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Abstract

The skeleton based gesture recognition is gaining more pop-
ularity due to its wide possible applications. The key issues
are how to extract discriminative features and how to de-
sign the classification model. In this paper, we first leverage
a robust feature descriptor, path signature (PS), and propose
three PS features to explicitly represent the spatial and tem-
poral motion characteristics, i.e., spatial PS (S_PS), tempo-
ral PS (T_PS) and temporal spatial PS (T_S_PS). Consider-
ing the significance of fine hand movements in the gesture,
we propose an “attention on hand” (AOH) principle to de-
fine joint pairs for the S_PS and select single joint for the
T_PS. In addition, the dyadic method is employed to extract
the T_PS and T_S_PS features that encode global and local
temporal dynamics in the motion. Secondly, without the re-
current strategy, the classification model still faces challenges
on temporal variation among different sequences. We propose
a new temporal transformer module (TTM) that can match
the sequence key frames by learning the temporal shifting pa-
rameter for each input. This is a learning-based module that
can be included into standard neural network architecture. Fi-
nally, we design a multi-stream fully connected layer based
network to treat spatial and temporal features separately and
fused them together for the final result. We have tested our
method on three benchmark gesture datasets, i.e., ChalLearn
2016, ChalLearn 2013 and MSRC-12. Experimental results
demonstrate that we achieve the state-of-the-art performance
on skeleton-based gesture recognition with high computa-
tional efficiency.

1 Introduction

With the development of intelligent device (e.g., AR, VR
and smart-home devices), hand gesture interaction is at-
tracting more attention because of its wide applications
for human/computer interaction and communications. Hand
gesture recognition is an important and classic problem.
Recently, the accurate vision based pose/skeleton estima-
tion gains more popularity due to cost-effective depth sen-
sor (like Microsoft Kinect and Intel RealSense) and reli-
able real-time body pose estimation development (Wei et
al. 2016). Comparing with RGB-D sequence based gesture
recognition, the skeleton based methods are robust to illumi-
nation changes and view variations, and avoid motion am-
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Figure 1: The flowchart of our algorithm.

biguity. In this paper, we focus on the skeleton-based iso-
lated hand gestures recognition, that is, one gesture per one
sequence. The key issues are how to extract discriminative
spatial temporal features and how to design the classification
model.

Hand gestures can be quite different among various users
and application scenario. Since human action and hand ges-
ture are similar in terms of motion representation and prob-
lem formulation, here we discuss them together. The gesture
recognition framework usually involves the feature descrip-
tion and temporal dependency based classification model.
Traditional skeleton-based action recognition approaches in-
volve hand-crafted feature extraction. The joint trajectory
covariance matrix (Hussein et al. 2013), pairwise relative po-
sitions (Wang et al. 2012), 3D joint histogram (Xia, Chen,
and Aggarwal 2012) and Lie group embedding (Vemula-
palli, Arrate, and Chellappa 2014) are used to represent the
skeleton sequences. Human-crafted features are straightfor-
ward but with limited representative abilities, which usu-
ally require the domain knowledge. Recently, convolutional
neural network (CNN) and its extensions are widely used
for feature extraction, like 2D-CNN, 3D-CNN, C3D etc.
C3D (Tran et al. 2015) is a deep 3D convolutional net-
work model based spatial-temporal feature. It is a generic,
compact and implicit representation but requires the large-
scale training data. Regarding the action temporal dynam-
ics, Fourier temporal pyramid (FTP) (Veeriah, Zhuang, and
Qi 2015) and hidden Markov model (HMM) (Xia, Chen,
and Aggarwal 2012) are used with hand-crafted features. For
the deep learning method, different structures of Recurrent
Neural Networks (RNN), e.g., hierarchical RNN (Du, Wang,
and Wang 2015), RNN with regularization (Zhu et al. 2016)
differential RNN (Veeriah, Zhuang, and Qi 2015), two-



stream RNN (Wang and Wang 2017) and Long Short-Term
Memory (LSTM) (Weng et al. 2018), are popular choice
to explore the temporal dependency for recognition. These
frameworks have reached state-of-the-art recognition results
but the computational complexity may be unacceptable in
real-world applications. Hence, we need simple, compact
and explicit features to represent global body movements
and fine hand motions. Also, the classification model should
be simple with temporal dependency.

In this paper, we propose the path-signature feature based
hand gesture recognition framework with only few fully
connected layers. The flowchart of our algorithm is shown
in Fig. 1. The main contributions are as follows:

e We introduce the three different path signature (PS) fea-
tures , i.e., spatial (S_PS), temporal (T_PS) and tempo-
ral spatial PS (T_S_PS) features, to explicitly characterize
spatial configuration and temporal dependency of hand
gestures. We also propose an AOH principle to define
joint pairs for the S_PS and select single joint for the
T_PS. In addition, the dyadic method is employed to
extract the T_PS and T_S_PS features that encode both

global and local temporal dynamics.

We propose the temporal transformer module (TTM) that
can actively produce an appropriate temporal transforma-
tion for each input sequence. This is a learning-based
module that can be included into standard neural network
architecture.

We propose an extremely simple multi-streams architec-
ture as the classifier with only several fully connected
(FC) layers. Different features have their own channels
and the FC layer are used for final fusion.

By only using skeleton data, our method obtains the
state-of-the-art results on three major benchmarks, i.e.,
ChaLearn 2013, ChalLearn 2016 and MSRC 12. Further,
our model requires less floating-point multiplication-adds
and training memory.

2 Related Work
2.1 Gesture recognition

Skeleton based hand gesture recognition methods are much
less than those dealing with the full body skeleton based
action recognition (Wang et al. 2018). It is limited by the
dataset availability and gesture unique property. Hand ges-
ture mainly involves the finger, palm and hand motion,
which only has 1-3 joints in the skeleton obtained from
depth data. In (De Smedt, Wannous, and Vandeborre 2016),
several skeleton-based features are used together as temporal
pyramid, including shape of connected joints, histogram of
hand direction and histogram of wrist rotation. In 2D skele-
ton are superimposed onto original image as dynamic sig-
natures. These features aim to describe the hand motion in
detail but the description and representation abilities are lim-
ited.

Deep learning have made great process in the area of ac-
tion recognition. Considering the sequential property, it is
natural to apply the RNN, LSTM and their extensions to
learn temporal dynamics. In 2017 ChalL.earn LAP RGB-D
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isolated gesture recognition competition (Wan et al. 2017),
the largest hand gesture recognition contest, most partici-
pants (including the winner) used C3D and/or LSTM neu-
ral networks. C3D architecture has been widely used in
the action recognition for appearance and motion model-
ing because it is more suitable for spatial-temporal fea-
ture extraction than 2D CNN. The model inputs are multi-
modalities including RGB, depth, optical flow and/or skele-
ton. Recently, (Weng et al. 2018) proposed a deformable
pose traversal convolution method based on 1D convolu-
tion and LSTM. These recognition networks usually have
multiple LSTMs and temporal streams channels and the
final result is multi-stream average fusion. In (Wang and
Wang 2017), RNN architecture not only characterizes the
temporal dynamics but also considers the spatial configura-
tion in the two-stream architecture. With the proper model-
ing of skeleton structure and spatial dependency of the ac-
tion, recognition accuracy increased. In the latest hand ges-
ture recognition research (Narayana, Beveridge, and Draper
2018), by using RGB-D and their flow as inputs, the net-
work has 12 channels representing the large body movement
and fine hand motions individually. The fusion channel is
a sparsely connected network with one weight per gesture
and channel. The RNN/LSTM frameworks deliver the state-
of-the-art performance on most action and gesture recog-
nition datasets, indicating the excellent feature and depen-
dency learning capabilities. The only concerns are the archi-
tecture complexity, training data requirement and computa-
tional efficiency.

2.2 Path signature feature

The path signature (PS) was first proposed in (Chen 1958)
in the form of noncommutative formal power series. Af-
ter that PS was used to solve differential equations driven
by rough paths (Lyons 1998; Garrido 2010). Recently, the
path signature has been successfully used as a trajectory de-
scriptor and applied to many tasks in the field of machine
learning and pattern recognition, such as quantitative finance
(Gyurké et al. 2013; Lyons, Ni, and Oberhauser 2014), hand-
writing recognition (Lai, Jin, and Yang 2017; Yang et al.
2015), writer identification (Yang, Jin, and Liu 2015; 2016;
Liu, Jin, and Xie 2017), human action (Yang et al. 2017) and
hand gesture recognition (Li, Zhang, and Jin 2017). (Yang
et al. 2017) is the pioneer work employing the path signature
feature for skeleton-based action recognition. All joint pairs
and temporal joint evolution are considered as path and the
corresponding path signatures are computed as features. The
concatenation of all path signatures are the input vector for
classification. In (Li, Zhang, and Jin 2017), the path signa-
ture is the firstly used in the gesture recognition by defining
the hand trajectory as the path. Path signature can provide
the informative representation of sequential data but how to
define proper paths and how to deal with their high dimen-
sionality is worthy to be explored.

3 Overview of Path Signature

In this section, we will briefly introduce the mathematical
definition, geometric interpretation and some properties of



path signature (PS), which is mainly referred to (Chevyrev
and Kormilitzin 2016).

Assume a path P : [t1,t5] — RY, where [t1,t5] is a time
interval. The coordinate paths are denoted by (P}, ..., PY),
where each P : [t1,t3] — R is a real-value path. For
an integer £ > 1 and the collection of indices i1, ...,%; €
{1,...,d}, the k-fold iterated integral of the path along in-
dices 71, ..., 1, can be defined as:

:/ / dP} .. dPk (1)
t1<ap <tz t1<ai<az

where t1 < a1 < as < ... < ap < to.
The signature of path P, denoted by S(P)¢, +,, is the col-
lection (infinite series) of all the iterated integrals of P:
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The k-th level PS is the collection (finite series) of all the k-
fold iterated integral of path P. The I-st and 2-nd level rep-
resents path displacement and path curvature respectively.
By increasing k, higher levels of path information can be
extracted, but the dimensionality of iterated integrals enlarge
rapidly as well. Note that the O-th level PS of path P is equal
to 1 by convention.

In practice, we often truncate the S(P), 1, at level m to
ensure the dimensionality of the PS feature in a reasonable
range. The dimensionality of S(P),, ., truncated at level m
is calculated through M = d + --- 4+ d™ (without zeroth
term).

The path is considered as the piecewise linear path after
sampling. The PS of a discrete path with finite length can
be easily calculate based on linear interpolation and Chen’s
identity (Chen 1958). For each straight line of a path, the
element of its PS can be calculates by:

T HS ft+1

For the entire path, Chen’s 1dent1ty states that for any
(ts,tm,ty) satisfying: ts < t,, < t,, then,

Z S(P
4

PS has two excellent properties for path expression. First,
PS is the unique representation of a non tree-like path (Ham-
bly and Lyons 2010). A tree-like path is a trajectory that re-
traces itself (such as clapping). For time-sequential data, it’s
natural and effective to add an extra time dimension into the
original path to avoid the tree-like situation. Second, shuffle
product identity (Lyons et al. 2004) indicates that the prod-
uct of two signature of lower level can be expressed as a lin-
ear combination of some higher level terms. Hence, adoption
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of higher level terms of PS actually brings more nonlinear
prior knowledge, which reduces the need for the classifier of
high complexity. More properties and related details can be
found in (Chevyrev and Kormilitzin 2016).

We recommend an open-source python library named
iisignature, which can be easily installed through pip.

4 Approach

In this section, we first introduce an attention on hand”
(AOH) principle for PS extraction, which deals with global
body movements and fine hand motions. Then we propose
a novel temporal transformer module (TTM) to alleviate the
sequence temporal variation. Finally a multi-stream archi-
tecture is presented to fuse different types of features.

4.1 AOH principle and PS extraction

AOH principle Before calculating the PS feature, we need
to consider about what path to be used and how to design
paths efficiently for the recognition. In (Yang et al. 2017),
the first work leveraging PS features in the human action
recognition problem, single joint, joint pair and joint triple
are utilized to define paths. They use all IV joints and exhaust
all the possible pairs and triples (i.e., C%; and C%;), which
brings performance improvement but increases dimension-
ality dramatically. In the context of gesture recognition, we
propose the AOH principle to select single joints and joint
pairs.

For the single joint, only the joint belongs to the hand part
(including elbow, wrist and hand 3 joints, i.e., Ny =3 -2 =
6) are selected, as Fig. 2 (a) shows. For the joint pair, three
kinds of pairs are considered (as depicted in Fig. 2 (b) 1)-
3)). The first kind of joint pair is inside the same hand part,
describing the geometric characteristics of hand explicitly.
The second kind of joint pair is from two hand parts, indi-
cating the relative state of two hands. The third kind of joint
pair is across hand part and body part (upper body joints ex-
cept hand part), characterizing the related location of hand
and body. The selected single joint and joint pairs defined
by AOH principle can not only model global hand relative
body movements and fine hand motions but also make the
PS features more compact.

Path definition and PS feature extraction Based on the
selected single joint and joint pairs obtained by AOH princi-
ple, we further define one spatial path and two kinds of tem-
poral paths for PS feature extraction. We regard each joint
pair as a spatial path for the PS feature extraction. The first
type of temporal path is the evolution of each selected single
joint along the time, as shown in Fig. 2 (c). Another type of
temporal path is the evolution of spatial correlations among
joints, as shown in Fig. 2 (d). The summary of three PS fea-
tures are shown in Table 1.

Spatial PS features The fundamental description of spa-
tial structure is the d-dimensional raw coordinates. We con-
catenate the coordinates of single joints in each frame as a
RC vector obeying chronological order as Fig. 2 (c) shows.
Further, due to the poor characterization ability of RC and
noise interference, we extract PS features over selected joint
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Figure 2: The illustration of PS features extraction (T_PS, S_PS and T_S_PS). (a) and (b) are single joints and joint pairs selected
following AOH. (c) and (d) are the temporal paths of single joint and each dimension of S_PS. Note that TTM (proposed in
Section 4.2 and illustrated in Fig. 4) should be implemented between AOH and PS extractors, but we omit it here for clarity.

pairs to explore the spatial relation between joints. The im-
plementations of spatial PS feature extractor (Box A in
Fig. 2) are as follows: i) Select elements that need to be
calculated in Eq.1 according to the truncated level mg. ii)
Calculate the truncated spatial PS of a joint pair (a straight
line in Eq.3) by Eq.1 and Eq.3 (The start and end points are
defined according to the predefined order in Fig. 2). iii) Fi-
nally concatenate the truncated spatial PS of all input joint
pairs as the spatial PS (S_PS) feature.

Dyadic temporal PS features The dyadic method with
PS was firstly used in (Yang et al. 2016) for the writer ID
identification. Since the gesture always contain global and
local variation, we employ the dyadic method for temporal
PS feature extraction.

The dyadic method divides the entire path into dyadic
pieces and set up a hierarchical representation of the path.
It can extract both the global and local feature of entire
path, and reduce the feature dimensionality as well. If the
dyadic level is Lp, then an entire path can be divided into
2(Lp+1) _ 1 subpaths.

To characterize the temporal dynamic of single joint, the
evolution of each single joint is treated as an entire temporal
path as shown in Fig. 2 (c). An extra monotone time dimen-
sion is added to ensure the path uniqueness (i.e., to avoid
tree-like path as discussed in Section 3).

To further explore kinematic constraints of the joint pairs,
the evolution of each dimension in the S_PS of every frame
also can be regarded as another kind of entire temporal path,
as Fig. 2 (d) shows. As a result, we acquire a series of 1D
paths. However, the signature of a 1D path is just the in-
crements to a certain power, which can be easily get from
Eq. 3. To alleviate this problem, we use the lead-lag trans-
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formation as (Yang et al. 2017) does over the 1D path to
enrich the temporal contextual information.

The implementations of temporal PS feature extractor
(Box B in Fig. 2) are as follows: i) Select elements that need
to be calculated in Eq.1 according to the truncated level mr
or mr_g. ii) Every subpath generated by dyadic method is
an entire path (consist of several straight lines) in Eq. 4. Ac-
cording to Eq. 1, Eq. 3 and Eq. 4, the truncated temporal
PS of a subpath can be calculated. iii) Concatenate the trun-
cated temporal PS of all subpaths as temporal PS (T_PS) or
temporal spatial PS (T_S_PS) feature.

Table 1: The proposed feature for skeletal hand gesture
recognition.

Feature types
Raw coordinates

Feature description

The d-dimensional coordinates

(RC) of N single joints.
Spatial PS The PS over each predefined joint
(S_PS) .
pair truncated at level mg.
Temporal PS
(T_PS) The PS over the temporal evolu-

tion of each single joint truncated
at level mp.

Temporal Spatial PS

(T_S_PS) The PS over the temporal evolu-

tion of each dimension of S_PS
truncated at level mr_g.

4.2 Temporal Transformer Module (TTM)

Motivation Although deep neural network achieves break
through in the sequential recognition task, it’s still limited



by the lack of ability to be temporally invariant to the input
sequence in a computationally and parameter efficient man-
ner. In the context of action recognition, the time-stamps of
keyframes are variant among different clips, which makes
the model difficult to catch the key information along time
dimension.

There are mainly two existing types of methods to solve
this problem: structure driven method and data driven
method. The structure driven method mostly use LSTM to
model the temporal contextual dependence of sequence data.
The data driven method is to provide more diverse samples
by temporal shift data enhancement. However, LSTM model
requires large training data and unnegligible training cost.
If we used a simple network like FC layer as the classifier,
the temporal consistency is also learned as part of features,
which is the unwanted result. For example, we visualize the
weight matrix of the first FC layer of a trained one-stream
network (will be introduced in the following), which takes
RC as input, as shown in Fig. 3. The x-axis denotes the input
dimensionality (obey chronological order), and the y-axis
denotes the neuron number (64 in the first FC layer). The
brighter position means the corresponding weight is larger,
that is, this connection is more important. The FC layer pay
more attention on several time stamp, indicating the position
of key frames. If there is the temporal variation between the
model and testing sequence, the recognition result is worse.
Even if the training data is augmented by temporal shift, the
model capacity is too small to fit any arbitrary temporal sit-
uation.

Recent work (Cao et al. 2017) proposed a spatiotemporal
transform method to deal with the spatiotemporal variation,
but their method is for RGB-D video. As mentioned in Sec-
tion 4.1, we have employed the temporal PS features to rep-
resent temporal dynamics within the sequence. This is what
exactly (Yang et al. 2017) has done. The inter-sequence tem-
poral difference might be alleviated by the temporal trans-
formation. To this end, we design a differentiable module
called temporal transformer module (TTM). This module
can actively transform the input data temporally and finally
adjust the key frame to the best time stamp for the network.

Proposed TTM Inspired by STN (Jaderberg et al. 2015),
TTM is a differentiable module that applies a temporal trans-
form to RC. The TTM contains two steps: Localization net-
work (LN) and temporal shifting.

Firstly, we use LN to learn the temporal transform factor
delta (A), as shown in Fig.4 (b). It takes the input vector
I € RPre (Dpe denotes the dimensionality of RC) and
output A as shown in Fig. 4 (b), i.e., A = frn(I). Note that
the network function f;, () can take any form, such as FC
layer or 1D convolution layer, but should finally regress to
one neuron.

Secondly, the input vector I is reshaped as a matrix V' €
R&NsxF “where N is the number of single joints (i.e., 6
in Fig. 2) and F" denotes the frame number. Each column of
V' is a vector v%, which consists of the coordinates of single
joints in the same frame, « € [1, F)]. And if we denote the
matrix after shifting as V', then each column of it can be
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Figure 3: The visualization of the weight matrix of first fully
connected layer in a trained one-stream network.

calculate by:
v = frlx — AV = (1-a) 'Ul\;x_AJ +a-v?w_A] ®)

Here, because A is a decimal, we use linear interpola-
tion function fr() to generate the V°. « is calculated by
(x — A) — |z — A]. Note that x — A is clip by value [1,
F]. Eventually, V° is reshaped back as a output vector O.
The code of TTM is made publicly available'.

4.3 Multi-stream Architecture

As discussed in Section 4.1, we define spatial and temporal
path based on AOH principle. Corresponding PS features en-
code the spatial and temporal information of the action. Pre-
vious work (Yang et al. 2017; Li, Zhang, and Jin 2017) con-
catenates these features together as whole and one classifi-
cation model is employed, e.g, FC layers. We believe tempo-
ral and spatial features should be treated separately because
one represents the joint evolution and the other describes the
body configuration. The final result is fusion of these multi-
ple channels.

So we utilize the multi-stream architecture to process dif-
ferent kinds of information separately. As a result, we de-
sign three kinds of network architectures, one-stream net-
work (1s_net), two-stream network (2s_net) and three-stream
network (3s_net), as shown in Fig. 4(c)-(e) . The 1s_net di-
rectly concatenates all the features as one input vector and
feed it to a 2-fc-layer network, similar to (Yang et al. 2017).
The 2s_net has two inputs, RC and PS, representing basic in-
formation and extracted compact information. As defined in
Table 1, the T_PS and T_S_PS represent temporal informa-
tion and S_PS is spatial feature. Hence, the 3s_net has three
streams with two FC layers separately. The final fusion result
is obtained through a FC layer as the weighted summation.

5 Experimental Results and Discussion
5.1 Datasets

ChaLearn 2013 dataset: It is the Chalearn 2013 Multi-
model gesture dataset (Escalera et al. 2013), which contains
23 hours of Kinect data with 27 persons performing 20 Ital-
ian gestures. This dataset provides RGB, depth, foreground
segmentation and Kinect skeletons. Here, we only use skele-
tons for gesture recognition as done in the literature (Wang
and Wang 2017).

ChaLearn 2016 dataset: Chal.earn Isolated dataset (Wan et
al. 2016), the largest gesture recognition dataset consisting
of RGB and depth videos, includes 35,878 training, 5,784
validation and 6,271 test videos for totally 249 gestures.

"https://github.com/LiChenyang-Github/Temporal-
Transformer-Module
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Figure 4: Three different types of network architectures: one-stream network (1s_net), two-stream network (2s_net) and three-
stream network (3s_net). TTM is the temporal transformer module. LN is the localization network that generates the transfor-
mation parameters A. () and @ denote temporal shift and weighted sum. The fc2 in each stream denotes a FC layer with a

softmax activation function.

We use Openpose (Wei et al. 2016) to estimate the skele-
ton joints in all videos as (Lin et al. 2018) did. It can be
downloaded from our homepage?.

MSRC-12 dataset: MSRC-12 gesture dataset (Fothergill
et al. 2012) includes 6 iconic and 6 metaphoric gestures
performed by 30 people. We use 6 iconic gestures from
the dataset that amounts to 3,034 instances and employ 5-
fold leave-person-out cross-validation as in (Jung and Hong
2014).

5.2 Data Preprocessing and Network Setting

We first normalize skeletons by subtracting the central joint,
which is the average position of all joints in a video clip.
Then all coordinates are further normalized to the range of [-
1, 1] over the entire video clip. Finally, we sample all videos
clips to 39 frames by linear interpolation or uniform sam-
pling. The data enhancement methods we use are three-fold.
The first one is temporal augmentation by randomly tem-
poral shift the frame in range of [-5, 5]. The second one is
adding Gaussian noise with a standard deviation of 0.001 to
joints coordinates. The last one is rotating coordinates along
X, ¥, z three axes in range of [—7/36, 7/36], [—7/18, /18]
and [—7 /36, 7/36].

For Chalearn 2013 and MSRC-12 two datasets, we set
the neuron number of each 2-fc-layer stream to 64 and
C (64 _fc-C_fc), where C is the gesture class number. For
the largest dataset Chal.earn 2016, we use 256_fc-C_fc. We
adopt 64 _fc-1_fc architecture for f1,n (). DropOut (Hinton et
al. 2012) layer is added after the first FC layer of each stream
to avoid over fitting. The mini-batch size and dropout rate
are set to 56 and 0.5. We use the method of stochastic gradi-
ent descent with a momentum value equal to 0.7. The learn-

*http://www.hcii-lab.net/data/
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ing rate updates in accordance to a(n) = a(0) - exp(—An),
where n is a positive integer starting from 1 and increasing
by 1 for each 1/2 epoch. a(0) and A are set to 0.01 and 0.001.
The Lp for T_PS and T_S_PS calculation are set to 3 and 2.
The lead-lag dimensionality is set to 2.

5.3 Ablation Study

We do some ablation experiments on the ChalLearn 2013
dataset to explore the truncated level of PS and examine the
effectiveness of PS, TTM and multi-stream architecture.

Investigation of the truncated level of PS We utilize the
one-stream network without TTM (1s_net_w/o TTM) to ex-
plore the contributions of different truncated level PS. The
validation accuracy rate is 77.84% with only RC. The accu-
racy rate after adding different PS are shown in Table 2. It
is noted that the T_S_PS is calculated from S_PS truncated
at level 2 (The abbreviation can be referred to Table 1). The
performance improves after adding any type of PS truncated
at any level, which indicates the effectiveness of PS. The last
column of each row illustrates that all types of PS feature are
complementary.

It is worthy to note that the contributions trend to be neg-
ligible and even vanish when truncated level is greater than
a certain value. There is a trade-off between validation per-
formance and feature dimensionality. As a result, we choose
to set my, mg, mr. g as 4, 2, 3.

Investigation of the TTM We use the 1s_net with RC as
input to examine the effectiveness of TTM. Results are pre-
sented in Table 3. 1s_net_-w/o TTM can be roughly regarded
as the method proposed by (Yang et al. 2017).

Firstly, we use temporal augmentation to test whether the
data driven methods can make the improvement. We shift



Table 2: The ablation study of PS features on Chalearn
2013. The truncated level of PS can be referred to Section
3.

PS truncated level | +T_PS | +4S_PS | +T_S_PS | +AlIPS
1 77.98 82.30 85.35 85.50
2 81.28 87.62 87.80 88.76
3 84.42 88.12 88.81 89.17
4 85.27 88.06 88.09 89.20

the samples in range of [-5, 5] to provide more diverse sam-
ples. However, it doesn’t improve the performance. Hence,
directly data driven methods cannot work well.

Then we directly add TTM to the 1s_net (1s_net. TTM),
and the result improves from 77.84% to 80.55%. The tem-
poral transformation parameter learned by TTM can fit the
key moment of an action and the active part of the FC layer.

At last we add the same temporal augmentation for
1s_net_TTM, and the accuracy rate increases from 80.55%
to 81.33%. This attractive observation indicates that TTM
makes good use of the diverse samples provided by temporal
enhancement. In other words, the network is more adaptive
after adding TTM.

Table 3: The ablation study of TTM on ChalLearn 2013.
Temporal Enhancement is abbreviated to Temp. Enh.

Components Accuracy rate (%)
1s_net_-w/o TTM 717.84
1s_net_-w/o TTM + Temp. Enh. 77.46
1s_net_ TTM 80.55
Is.net_ TTM + Temp. Enh. 81.33

Investigation of different network architectures For the
estimation of different architecture, we use network without
TTM, with RC and all PS selected above as input, which can
be roughly regarded as the architecture utilized by (Yang et
al. 2017). As shown in Table 4, the performance improves
clearly, which indicates that the multi-stream architectures
allow each stream to dig deeply into one type of feature and
finally provide more discriminative information.

Table 4: The ablation study of network architectures.

3s_net
90.19

2s_net
89.63

1s_net
89.43

Components
Accuracy rate (%)

5.4 Comparison with the State-of-the-arts

In this subsection, we use the best parameter setting and net-
work structure getting from our ablation study. We also do
all the data augmentation methods mentioned above for our
network.

ChaLearn 2013 The results on the ChalLearn 2013 dataset
are shown in Table 5. Currently, methods achieving the
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best performance are mainly benefited from powerful char-
acterization ability of CNN and LSTM models. (Du, Fu,
and Wang 2015) organizes the raw coordinates as the spa-
tial temporal feature maps then feeds it to the hierarchi-
cal spatial-temporal adaptive filter banks CNN architecture.
(Wang and Wang 2017) propose a two-stream LSTM to
model temporal dynamics and spatial configurations sepa-
rately. Compared with these method, our FC based network
achieves the best results with less multiplication-adds oper-
ation as Table 6 shows. Note that the AOH principle dramat-
ically reduces the Multiplication-Adds compared with the
method without AOH (Yang et al. 2017).

Table 5: Comparison of methods on the Chal.earn 2013.

Accuracy

Method rate (%)
HiVideoDarwin Wang, Wang, and Wang 74.90
VideoDarwin Fernando et al. 75.30
D-LSDA Su et al. 76.80
CNN for Skeleton Du, Fu, and Wang 91.20
Two-stream LSTM Wang and Wang 91.70
3s_net. TTM 92.08

Table 6: Comparison of the Multiplication-Adds. (1: Du, Fu,

and Wang [?I: Wang and Wang *: PS calculation.
Method | CNNUI [ 25 LSTM[P! | 3s_net w/o AOH 3s_net
Mult-adds |, 5\ | 350 3 14.89'4+15.06 | 2.69'+2.00
(Million)

ChaLearn 2016 The results on Chal.earn 2016 are sum-
marized in Table 7. Our model outperforms the skeleton
based method (Lin et al. 2018) by around 4.5%. We also
notice that the accuracies of skeleton based methods are in-
ferior to video frame based models. The reasons are mainly
two-fold. Firstly, the precision of OpenPose is affected by
the drastic background and illumination changes. Secondly,
a lot of gesture classes requires recognizing the static hand
gesture instead of dynamic hand motion. The recognition
performance on these classes mainly depends on the esti-
mation precision of hand joints. It is worth noting that our
model is the simplest one. We argue that the performance
will improve if more accurate joints locations are provided.

Table 7: Comparison on ChaLearn 2016 dataset. '): Wang et
al. [2: Miao et al. [¥!: Narayana, Beveridge, and Draper [4:
Lin et al. RGB, depth, optical flow and skeleton are abbrevi-
atedas R, D, O and S.

Test acc. Modality

Method (%) RTDTOTS Model
AMRL] 6559 | V|V 8*CNN+4ConvLSTM
ASUR] 6771 | V|V |V 4*C3D+2*TSN+1*SVM
FOANetP! 8207 | V|V |V 12*CNN
SkeLSTMIM | 35.39 v/ 1*LSTM
3snet TTM | 39.95 Y/ 3*FC




MSRC-12 (Wang et al. 2016) proposed Joint Trajectory
Maps (JIM), which are a set of 2D images that encode spa-
tiotemporal information carried by 3D skeleton sequences in
three orthogonal planes. In (Jung and Hong 2014), a novel
framework called Enhanced Sequence Matching (ESM) is
leveraged to align and compare action sequences based on
a set of elementary Moving Poses (eMP). (Garcia-Hernando
and Kim 2017) proposed “transition forests”, an ensemble
of randomized tree classifiers that learnt both static pose in-
formation and temporal transitions. All these methods show
the importance of spatio-temporal information modelling.
Our method extracts spatial, temporal and joint spatial-
temporal features and achieves the state-of-the-art accuracy
0f 99.01%, as shown in Table 8.

Table 8: Comparison of methods on the MSRC-12 dataset.

Accuracy

Method rate (%)
JTM Wang et al. 93.12
DFM Lehrmann, Gehler, and Nowozin 94.04
ESM Jung and Hong 96.76
RJP Garcia-Hernando and Kim 97.54
MP Garcia-Hernando and Kim 98.25
3s_net_ TTM 99.01

6 Conclusion

In this paper, we first leverage S_PS, T_PS and T_S_PS three
PS features to explicitly represent the spatial and temporal
motion characteristics. In the path definition, we propose the
AOH principle to select single joint and joint pairs, which
ensures the feature robust and compact. Furthermore, the
dyadic method employed to extract the T_PS and T_S_PS
features that encode global and local temporal dynamics
with less dimensionality. Secondly, we propose a differen-
tiable module TTM to match the sequence key frames by
learning the temporal shifting parameter for each input. Fi-
nally, we design a multi-stream FC layer based network to
treat spatial and temporal features separately. The ablation
study has shown the effective of every contribution. We have
achieved the best result on skeleton-based gesture recog-
nition with high computational efficiency on three bench-
marks. We will explore the possible combination of the at-
tention scheme and PS features.
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