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Abstract

Self-supervised tasks such as colorization, inpainting and zig-
saw puzzle have been utilized for visual representation learn-
ing for still images, when the number of labeled images is
limited or absent at all. Recently, this worthwhile stream of
study extends to video domain where the cost of human la-
beling is even more expensive. However, the most of exist-
ing methods are still based on 2D CNN architectures that can
not directly capture spatio-temporal information for video ap-
plications. In this paper, we introduce a new self-supervised
task called as Space-Time Cubic Puzzles to train 3D CNNs
using large scale video dataset. This task requires a network
to arrange permuted 3D spatio-temporal crops. By complet-
ing Space-Time Cubic Puzzles, the network learns both spa-
tial appearance and temporal relation of video frames, which
is our final goal. In experiments, we demonstrate that our
learned 3D representation is well transferred to action recog-
nition tasks, and outperforms state-of-the-art 2D CNN-based
competitors on UCF101 and HMDB51 datasets.

Introduction
Recent progress in computer vision stems from a huge
amount of labeled images as well as deep convolutional
neural networks. Typically, a network trained with Ima-
geNet (Russakovsky et al. 2015) consisting of one million
images and label pairs learns the general features of the im-
age and has been used to initialize the network for various
kinds of downstream tasks. In fact, there are much more than
one million images in the web, however, building large-scale
annotated datasets is extremely expensive and impractical.
Therefore, many researches have been attempted to mini-
mize human supervision in computer vision. For example,
(Oquab et al. 2015) and (Kim et al. 2017) proposed to use
weak image tag information for object localization without
using bounding boxes or pixel-level masks. In the same vein,
unsupervised representation learning, which learns general-
purpose semantic features without human annotation, has
been regarded as a fundamental problem for years (Ben-
gio, Courville, and Vincent 2013). Among them, a promi-
nent paradigm is the so-called self-supervised representation
learning that defines an annotation-free pretext task from
the raw data in order to provide a free supervision signal
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Figure 1: Ambiguity in time direction. Given a pair of im-
ages on the left, it is ambiguous to determine the time direc-
tion in between. One can finally identify the direction (b‘→
a‘) and action (throwing) when given video sequences.

for feature learning. For instance, a deep CNN is taught to
complete zigsaw puzzles (Noroozi and Favaro 2016) and fill
in missing pixels (Pathak et al. 2016). The rationale behind
such self-supervised tasks is that solving them will force the
CNN to learn semantic image features that can be useful for
other vision tasks. In image domain, self-supervised learn-
ing is performed using only images from ImageNet (Rus-
sakovsky et al. 2015) without labels and is transferred to
downstream tasks such as Pascal (Everingham et al. 2007;
2012). Recent methods have shown promising results, and
significantly narrowed the gap with the fully supervised
learning using ImageNet labels.

More recently, this worthwhile stream of research has ex-
tended to video domain, where the burden of human annota-
tion is even more severe. Compared to images, videos pro-
vide additional temporal information. To illustrate, we intro-
duce a problem of guessing the direction of time in Fig. 1.
Given a pair of image on the left, one runs into a problem
of determining whether the action is catching (a → b) or
throwing (b → a). One can finally clarify when the neigh-
boring frames are given together that it is throwing (b’→ a).
In the past few years, various self-supervision signals using
video frames have shown promising results that are better
than random initialization in action recognition tasks. How-
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ever, the scope of these approaches is still limited to using
2D CNN architectures which are appearance-based, leaving
the ambiguity in the temporal dimension unsolved.

In this paper, we focus on 3D CNNs which can directly
extract spatio-temporal features from raw videos. With the
advent of large scale video datasets such as Kinetics (Kay et
al. 2017), these 3D CNNs have recently begun to outperform
2D CNNs in action recognition as (Hara, Kataoka, and Satoh
2018). In the context of self-supervised learning, we propose
a pretext task for 3D CNNs to close the gap with fully su-
pervised Kinetics-pretraining in video domain. Given a ran-
domly permuted 3D spatio-temporal crops extracted from
each video clips, we train a network to predict their origi-
nal spatio-temporal arrangement. We call this task as Space-
Time Cubic Puzzles, and examples are shown in Fig. 4. By
solving Space-Time Cubic Puzzles, the 3D CNN is forced to
have an understanding of both spatial appearance and tem-
poral relation in the video, which is our final goal.

We conduct extensive experimental validation to demon-
strate the effectiveness of our self-supervised video fea-
ture learning. Fisrt, we compare the proposed method with
baseline methods including the random initialization and
fully supervised pretraining as well as alternative pretrain-
ing strategies. Also, we perform various ablation studies to
provide deeper analysis on 3D spatio-temporal representa-
tion. Finally, we demonstrate that our learned 3D repre-
sentation with comparable or fewer number of parameters
outperforms state-of-the art 2D CNN competitors on action
recognition tasks of using UCF101 (Soomro, Zamir, and
Shah 2012) and HMDB51 (Kuehne et al. 2011) benchmark
datasets.

Our contributions can be summarized as follows:

• We propose a novel pretext task of solving 3D video cubic
puzzles for self-supervised video representation learning
from unlabeled videos. To our best knowledge, this is the
first work to focus on the spatio-temporal 3D CNNS in
self-supervised representation learning in videos.

• We provide various ablation studies and analysis for
deeper understanding of 3D spatio-temporal representa-
tion.

• Our learned 3D CNN representation outperforms other
self-supervised approaches on two publicly available ac-
tion recognition datasets (UCF101, HMDB51), while
having fewer or comparable number of parameters.

• We significantly close the gap between unsupervised
representation learning and Kinetics-pretraining for 3D
CNNs. When transferred onto UCF101, our self-
supervised learning improves +23.4% over training from
scratch, and shows comparable performances to the strong
supervision that uses one eighth of the Kinetics labels.

Related Works
In this section, we review two categories of prior works:
video recognition and self-supervised representation learn-
ing, which are the most revelvant to our wok.

Video Recognition and Kinetics Dataset
Recent progress in video recognition is rooted in the use of
large-scale datasets that enable the pretraining of CNNs for
a wide variaty of downstream tasks. To date, ImageNet (Rus-
sakovsky et al. 2015) has contributed substantially to the
pretraining of a generic feature representation in many video
recognition algorithms. First of all, (Karpathy et al. 2014)
introduced multiresolution CNN architecture for large-scale
video classification. They also provided several schemes for
time information fusion. (Simonyan and Zisserman 2014)
proposed a two-stream architecture to capture spatial and
motion information with a RGB stream and an optical flow
stream respectively. (Wang et al. 2016) further improved the
results by using temporal segments. These approaches are
based on 2D CNNs that are pretrained on ImageNet.

Recently, CNNs with spatio-temporal 3D convolutional
kernels (3D CNNs) have been actively touched for video
applications. The first 3D CNN was proposed several years
ago by (Ji et al. 2013). However, even the usage of well-
organized models such as (Tran et al. 2015) has failed to
outperform the advantages of 2D CNNs that combined both
RGB and stacked flow (Simonyan and Zisserman 2014). The
primary reason for this failure has been the relatively small
data-scale of video datasets for optimizing the large number
of parameters in 3D CNNs, which can only be trained on
video datasets. More recently, however, (Carreira and Zis-
serman 2017) achieved a significant breakthrough using the
Kinetics dataset (Kay et al. 2017), which includes more than
300K annotated videos. It was created with the aim of being
positioned as standard video dataset roughly equivalent to
the position held by ImageNet in image domain. Thus, we
now have the benefit of a 3D convolution that can directly
extract spatio-temporal features, by virtue of the Kinetics
dataset.

However, most of the previous studies have trained 3D
CNNs using all labels in the Kinectis dataset. Therefore, we
argue that developing a self-supervised method to train 3D
CNNs is a worthwhile pursuit.

Self-Supervised Representation Learning
To overcome the inherent thirst for data in fully supervised
training, a large body of literature have studied unsupervised
feature learning. A recently emerging line of research is self-
supervised feature learning where the supervision signal is
obtained automatically from unlabeled images or videos.

Over the last few years, several self-supervised tasks
have been introduced. For instance, methods that use con-
text arrangement of image patches (Doersch, Gupta, and
Efros 2015; Noroozi and Favaro 2016), image comple-
tion (Pathak et al. 2016), motion frame ordering (Misra, Zit-
nick, and Hebert 2016; Lee et al. 2017) and multi-task of
many models (Kim et al. 2018) have been proposed. Our
work is closely related to the context-based methods (Do-
ersch, Gupta, and Efros 2015; Noroozi and Favaro 2016;
Misra, Zitnick, and Hebert 2016; Lee et al. 2017; Kim et
al. 2018). These are a popular approach, and work by cre-
ating an arrangement of image patches in either space or
time. Each distinct arrangement is assigned a class label,
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and the network then predicts the correct arrangement of
these patches by solving a supervised classification prob-
lem. Context-based methods have the advantage of being
easy to understand, network architecture agnostic, and fre-
quently straightforward to implement. They also tend to per-
form well on standard measures of transfer learning. For
instance, (Noroozi and Favaro 2016) and (Lee et al. 2017)
are the top performers on PASCAL VOC 2007 detection
and UCF101 action classification respectively, even among
a large number of new arrivals.

However, these context-based methods only leverage ei-
ther of spatial or temporal dimension. Furthermore, they are
based on 2D CNNs which can only extract frame-level fea-
tures that cannot detect scene dynamics by nature. Since
the spatial appearances and temporal relations are both very
important cues for video understanding, our work investi-
gates the use of both spatial and temporal dimensions us-
ing 3D CNNs in videos. To our best knowledge, only few
works (Zhao et al. 2017; Vondrick, Pirsiavash, and Torralba
2016) exploit the 3D architectures in self-supervised feature
learning. They use reconstruction/generation-based pretext
tasks, and aim for a specific target task: anomaly detection
and video generation respectively. In contrast, we mainly in-
vestigate the fine-tuning of the learned feature representa-
tions for the video action recognition tasks. Arguably, the
action recognition is a hallmark problem in video under-
standing, so it can serve as a general task, similarly to object
recognition in image understanding. In experiments, quanti-
tative comparisons demonstrate our supervisory signals are
able to generate much richer 3D feature representations than
previous 3D CNN-based methods, as well as the 2D CNN-
based competitors, even with fewer number of parameters.

Proposed Approach
Pretext Task: Space-Time Cubic Puzzles
Our goal is to learn spatio-temporal representations with 3D
CNNs using unlabeled videos. We propose a 3D cubic puz-
zle problem called as Space-Time Cubic Puzzles; Given a
randomly permuted sequence of 3D spatio-temporal pieces
cropped from a video clip, we train a network to predict
their original arrangement. Although this is a difficult task
even for a human, it becomes easy once we identify the ob-
jects and their actions in the video crops. We hypothesize
that the successful network in this task captures representa-
tive and discriminative features for each 3D crop by deter-
mining their spatio-temporal arrangement. Thus, our learned
clip-level 3D representations are transferable to downstream
tasks in videos as well.

To generate the puzzle pieces, we consider a spatio-
temporal cuboid consisting of 2 × 2 × 4 grid cells for each
video, as shown in Fig. 2 and Fig. 4. Given 16 crops, there
are 16! possible permutations. However, these include very
similar permutations which make the puzzle task very am-
biguous. For example, if the difference between two per-
mutations lies only in two crops that are similar-looking, it
will be impossible for the network to predict the right solu-
tion (Noroozi and Favaro 2016). To avoid such ambiguity,
we sample 4 crops instead of 16, in either spatial or tempo-

Figure 2: space-time cuboid (left) and spatio-temporal jitter-
ing (right).

ral dimension. More specifically, the 3D crops are extracted
from a 4-cell grid of shape 2×2×1 (colored in blue in Fig. 2-
left) or 1 × 1 × 4 (colored in red in Fig. 2-left) along the
spatial or temporal dimension respectively. Finally, we ran-
domly permute them to make our input. The network must
feed the 4 input crops through several convolutional layers,
and produce an output probability to each of the possible
permutations that might have been sampled. Note, however,
that we ultimately wish to learn spatio-temporal features for
the individual 3D crop.

Network Architecture
To achieve this, we use a late-fusion architecture shown
in Fig. 3-(a). It is a 4-tower siamese network, where the
towers share the same parameters, and follow the 3D
ResNet (Hara, Kataoka, and Satoh 2018) architecture to
provide a comparison with the Kinetics-pretraining. Each
3D crops are processed separately until the fully-connected
layer, so that the network cannot ”cheat” by viewing low-
level statistics such as edge boundaries without having to
understand the global scene dynamics. Since only two last
fully-connected layers receive input from all 4 crops, we ex-
pect the network to perform the most semantic reasoning for
each crops separately. Furthermore, each towers are agnos-
tic of whether it was spatial or temporal dimension the in-
put crops had been sampled from. That is, each tower must
encode the spatial and temporal structures in a given video
crop simultaneously, because it does not know if the prob-
lem to solve in the last layers is a spatial puzzle or a tem-
poral puzzle. Similar to the jigsaw puzzle problem (Noroozi
and Favaro 2016), we formulate the rearrangement problem
as a multi-class classification task. In practice, for each tu-
ple of four crops, we flip all the frames upside-down with
50% probability, doubling the number of classes to 48 (that
is, 2×4!) to further boost our performance, as suggested
in (Mundhenk, Ho, and Chen 2018).

Avoiding Trivial Learning
When designing a pretext task, it is crucial to ensure that
the task forces the network to learn the desired semantic
structure, without bypassing the understanding by finding
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Figure 3: The overall architecture.

low-level clues that reveal the location of a video crop. As
pointed out by (Doersch, Gupta, and Efros 2015), an exam-
ple of this is chromatic aberration, which occurs naturally
as a result of camera lensing. A common remedy for this is
to partially drop color channels (Doersch, Gupta, and Efros
2015), replicate one channel (Lee et al. 2017), use grayscale
inputs (Noroozi and Favaro 2016). We choose channel repli-
cation as our data preprocessing.

Another often-cited worry in all context-based works re-
lates to trivial low-level boundary pattern completion (Do-
ersch, Gupta, and Efros 2015; Noroozi and Favaro 2016;
Lee et al. 2017). The network may learn the alignment be-
tween video crops not based on the semantics, but instead
by matching the volume boundaries. Thus, we apply spatio-
temporal jittering when extracting each video crops from the
grid cells to avoid the trivial cases, as shown in the right side
of Fig. 2.

Implementation Details
Network and dataset. We implement our method and
conduct all experiments mostly using the 3D ResNet (Hara,
Kataoka, and Satoh 2018) as a backbone architecture, since
its performances on the random initialization and Kinetics-
pretraining are well studied in their work. We can immedi-
ately compare the performance of our pretraining method
to those scores. The training uses Kinetics datasets, which
includes 400 human action classes, and consists of more
than 400 videos for each class. The videos were temporally
trimmed and last around 10 seconds. During the pretraining,
we use the training split which has total 240K videos.

Pretraining. We use video clips with 224 × 224 pixel
frames and convert every video file into PNG images in our
experiments. We sample 128 consecutive frames from each
clip, and split them into 2 × 2 × 4-cell grid; That is, one
grid cell consists of 112 × 112 × 32 pixels, and for each
cell, we sample 80× 80× 16 pixels with random jittering to
generate a 3D video crop. We set the mini-batch size as 128
and the initial learning rate as 0.01. We use stochastic gra-
dient descent with a momentum of 0.9 on two GTX-1080Ti
GPUs. All the pre-trained models and the source codes will
be available soon.

Experimental Results
In this section, we evaluate the effectiveness of our space-
time cubic puzzle as a pretext task for self-supervised pre-
training of 3D CNNs. As in prior works on self-supervised
learning, we use the learned 3D CNNs features as the initial-
ization for a fine-tuning stage for video recognition tasks.
Better results indicate better qualities and generalization
abilities of the learned video representations. We organize
our experimental results as follows: 1) comparison with the
random initialization and Kinetics-pretraining (supervised),
2) comparison with our alternative strategies, 3) ablation
analysis, 4) comparison with the state-of-the-art methods,
and 5) Visualization of the low-level filters and high-level
activations. The followings are the datasets and fine-tuning
details in all our experiments.

Datasets. We conduct video recognition experi-
ments on two benchmark action recognition datasets,
namely UCF101 (Soomro, Zamir, and Shah 2012) and
HMDB51 (Kuehne et al. 2011). UCF101 contains 101
actions classes, 13K videos, and 27 hours of video data
in total. The HMDB51 dataset consists of realistic videos
captured from movies and Web videos, and contains
6,766 videos from 51 action classes. To be noted, all the
experiments follow the training/test splits of UCF101 and
HMDB51, and we mostly report the average classification
accuracy over the three splits for UCF101, as done in (Hara,
Kataoka, and Satoh 2018).

Fine-tuning for action recognition. Once we finish the
pretraining stage, we use our learned parameters to initialize
the 3D CNNs for action recognition, while the last fully-
connected layer is initialized randomly. During the fine-
tuning and testing, we follow the same protocol in (Hara,
Kataoka, and Satoh 2018) to provide a fair comparison.
Specifically, for each clip, we randomly sample 16 consecu-
tive frames, and spatially resize the frames at 112×112 pix-
els. During the fine-tuning, we apply random spatial crop-
ping, scaling and horizontal flipping to perform data aug-
mentation. We start from a learning rate of 0.05, and as-
sign a weight decay of 5e-4. In testing, we adopt the sliding
window manner to generate input clips, so that each video
is split into non-overlapped 16-frame clips. The clip class
scores are averaged over all the clips of the video.
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A B C D

Q. Can you arrange these?

A.Temporal: B-D-A-CA.Spatial: A-D-B-C

(Spatial) (Temporal)

Figure 4: Example spatial and temporal tuples.

Initialization UCF101(%) HMDB51(%)
Random init. 42.4 17.1
3D ST-puzzle (ours) 65.8 33.7
Kinetics 1/8 64.2 33.2
Kinetics 1/4 71.1 41.1
Kinetics 1/2 78.0 48.6
Kinetics full 84.4 56.4
ImageNet-inflated 60.3 30.7

Table 1: Comparison with random initialization / fully-
supervised pretraining. Top-1 accuracies on UCF101 and
HMDB51. All methods use 3D ResNet-18, and the accura-
cies are averaged over three splits.

Comparison with Random Initialization and
Fully-Supervised Pretraining
In these experiments we study the advantage of our self-
supervised pretraining for action recognition in comparison
to training from the scratch and several fully-supervised pre-
training methods. We report the performances in Table. 1.
Our self-supervised pretraining shows a dramatic improve-
ment of +23.4% over training from scratch in UCF101 and
a significant gain of +16.6% in HMDB51. This impressive
gain demonstrates the effectiveness of our self-supervised
cubic puzzle task.

Also, to quantitatively assess the effectiveness of our
method in comparison to fully supervised methods, we grad-
ually reduce the number of class labels in Kinetics dataset
(full, 1/2, 1/4, and 1/8), and evaluate the pretraining re-
sults. Still having gap with the full Kinetics-pretraining,
our method performs slightly better than the pretraining
with one eighth of the Kinetics labels (that is, 50 out of
400 classes). In addition, to provide a comparison with
ImageNet-pretraining, we import the existing ImageNet su-
pervised 2D filters and inflate them into 3D, as suggested
in (Carreira and Zisserman 2017). Our self-supervised pre-
training results through Space-Time Cubic Puzzles utper-
form ImageNet-pretraining by +5.5% and +3.0% in each

Method UCF101(%)
3D AE 48.7
3D AE + future 50.1
3D inpainting 50.9
3D S-puzzle 58.5
3D T-puzzle 59.3
3D ST score ensemble 61.3
3D ST-puzzle (full) 65.8

Table 2: comparison with alternative methods. Top-1 ac-
curacies on UCF10. All methods use 3D ResNet-18, and the
accuracies are averaged over three splits.

benchmark datasets. This implies that our video representa-
tions learned from the spatio-temporal context reasoning can
be more powerful than the massively supervised 2D image-
based representations in video recognition.

Alternative Pretraining Strategies
Since there are few prior works on self-supervised represen-
tation learning using 3D CNNs, we enumerate several alter-
native self-supervision tasks to provide our own reference
levels and validate the effectiveness of our method. While
we mainly focus on the context-based approaches, we also
explore the reconstruction-based methods: spatio-temporal
autoencoders (Zhao et al. 2017) and 3D inpainting (Pathak
et al. 2016) as well. All the methods and experiments use
the same 3D ResNet-18 as a backbone architecture, and use
Kinetics dataset (without labels). To itemize, they are:

Context-based methods. Refer to Fig. 3-(a) for network
architecture. We use cross entropy loss to train the networks.

• 3D ST-puzzle (spatio-temporal, Our full method):
The Space-Time Cubic Puzzles, where the tuple of 4 video
crops is sampled in the spatial dimension with 50% prob-
ability, and in the temporal dimension otherwise. Due to
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Method Backbone UCF101(%) HMDB51(%)
Random initialization 3D ResNet-18 42.4 17.1
Random initialization AlexNet 38.4 13.4
Temporal Coherency (Mobahi, Collobert, and Weston 2009) AlexNet 45.4 15.9
Object Patch (Wang and Gupta 2015) AlexNet 42.7 15.6
Sequence Verification (Misra, Zitnick, and Hebert 2016) AlexNet 50.9 19.8
OPN (Lee et al. 2017) AlexNet 56.3 22.1
Geometry (Gan et al. 2018) AlexNet 54.1 22.6
Time Arrow (Wei et al. 2018) AlexNet 55.3 -
Video Generation (Vondrick, Pirsiavash, and Torralba 2016) C3D 52.1 -
3D ST-puzzle (ours) C3D 60.6 28.3

3D ResNet-10 63.4 30.8
3D ResNet-18 65.8 33.7

Table 3: Comparison with the state-of-the-art methods. Top-1 accuracies on UCF101 and HMDB51. All methods use 3D
ResNet-18, and the accuracies are averaged over three splits.

this randomness, the network is forced to learn both spa-
tial and temporal structures simultaneously.

• 3D S-puzzle (spatial only): 3D extention of (Doersch,
Gupta, and Efros 2015; Noroozi and Favaro 2016). Same
as above, with the input tuple always generated from the
spatial dimension.

• 3D T-puzzle (temporal only): 3D extention of (Misra,
Zitnick, and Hebert 2016). Same as above, with the input
tuple always generated from the temporal dimension.

• 3D ST score ensemble: Score ensemble of the classifica-
tion scores of the S-puzzle and T-puzzle tasks. We average
the softmax probabilities from both puzzle tasks.

Reconstruction-based methods. Refer to Fig. 3-(b) for
network architecture. We use MSE loss to train the networks

• 3D AE (reconstruction): The network is trained to re-
construct input stack of 16 frames. We use four 3D de-
convolution layers with stride 2 × 2 × 2 in the decoder.
We followed the same decoder structure and the training
protocol in (Zhao et al. 2017).

• 3D AE + future (recon. + future prediction): Same as
above, with one more decoder branch for joint future pre-
diction of additional 16 frames, as in (Zhao et al. 2017).

• 3D inpainting: 3D extension of (Pathak et al. 2016). The
network is trained to recover the missing center region
(64× 64× 16) in the input 16-frame stack.

We compare these methods in Table. 2. The context-based
methods consistently outperform the reconstruction-based
baselines. Also, we can see that the score ensemble gives
better scores than the single-dimension baselines, implying
that the knowledge from the spatial appearance are indeed
complementary with those from the temporal relations. Our
full method brings additional 3% performance gain on top of
the score ensemble. This implies that our proposed method
effectively aggregates spatio-temporal video features, and
these features are much more discriminative and representa-
tive than those from the single-dimension baselines or their
late fusion ensemble.

Method UCF101(%)
with no regularizations 58.7
+ channel replication 61.5
+ random jittering 63.9
+ rotation with classification 65.8

Table 4: Ablation studies. Top-1 accuracies on UCF101.
Each methods are accumulated down from the top and use
3D ResNet-18. The accuracies are averaged over three splits.

Ablation Studies
In order to validate various regularization techniques in our
pretraining method, we evaluate the effect of each design
choices on the UCF-101 dataset.

Channel replication. As mentioned earlier, chromatic
aberration is one of the often-cited worries in context-based
self-supervised learning because it leads to learning trivial
color features. To prevent such issue, we first use grayscale
images. We further experimented with channel replication
where we randomly choose one representative channel and
replicate its values to the other two channels. Table. 4 shows
that channel replication improves the performance.

Spatio-temporal jittering. Analogous to the random
gap used in the puzzle-solving task (Noroozi and Favaro
2016), we apply spatio-temporal jittering to each video crops
to prevent the network from learning low-level statistics. In
practice, we crop 80×80×16 pixels from a 112×112×32-
pixel cuboid with random shifts in all horizontal, vertical and
temporal directions. Table. 4 shows that applying random jit-
tering does help the network to learn better video features.

Rotation with classification. Recently, Mundhenk, Ho,
and Chen (2018) developed a set of methods to improve on
the results of self-supervised learning using context. To see
if our model can benefit from these technologies, we ap-
ply one of their methods: rotation with classification (RWC)
which encourages the network to identify if the inputs are
right-side-up or upside-down. We do this by flipping all
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(a) Self-supervised 3D filters (with RGB frames)

(b) Kinetics-pretrained 3D filters

(c) ImageNet-

pretrained 

2D filters

Figure 5: Learned filters with self-supervision vs. fully supervised-pretraining. Visualization of the learned 64 filters in
conv1 layer: (a) the resulting 3D 7×7×7 filters of our self-supervised learning, (b) 3D 7×7×7 filters from the Kinetics-
pretrained network, and (c) 2D 7×7 filters from ImageNet-pretrained network. Note that our representation incorporate tempo-
ral dynamics and have rich temporal structure, without requiring massive human labels.

video crops in a tuple upside-down and doubling the number
of classes (24 × 2 = 48 in our work). Table. 4 shows that
RWC does prevent learning to bypass and improves over the
baseline. This implies that other off-the-shelf techniques for
context-based self-supervised learning would further boost
the performance of our pretraining method.

Comparison with the State-of-the-art Methods

We show a comparison of our results and the state-of-
the-art self-supervised methods in Table. 3. In particular,
we compare with (Mobahi, Collobert, and Weston 2009;
Wang and Gupta 2015; Misra, Zitnick, and Hebert 2016;
Lee et al. 2017; Gan et al. 2018; Wei et al. 2018) using
the RGB video data. We quote the numbers directly from
the published papers. It should be noted that the direct com-
parison with these 2D CNN-based methods is difficult due
to the fundamental architectural difference. To complement
this discrepancy, we conduct experiments with 3D archi-
tectures with different number of parameters and layers:
C3D, 3D ResNet-10 and 3D ResNet-18. These networks
have fewer parameters (11M, 14M and 33M respectively)
compared with the AlexNet (58M) which is the backbone
architecture in the 2D CNN-based methods. However, our
approach outperforms other recent self-supervised methods.
(Fernando et al. 2017) utilizes temporal order verification
as a supervisory signal and can be used as a baseline as
well. The minor difference is that this baseline uses stacks
of frame differences (15 channels) as inputs. To use a sim-
ilar setting, we use frame difference as inputs during fine-
tuning and testing. With 3D ResNet-18, we achieved 75.3%
on UCF101, that is outperforming Odd-One-Out method by
a margin of +15.0%. (Vondrick, Pirsiavash, and Torralba
2016) used C3D architecture for video generation and tested
their learned representations on action recognition. Our re-
sults with the same C3D backbone network brings +8.5%
performance gain over this, showing the informativeness of
our self-supervised task.

Visualization of Learned Filters

All the learned conv1 filters from our self-supervised learn-
ing, Kinetics-pretraining, and ImageNet-pretraining are vi-
sualized in Fig. 5. We observe that: 1) All our filters change
in the time dimension, meaning each encodes temporal in-
formation; 2) For most of the ImageNet-pretrained 2D fil-
ters, we can find a 3D filter with a similar appearance pat-
tern mostly at the center slice, 4th out of 7, both in our fil-
ters and Kinetics-pretrained ones. These observations may
imply that our learned 3D representations are able to not
only cover the appearance information in 2D filters, but can
also capture useful temporal motion simultaneously, like the
Kinetics-pretrained representations do.

Conclusion

In this study, we examined the self-supervised feature learn-
ing for spatio-temporal 3D CNNs. We propose Space-
Time Cubic Puzzles as our pretext task, and train with
unlabeled Kinetics dataset. Our method enables learning
both spatial appearances and temporal relations in video,
which has been hardly achieved by previous 2D CNN-based
self-supervisions. Our self-supervised pretraining performs
slightly better than supervised pretraining on one eighth of
the Kinetics labels on UCF101 and HMDB51 datasets. The
visualization shows that our learned 3D representations in-
deed encode spatial and temporal information jointly.

We believe that the results of this study will facilitate
further advances in self-supervised representation learning
for spatio-temporal 3D CNNs. In recent years, significant
progress has been made in self-supervised learning has nar-
rowed the gap with ImageNet-pretraining in image domain.
Similar to these, our self-supervised learning with 3D CNNs
also shows promising results towards our ultimate goal of
reducing human supervision in video domain. In our future
work, we will investigate transfer learning not only for ac-
tion recognition but also for other such tasks.
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