dramatically decrease the detection accuracy. Nevertheless,
there is no such problem for DeRPN.

Scene Text Detection

This section further verifies the adaptivity of DeRPN via
scene text detection. Note that scene texts are very challeng-
ing for their complex morphology. In general, practical re-
searches revealed that we cannot obtain satisfactory results
on scene text datasets by directly using general object detec-
tors (Liao et al. 2017; Liu and Jin 2017). However, DeRPN
can be directly employed on any task without any modifica-
tions for hyperparameters or specialized optimization.

Dataset We carried out experiments on two benchmarks:
ICDAR 2013 (Karatzas et al. 2013) and COCO-text (Veit et
al. 2016). ICDAR 2013 contains 229 training images and
233 test images captured from real-world scene. Besides,
we append another 4k images that we gathered to enrich the
training set. As for the COCO-Text dataset, it is currently the
largest dataset for scene text detection. This dataset is based
on MS COCO and contains 43,686 training images, 10,000
validation images, and 10,000 test images.

Experiments on ICDAR 2013 We employed FRCN, R-
FCN (Dai et al. 2016), and Mask R-CNN (He et al. 2017a)
(MRCN) to evaluate our method. As MRCN adopted Fea-
ture Pyramid Network (FPN) (Lin et al. 2017), we appended
DeRPN on pyramid levels of { Ps, Py, P5} in FPN. There are
three different evaluation protocols for ICDAR 2013: De-
tEval, ICDAR 2013 evaluation, and IoU evaluation. Under
different protocols, the final results are presented as recall,
precision and F-measure. As a trade-off, the F-measure is
the harmonic mean of recall and precision. From Table 4,
it is apparent that DeRPN exhibits superior performance for
the three different protocols. The F-measure improvement
of DeRPN benefits from the significant increase in the recall
rate. In Fig. 4, the presented detection examples also reveal
that DeRPN can effectively recall small texts and accurately
detect complete long texts of extreme aspect ratios. This fur-
ther demonstrates that our dimension-decomposition mech-
anism enables DeRPN to treat variant object shapes reason-
ably well. We also evaluated the inference time on a single



Table 4: Detection results on ICDAR 2013 test set. Values are expressed in recall/precision/F-measure format.

Method Proposal Backbone FPS ICDAR2013 DetEval IoU

FRCN RPN VGG16 16.3 70.25/84.71/76.80 70.90/85.16/77.38 72.60/86.41/78.91
DeRPN VGG16 15.4 77.46 / 86.79 / 81.86 78.06 / 87.28 / 82.42 79.54/89.15/ 84.07

R-ECN RPN ResNet-101 133 81.77/92.67 / 86.88 82.26/93.08 / 87.34 80.64 /91.79 / 85.85
DeRPN ResNet-101 12.8 86.52/92.21/89.28 86.68/92.62 / 89.55 86.85/92.24/ 89.46

MRCN RPN ResNet-101 4.04 84.55/94.67 /89.32 85.02/94.69 / 89.60 84.02/93.69 / 88.59
DeRPN ResNet-101 5.02 87.80/93.71/ 90.66 88.60/93.94/91.19 86.12/92.18 / 89.05
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Figure 4: Detection examples for ICDAR 2013 test set. Yel-
low boxes are detected results of DeRPN-based detector, and
blue boxes are from RPN-based detector. Green dashed lines
denote ground truths.

TITAN XP GPU. In Table 4, the FPS of DeRPN is approxi-
mately the same as that of RPN.

Experiments on COCO-Text We conducted experiments
on COCO-Text to investigate the effects of different anchor
types. We first used coco-type anchor boxes for RPN in the
R-FCN baseline. In addition, we attempted to manually de-
sign anchor boxes. By imitating the methods of (Zhang et al.
2018a), we changed the aspect ratio from [0.5, 1, 2] to [0.25,
0.5, 1] because the scene texts are usually long and narrow.
In addition, by following the method proposed by (Redmon
and Farhadi 2017), we enumerated the whole training set
of COCO-Text to conduct k-means clustering and then pro-
duced 12 anchor boxes for RPN. The hyperparameters of
DeRPN still remained unchanged.

The results in Table 5 were evaluated by the COCO-Text
protocol. In Table 5, the result is marginally worse than the
baseline (coco-type) when employing manually designed
anchor boxes, which reveals that it is difficult to guarantee
a good result by manually setting anchor boxes for RPN. In
addition, the K-means method helps increase performance
to some extent. However, this improvement is still limited.
When increasing the IoU to 0.75, the average precision of
the K-means method is even worse than the baseline. As
for DeRPN, without any modifications, it surpassed all other
methods by a large margin (more than 10%).

Furthermore, we compared DeRPN with other specific
scene text detectors including (Zhou et al. 2017), (Lyu et al.
2018), (Liao, Shi, and Bai 2018) and so on. As these meth-
ods are evaluated by recall, precision, and F-measure, we
also followed this criteria to verify our method. All listed re-
sults in Table 6 are under the constraints of single-scale test-
ing and single model. From Table 6, we can see that DeRPN
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achieved a highest F-measure of 57.11% and established a
new state-of-the-art result for COCO-Text. Unlike the other
listed methods, DeRPN is designed for general object de-
tection, which means DeRPN does not employ specialized
optimization for scene text detection. However, owing to its
adaptivity, DeRPN still applies to scene text detection and
even outperforms specific scene text detectors.

Table 5: Effects of anchor types, evaluated on COCO-Text
test set. These methods are based on R-FCN (ResNet-101).

Method Anchor AP Recall AP Recall
Type 50 50 75 75

RPN coco-type 40.46 | 56.76 | 13.67 | 23.43

RPN manually 39.76 | 56.64 13.49 | 22.62

RPN K-means 42.59 | 62.21 13.19 | 24.42

DeRPN fixed 53.43 | 73.74 16.99 | 30.14

Table 6: Comparison of specific scene text detectors. Results
were evaluated on COCO-Text test set. Baseline results are
given by (Veit et al. 2016).

Method Recall Precision | F-measure
Baseline A (2016) 23.30 83.78 36.48
Baseline B (2016) 10.70 89.73 19.14
Baseline C (2016) 470 18.56 7.47

Yao et al. (2016) 27.10 43.20 33.30
WordSup (2017) 30.90 45.20 36.80
He et al. (2017) 31.00 46.00 37.00
Lyu et al. (2018) 26.20 69.90 38.10
EAST (2017) 32.40 50.39 39.45
TextBoxes++ (2018) 56.00 55.82 5591
R-FCN+DeRPN (ours) 55.71 58.58 57.11
Conclusion

In this paper, we have proposed a novel DeRPN to improve
the adaptivity of detectors. Through an advanced dimension-
decomposition mechanism, DeRPN can be employed di-
rectly on different tasks, datasets, or models without any
modifications for hyperparameters or specialized optimiza-
tion. Comprehensive evaluations demonstrated that the pro-
posed DeRPN can significantly outperform the previous
RPN. To our best knowledge, DeRPN is the first method
that achieves outstanding performances in both general ob-
ject detection and scene text detection without any tuning.

In the future, we will try to apply the dimension decom-
position mechanism to one-stage detectors and then improve
their adaptivity.
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