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Abstract

Recently, with the ever-growing action categories, zero-shot
action recognition (ZSAR) has been achieved by automat-
ically mining the underlying concepts (e.g., actions, at-
tributes) in videos. However, most existing methods only ex-
ploit the visual cues of these concepts but ignore external
knowledge information for modeling explicit relationships
between them. In fact, humans have remarkable ability to
transfer knowledge learned from familiar classes to recognize
unfamiliar classes. To narrow the knowledge gap between ex-
isting methods and humans, we propose an end-to-end ZSAR
framework based on a structured knowledge graph, which
can jointly model the relationships between action-attribute,
action-action, and attribute-attribute. To effectively leverage
the knowledge graph, we design a novel Two-Stream Graph
Convolutional Network (TS-GCN) consisting of a classifier
branch and an instance branch. Specifically, the classifier
branch takes the semantic-embedding vectors of all the con-
cepts as input, then generates the classifiers for action cate-
gories. The instance branch maps the attribute embeddings
and scores of each video instance into an attribute-feature
space. Finally, the generated classifiers are evaluated on the
attribute features of each video, and a classification loss is
adopted for optimizing the whole network. In addition, a
self-attention module is utilized to model the temporal in-
formation of videos. Extensive experimental results on three
realistic action benchmarks Olympic Sports, HMDB51 and
UCF101 demonstrate the favorable performance of our pro-
posed framework.

Introduction
Recent studies on supervised action recognition have ad-
vanced rapidly because of the development of deep learn-
ing techniques and large-scale labeled datasets. How-
ever, with the growing number of action categories, tradi-
tional approaches suffer from the scalability problem (Xu,
Hospedales, and Gong 2016). These methods require large
numbers of costly and laboriously annotated videos per ac-
tion class, making them not generalized for unseen cate-
gories. To overcome such an issue, Zero-Shot Action Recog-
nition (ZSAR) has recently drawn considerable attention
since it provides an alternative methodology that does not
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Figure 1: Three ZASR frameworks. (a) Attribute-based
framework only considers the action-attribute relationships.
(b) Word embedding-based framework which implicitly
models the action-action relationships. (c) Our framework
can directly and collectively consider all the three types of
relationships.

require any positive exemplars for classifying novel cate-
gories (Liu, Kuipers, and Savarese 2011; Xu, Hospedales,
and Gong 2016; Qin et al. 2017; Zhu et al. 2018).

Existing work on ZSAR generally follows two research
lines: (1) As shown in Figure 1 (a), some methods utilize
human-defined attributes for classification (Liu, Kuipers,
and Savarese 2011), which only leverage the action-attribute
relationships to distinguish novel action categories. More-
over, these attribute-based methods are hard to generalize
to arbitrary zero-shot categories in a practical scenario due
to the difficulties in attribute definition. (2) Other meth-
ods adopt semantic representations (e.g., word embeddings)
of action names to model action-action relationship in a
semantic space (Xu, Hospedales, and Gong 2016; 2017;
Qin et al. 2017), as shown in Figure 1 (b). Although these
approaches are simple and effective, the word embedding
space can only represent action-action relationships in an
implicit way. Moreover, these methods can hardly get ben-
efit from the other side information of videos. Recently, in-
spired by the strong relationships between objects and ac-
tions, (Jain et al. 2015; Mettes and Snoek 2017) employ ob-
jects as attributes for ZSAR and achieve favorable perfor-
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mance, where pre-trained object classifiers are used to find
objects in an action video. Nevertheless, they only consider
the action-object relationship based on the fixed similarity
scores of word embedding vectors, which cannot get benefit
from an end-to-end training.

In addition to the aforementioned issues, most of the
above methods only focus on the visual cues in videos
but ignore external knowledge information to improve the
generalization capability of zero-shot approaches. Actu-
ally, humans have remarkable ability to recognize large-
scale concepts by using semantic knowledge of the world
learned through experience. Therefore, it is a natural way
to use structured knowledge information to model relation-
ships among concepts (e.g., actions and attributes), and
this research direction is able to transfer learned knowl-
edge from seen categories to unseen ones. Recently, knowl-
edge graphs (KGs) have been successfully used in various
computer vision tasks such as object detection (Fang et al.
2017), multi-label image classification (Marino, Salakhutdi-
nov, and Gupta 2017), zero-shot image recognition (Wang,
Ye, and Gupta 2018; Lee et al. 2018), etc. By incorpo-
rating KGs in these methods, the performance is signifi-
cantly improved, showing KGs do have remarkable ability
to bridge the knowledge gap in existing state-of-the-art ap-
proaches. Therefore, great potential is excepted to exploit
knowledge graphs for ZSAR. Moreover, current methods
usually ignore temporal modeling of videos, such as sim-
ply performing average pooling across video frames (Jain
et al. 2015) or extracting a hand-crafted feature vector of
the whole video (Qin et al. 2017). However, significant ad-
vantages of exploiting temporal information for video un-
derstanding have been shown recently (Niebles, Chen, and
Fei-Fei 2010). Temporal modeling in a video sequence can
help understand its dynamic patterns and further boost the
ZSAR performance.

Motivated by the above observations, as shown in Fig-
ure 1 (c), we propose a novel ZSAR framework to directly
and collectively model all the three types of relationships be-
tween action-attribute, action-action, and attribute-attribute
by incorporating a knowledge graph in an end-to-end man-
ner. In fact, all these relationships can contribute to the
ZSAR task either in an explicit or implicit way. Here, to
avoid cumbersome attribute-annotation, we adopt objects
as attributes as it in (Mettes and Snoek 2017). To effec-
tively leverage the knowledge information in a knowledge
graph, we use Graph Convolutional Network (GCN) (Kipf
and Welling 2016) to model the dependencies and prop-
agate messages between different concepts in the knowl-
edge graph. Specifically, we propose a Two-Stream GCN
(TS-GCN) consisting of a classifier branch and an instance
branch, where KGs are incorporated into both branches to
model the three types of relationships, as shown in Figure 2.
The classifier branch aims to generate classifiers for different
action categories, which takes as input a set of concepts and
their corresponding word-embedding vectors. The instance
branch is designed to produce attribute-feature of a video
instance by leveraging the object scores obtained from the
video. We finally optimize the whole framework via a classi-
fication loss, using the generated classifiers and the attribute

features of training videos. In addition, to perform tempo-
ral modeling of videos, we incorporate a self-attention mod-
ule (Zhang et al. 2018) into the instance branch to model
the dynamically changing object scores over time. During
training, the classifiers for seen categories are learned in a
supervised fashion. At test phase, the trained model is used
to predict the classifiers of unseen categories and conduct
classification on the attribute features of test videos.

The main contributions are highlighted as follows:
• We propose a novel two-stream GCN framework that

can effectively leverage knowledge graphs to model the
relationships between action-attribute, action-action, and
attribute-attribute. To the best of our knowledge, our
method is among the first to advance knowledge graphs
and two-stream GCN for ZSAR.

• By designing both classifier branch and instance branch
in a sharing knowledge space, the generated action classi-
fiers and instance features can co-adapt and cooperate to
achieve the classification objective in an end-to-end fash-
ion. In addition, a self-attention module is embedded to
the framework for temporal modeling.

• The proposed framework performs favorably against the
state-of-the-art methods on three standard ZSAR datasets,
which verifies its effectiveness.

Related Work
Zero-shot Action Recognition. With the explosive growth
of action videos and the successful deep learning-based
computer vision tasks (Zhang, Xu, and Yang 2017; Gao et
al. 2017; 2018), the focus has now shifted to scaling visual
recognition systems in terms of categories (Zhu et al. 2018;
Xu, Hospedales, and Gong 2016; Gao, Zhang, and Xu 2017;
Zhang et al. 2012a; 2010; 2012b; Zhang, Xu, and Yang
2018a; 2018b; Zheng et al. 2017; Han et al. 2018). Zero-
shot learning addresses this issue by mining the knowl-
edge of how unseen classes is semantically related to the
known classes. Early work on ZSAR uses human anno-
tated attributes. Liu et al. (Liu, Kuipers, and Savarese 2011)
propose a latent SVM model where latent variables deter-
mine the importance of each attribute for each action class.
Gan et al. (Gan, Yang, and Gong 2016) treat each category
as a domain, and tackle attribute detection from the multi-
source domain generalization point of view. However, the
manually-specified attributes are highly subjective and cum-
bersome to annotate. For this reason, word embeddings have
been preferred recently for addressing ZSAR. Xu et al. (Xu,
Hospedales, and Gong 2017; 2016) explore word vectors
as a shared semantic space to embed labels and videos for
ZSAR. Qin et al. (Qin et al. 2017) adopt error-correcting
output codes to address domain shift problem, which utilizes
both category-level semantics and intrinsic data structures.
Recently, some methods reveal that object scores are well-
suited for video recognition. The work Objects2action (Jain
et al. 2015) constructs a semantic embedding model by con-
sidering thousands of object categories. Spatial-aware ob-
ject embedding is further designed for zero-shot localiza-
tion and classification of actions (Mettes and Snoek 2017).
In addition, recent work propose ZSAR by exploiting the
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semantic relationships of concepts such as inter-class rela-
tionship (Gan et al. 2015) and pairwise relationship (Gan
et al. 2016a). Gan et al. (Gan et al. 2016b) use knowledge
information to build an analogy pool according to an ex-
ternal ontology for zero-shot action recognition. Neverthe-
less, these methods are not end-to-end trainable. Different
from these methods, we incorporate knowledge graphs into
a novel two-stream ZSAR framework via GCNs, which can
explicitly model the relationships among object and action
categories in an end-to-end manner.
Knowledge Distillation Using Graph Neural Networks.
Generalization of neural networks for arbitrarily struc-
tured graphs (such as knowledge graphs) has drawn
great attention in recent years. For knowledge distilla-
tion, Marino et al. (Marino, Salakhutdinov, and Gupta 2017)
introduce a graph search neural network (GSNN), which can
exploit large knowledge graphs into an end-to-end frame-
work for image classification. Gao et al. (Gao, Zhang, and
Xu 2018) adopt a graph convLSTM to model the dynamic
knowledge evolution for video classification. Lee et al. (Lee
et al. 2018) utilize a graph gated neural network to model
knowledge graphs for describing the relationships between
multiple labels. Although this method achieves favorable
performance, it simply learns a single classifier for all
classes and does not incorporate unseen class labels in the
training stage, which might loss discriminative ability. Given
a knowledge graph, Wang et al. (Wang, Ye, and Gupta 2018)
design a zero-shot recognition model by taking as input se-
mantic embeddings for each node in a graph convolution
network. The objective function of this model is a mean-
square error between the predicted and ground truth classi-
fiers of known classes. This might limit its generalization
ability since the ground truth classifiers are fixed. Moreover,
this method is deficient since it only considers label-label
relationships without attributes. To distill knowledge infor-
mation from actions and objects (attributes), we design both
classifier branch and instance branch based on GCNs (Kipf
and Welling 2016). By leveraging the knowledge relation-
ships among actions and objects, the proposed method can
directly adopt classification loss and jointly learn different
classifiers for each action, which results in favorable gener-
alization ability.

Our Approach
In ZSAR, suppose we have Ns labeled videos Ds =
{Vs,Ys} from a source dataset with S seen categories Ys,
where each video Vs ∈ Vs is associated with an action label
ys ∈ Ys. Similarly, there is a target dataset Dt = {Vt,Yt}
consisting of Nt videos from U unseen action classes Yu.
Here, Ys ∪ Yu = Y , Ys ∩ Yu = ∅. In addition, we have
an object set O with O objects, which serve as attributes
for describing the actions. The goal is to learn an objective
function minL(Ds,O) that can generalize to Dt.

Different from existing zero-shot methods which do not
explicitly consider the relationships among concepts with
structured knowledge graphs (Xu, Hospedales, and Gong
2016; Zhu et al. 2018) or only model label-label relation-
ships (Wang, Ye, and Gupta 2018), we design an end-to-
end framework consisting of two GCN branches: classifier

branch and instance branch, as shown in Figure 2. In the fol-
lowing of this section, we illustrate our proposed approach
for ZSAR in details. We first introduce the preliminaries of
our main building block, graph convolutional network (Kipf
and Welling 2016), which enables us to generalize CNN
to graphs. Then, we present the whole model including the
classifier branch and instance branch. Finally, the implemen-
tation details of our framework are demonstrated.

Graph Convolutional Networks
Graph convolutional networks aim to efficiently learn layer-
wise propagation operations that can be applied directly on
graphs. To keep this paper self-contained, we briefly intro-
duce GCNs proposed in (Kipf and Welling 2016) as follows.

Given an undirected graph with m nodes, a set of edges
between nodes, an adjacency matrix A ∈ Rm×m, and a de-
gree matrix Dii =

∑
j Aij . We consider a linear formu-

lation of graph convolution as the multiplication of a graph
signal X ∈ Rk×m (the column vector Xi ∈ Rk is the feature
representation at the ith node) with a filter W ∈ Rk×c :

Z = D̂−
1
2 ÂD̂−

1
2X>W, (1)

where Â = A+ I, I is the identity matrix. D̂ii =
∑

j Âij .
As a result, the input to a graph convolutional layer is k ×
m, and the output is a c × m matrix Z. Note that a GCN
can be built by stacking multiple graph convolutional layers
of the form of Eq. (1), each layer followed by a non-linear
operation (such as ReLU). Readers can refer to (Kipf and
Welling 2016) for more details and an in-depth discussion.

Two-stream GCN for ZSAR
To effectively use the explicit relationships among all the
concepts, we incorporate a knowledge graph into our pro-
posed method. Since we have S+U +O concepts (seen ac-
tion, unseen action, objects) associated with all the videos,
we build the knowledge graph with the same number of
nodes corresponding to these concepts. We use the term con-
cept and node interchangeably hereafter. The graph structure
is represented as an adjacency matrix, A. Figure 2 shows the
proposed two-stream GCN architecture consisting of both
classifier branch and instance branch.
Classifier Branch. This branch is an L-layer GCN where
each layer l takes as input the feature matrix (Zcls

l−1) gener-
ated from the previous layer and produces a feature matrix
Zcls

l . The input to this branch is a k × (S + U + O) matrix
Xcls which is the word-embedding vectors of all the con-
cepts. Here, k is the dimensionality of the word-embedding
vector. The output of the final layer is a d × (S + U + O)
matrix Wcls where d is the dimensionality of the classi-
fiers. Specifically, S classifiers Wcls

1:S are corresponding to
the seen action categories Ys, which are optimized using
the training data. During the training phase, another U un-
seen classifiers can be generalized from these seen ones via
GCN. Note that the remaining O object classifiers serve as
a bridge between seen and unseen action categories, which
will not be explicitly used in the training/inference phase.
Instance Branch. The branch aims to produce the attribute-
feature for video instances. Since video temporal informa-
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Figure 2: Our TS-GCN framework consists of both classifier branch and instance branch. We adopt a classification loss to
optimize the whole framework. KG mapping means organizing concept representations as nodes in the knowledge graph.

tion plays an essential role in video understanding (Tran et
al. 2015), this branch firstly conducts video temporal model-
ing via a self-attention module. Specifically, for a video V,
we first segment it into T equal-length segments {Vt}Tt=1.
The number of segments is fixed for all videos in order
to perform sequential parallelization in our framework. To
get the object scores of each segment, we follow (Mettes
and Snoek 2017) to employ a GoogLeNet model (Szegedy
et al. 2015), trained on a 12,988-category shuffle (Mettes,
Koelma, and Snoek 2016). Similar to (Jain et al. 2015), the
top K most relevant objects are selected for each action,
which results inO objects from the initial 12,988 categories.
For the frames in a segment, we average the object probabil-
ities at the softmax layer of this model. Therefore, the video
V is represented as an O × T matrix. To employ the tem-
poral information in this video, a self-attention operator is
performed on V as follows:

αs,t =
exp(f(Vt)

>g(Vs))∑T
t=1 exp(f(Vt)>g(Vs))

V̂s = γ

T∑
t=1

αs,th(Vt) +Vs

(2)

where Vt and Vs are the object scores of segment t and s.
f(·), g(·), h(·) are three 1 × 1 convolutional layers with O
filters. αs,t is the attention weight which indicates the con-
tribution of segment t to the representation of segment s. We
finally multiply the output of the attended representation by
a scale parameter γ and add back the input representation.
γ is initialized as 0. After the self-attention operator, we get
the representation of the video V̂, which is the same size
as V. V̂ and the word-embedding vectors of the object cate-
gories are used to generate the input to the followingL graph
convolutional layers, Xins ∈ Rk×O. Here, the oth column of
Xins is calculated as:

Xins
o =

T∑
t=1

V̂t,oso, (3)

where so is the word-embedding vector of the oth object.
Note that there are only O nodes in the instance branch,
which means this branch focuses on robust attribute-feature
generation of video instances. For the final-layer, the output
feature-matrix is Zins

L ∈ RO×d. d is the same as the dimen-
sionality of classifiers produced by the classifier branch.
Loss-function. For the S seen categories, we evaluate the
cross-entropy loss over all the labeled examples:

L = − 1

Ns

Ns∑
n=1

S∑
i=1

yin log(p
i
n), (4)

where yin is the ground-truth label (0 or 1) of the nth training
video with respect to the ith seen action. pin is the predicted
score with a softmax operation via the two branches:

pin =
exp(qin)∑S
i=1 exp(q

i
n)
,where qin = (Wcls

i )
> ∑

o∈N (i)

Zins
L,n,o,

(5)
whereWcls

i is the ith action classifier produced by the clas-
sifier branch. And Zins

L,n,o is the final feature vector gener-
ated from the instance branch, which indicates the oth object-
feature (in layer L) of the nth video. N (i) denotes the one-
hop object neighbors of the ith action in the knowledge
graph, which means we focus on strongly-related objects
for classifying a specific action. Empirically, we find that
using neighbors leads to faster convergence and higher per-
formance than using all the object features. In fact, with the
message-passing of GCNs, the useful information is prop-
agated and augmented to N (i) via the optimization of the
framework. Moreover, using only neighbors can avoid some
distraction in action classification.
Generalization to the Unseen actions. During training, we
are able to not only optimize the classifiers of the S seen
categories but also generalize to zero-shot categories via the
relationship modeling of the two-stream GCN. At test phase,
we use the generated classifiers of unseen categories (from
classifier branch) to perform classification on the object fea-
tures of test videos (from instance branch) as it in Eq. (5).
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Discussion. The proposed two-stream framework is suit-
able for zero-shot learning problem with attributes. We uti-
lize GCNs to transfer information between different con-
cepts. Concretely, both branches jointly model the relation-
ships between action-attribute, action-action, and attribute-
attribute in a knowledge space via knowledge graphs. As
a result, the learned classifiers (classifier branch) can ef-
fectively evaluate the generated attribute features (instance
branch) of each video in an end-to-end fashion. Because
of the joint learning with a single objective function, both
branches can co-adapt and cooperate. Here, a better classi-
fier can make the learned features more robust, and a better
feature can make the learned classifiers more accurate. In
this work, we utilize objects as attributes, which avoids the
cumbersome annotation. Note that other information such as
the visual representations of videos can also be added into
the framework, which is left for our future work.

Implementation Details
Knowledge Graph Building. We use the off-the-shelf Con-
ceptNet 5.5 (Speer, Chin, and Havasi 2017) to build our
knowledge graph, which connects words and phrases of nat-
ural language edges. Its knowledge is collected from many
sources including WordNet (Bond and Foster 2013), DBpe-
dia (Auer et al. 2007) et al. Following previous work (Fang
et al. 2017), we only employ its English subgraph with about
1.5 million nodes. We adopt string matching to map the con-
cepts to the nodes in ConceptNet. Since some names of con-
cepts have no corresponding nodes due to its rare appear-
ance, we replace these terms with common words that can
be found in ConceptNet. For instance, “skijet” is replaced
by “jetski” without losing the main semantic information.
The most important thing for building the knowledge graph
is to determine the relationships (edges, Aij) among these
nodes. Specifically, if both nodes can be found in Concept-
Net with one edge being connected, we use the weight cor-
responding to this edge as Aij . While a knowledge graph
may have multiple types of edges, we follow some pre-
vious methods (Marino, Salakhutdinov, and Gupta 2017;
Fang et al. 2017) to simplify it as a single matrix (adja-
cency matrix) to effectively represent the semantic consis-
tency and propagate information between nodes. Although
we can fine-tune the adjacency matrix A during training
like (Lee et al. 2018), we choose to fix it following (Marino,
Salakhutdinov, and Gupta 2017). The reasons are two-fold:
(1) fixing A is more computationally efficient than fine-
tuning it. (2) Fine-tuning A will change the intrinsic knowl-
edge structures in it, resulting in losing generalization abil-
ity. For each action, we select K = 100 objects with the
highest weights.
Word Embedding. Following (Mettes and Snoek 2017), we
utilize the skip-gram network of word2vec trained on the
metadata of the images and videos from the YFCC100M
dataset (Thomee et al. 2016). The trained model produces
a 500-dimensional representation for each word. To repre-
sent each concept in a fixed length, we simply average all
the word vectors (Mettes and Snoek 2017).
Model Details. Both GCNs in the two streams are composed
of 3 graph convolutional layers with output channel dimen-

sionality of 2048, 1024, 512, respectively. Note that for the
classifier stream, all the concepts are considered which re-
sults in an (S + U + O) × (S + U + O) adjacency matrix
Acls, while only O object concepts are employed for con-
structing the knowledge graph Ains ∈ RO×O in the instance
stream. Following (Wang, Ye, and Gupta 2018), we apply
the LeakyReLU as the activation function after each graph
convolutional layer. We also perform L2-Normalization on
the produced classifiers to regularize them into similar mag-
nitudes. For the self-attention module, the number of seg-
ments T is set to 16 by grid search over {8,16,32}. To
train our whole model, we use the ADAM (Kingma and
Ba 2014) optimizer with learning rate 0.0001 and weight
decay 0.0005. The model is trained for 5 epochs with a
batch size of 48. We implement our framework by Tensor-
flow (Abadi et al. 2016). The code for our framework can
be found in https://github.com/junyuGao/Zero-Shot-Action-
Recognition-with-Two-Stream-GCN.

Experiments
In this section, we evaluate the performance of the pro-
posed Two-Stream GCN (TS-GCN) method on three
widely-used video datasets: Olympic Sports (Niebles, Chen,
and Fei-Fei 2010), HMDB51 (Kuehne et al. 2011) and
UCF101 (Soomro, Zamir, and Shah 2012). The extensive re-
sults demonstrate the effectiveness of our method for large-
scale video classification. Finally, we conduct detailed com-
ponent analysis of our framework.

Experimental Setup

Datasets and Splits. The three popular datasets Olympic
Sports, HMDB51 and UCF101 contain 783, 6766 and 13320
videos with 16, 51, and 101 categories, respectively. To
compare our method with the state-of-the-arts, we follow
the 50/50 data splits proposed by (Xu, Hospedales, and
Gong 2017), i.e., videos of 50% categories are used for
model training and the other 50% categories are held unseen
for testing. We adopt the 50 independent splits generated
by (Xu, Hospedales, and Gong 2017) and report the aver-
age accuracy and standard deviation for experimental evalu-
ation.
Zero-shot Settings. Typically, there are two zero-shot set-
tings: inductive setting and transductive setting. The former
assumes that only the labeled videos from the seen cate-
gories are available during training while the latter can use
the unlabeled data of the unseen categories for model train-
ing. Specifically, for the transductive setting, we first choose
the top 2000 frequent objects in all videos, then determine
their relationships via the knowledge graph. In addition,
compared to traditional zero-shot settings where the seen
categories are absent at the test phase, the recently intro-
duced generalized setting takes both seen and unseen videos
as test data. Following (Xu, Hospedales, and Gong 2017;
Song et al. 2018), we adopt the generalized setting in a trans-
ductive manner. In this setting, we follow (Song et al. 2018)
to add an additional bias loss to alleviate the bias towards
seen categories.
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Table 1: ZSAR accuracies on the three benchmarks compared with state-of-the-art methods. Feature: Fisher Vectors (FV) or Bag
of Words (BoW) or Object scores(Ob); Label Embedding: Attribute (A) or Word Embeddings(W); ID: Inductive setting; TD:
Transductive setting. The average % accuracy± standard deviation is reported. Note that some methods such as Objects2Action,
ZSECOC, and UR adopt less than 50 splits for evaluation.

Method Reference Feature Label Embedding ID/TD Olympic Sports HMDB51 UCF101
DAP CVPR2009 FV A ID 45.4 ± 12.8 N/A 15.9 ± 1.2
IAP CVPR2009 FV A ID 42.3 ± 12.5 N/A 16.7 ± 1.1

HAA CVPR2011 FV A ID 46.1 ± 12.4 N/A 14.9 ± 0.8
SVE ICIP2015 BoW W ID N/A 13.0 ± 2.7 10.9 ± ± 1.5

ESZSL ICML2015 FV W ID 39.6 ± 9.6 18.5 ± 2.0 15.0 ± 1.3
SJE CVPR2015 FV W ID 28.6 ± 4.9 13.3 ± 2.4 9.9 ± 1.4
SJE CVPR2015 FV A ID 47.5 ± 14.8 N/A 12.0 ± 1.2

Objects2Action ICCV2015 Ob W ID N/A 15.6 30.3
MTE ECCV2016 FV W ID 44.3 ± 8.1 19.7 ± 1.6 15.8 ± 1.3

ZSECOC CVPR2017 FV W ID 59.8 ± 5.6 22.6 ± 1.2 15.1 ± 1.7
UR CVPR2018 FV W ID N/A 24.4 ± 1.6 17.5 ± 1.6

TS-GCN Ours Ob W ID 56.5 ± 6.6 23.2 ± 3.0 34.2 ± 3.1
SVE ICIP2015 BoW W TD 51.4 22.7 18.7
UDA ICCV2015 FV A TD N/A N/A 13.2 ± 1.9
UDA ICCV2015 FV A + W TD N/A N/A 14.0 ± 1.8
MTE ECCV2016 FV W TD 56.6 ± 7.7 24.8 ± 2.2 22.9 ± 3.3
UR CVPR2018 FV W TD N/A 28.9 ± 1.2 20.1 ± 1.4

TS-GCN Ours Ob W TD 59.9 ± 5.3 31.0 ± 3.2 41.6 ± 3.7

Table 2: Results on the generalized zero-shot setting.
Method Olympic HMDB51 UCF101

SJE 32.5±6.7 10.5±2.4 8.9±2.2
ConSE 37.6±9.9 15.4±2.8 12.7±2.2

GA 42.2±10.2 20.1±2.1 17.5±2.2
Objects2Action N/A N/A 30.3

Ours 50.2 ± 6.8 21.9 ± 3.7 33.4 ± 3.4

Comparison with State-of-the-Art Methods
Compared methods. We compare our method with state-
of-the-art methods. (1) Direct/Indirect Attribute Prediction
method (DAP, IAP) (Lampert, Nickisch, and Harmeling
2009). (2) Human Actions by Attributes (HAA) model (Liu,
Kuipers, and Savarese 2011), which is implemented by (Xu,
Hospedales, and Gong 2016). (3) Self-training method with
SVM and semantic Embedding (SVE) (Xu, Hospedales, and
Gong 2015). (4) Embarrassingly Simple Zero-Shot Learning
(ESZSL) (Romera-Paredes and Torr 2015). (5) Structured
Joint Embedding (SJE) (Akata et al. 2015). (6) Unsuper-
vised Domain Adaptation (UDA) (Kodirov et al. 2015). (7)
Multi-Task Embedding (MTE) (Xu, Hospedales, and Gong
2016). (8) Objects2Action (Jain et al. 2015), which also uti-
lize objects as attributes for ZSAR. (9) Zero-Shot with Error-
Correcting Output Codes (ZSECOC) (Qin et al. 2017). (10)
Universal Representation (UR) model (Zhu et al. 2018) in
inductive and transductive settings.
Inductive setting. The comparison results are illustrated
in Table 1. Overall, our proposed method performs favor-
ably against state-of-the-art methods. Compared with the re-
cent methods MTE, ZSECOC, and UR, the proposed TS-
GCN achieves an absolute gain of (18.4%, 19.1%, 16.7%)

on UCF101 dataset. We also get comparable results on
HMDB51 and Olympic Sports benchmark. Compared with
another method, Objects2Action,which also adopts objects
with semantic embeddings for ZSAR, the proposed TS-
GCN outperforms it by (3.9%, 7.6%) on UCF101 and
HMDB51, respectively. Note that the results of TS-GCN
and Objects2Action on HMDB51 are worse than those on
UCF101 while other methods (e.g., MTE and UR) have the
inverse results. This is because many action categories in
HMDB51 are not sensitive to objects, such as the actions
run, walk, sit, and stand. The results can be further im-
proved by adding low-level or deep visual features in our
framework. To verify this point, we design a baseline TS-
GCN+FV, which concatenates the final feature vector gener-
ated from the instance branch with the FV feature of a video
instance. By doing this, the classifiers are learned from both
attribute feature (the feature used in our proposed TS-GCN
method) and the visual feature (FV). Compared with the pro-
posed TS-GCN method, TS-GCN+FV gets an absolute gain
of 2.1% on UCF101 thanks to the additional visual features.
Transductive setting. Since this setting allows methods to
access the unlabeled data of unseen categories, the results
are better than those in the inductive setting, as shown in Ta-
ble 1. In this setting, we first select the most frequent ob-
jects in all videos, which help us remove rare and unreliable
objects in building knowledge graph. Among all the com-
petitors, the proposed TS-GCN gets better or comparable re-
sults. Specifically, compared with MTE and UR, our method
outperforms them by (18.7%, 6.2%) and (21.5%, 2.1%) on
the UCF101 and HMDB51 benchmarks, respectively. We
also perform the best on Olympic Sports.
Note that there are another two methods achieves top perfor-
mance. The Cross-Domain UR (CD-UR) method (Zhu et al.
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Figure 3: Comparison results among (a) different number of
selected objects. (b) different number of GCN layers.

2018) adopts a large-scale dataset ActivityNet as auxiliary
training data. CD-UR gets the mean accuracy of 42.5% on
UCF101, while our TS-GCN achieves comparable results
without using external training data. In addition, we out-
perform its non cross-domain version in both inductive and
transductive setting as shown in Table 1. Compared with an-
other recent method (Mettes and Snoek 2017) which de-
signs spatial-aware object embedding for ZSAR and gets
40.4% accuracy on UCF101, our method outperforms it by
1.2% with transductive setting. Note that this method em-
ploys an object detector to leverage the spatial information
of objects which can also improve the performance of our
method.
Generalized ZSAR. We follow (Mishra et al. 2018) to use
20% data from the seen classes for testing and the remain-
ing data for training. Since most methods do not report their
results in this setting, we adopt other two methods for com-
parison: Convex Semantic Embeddings (ConSE) (Norouzi
et al. 2013) and Generative Approach (GA) (Mishra et
al. 2018). Table 2 presents the favorable performance of
our TS-GCN method against the state-of-the-arts, which
achieves the accuracy of (50.2%, 21.9%, 33.4%) on the three
datasets. In addition, the recent spatial-aware object embed-
ding method (Mettes and Snoek 2017) gets 32.8% accuracy
on UCF101 dataset, which is lower than the proposed TS-
GCN. The results clearly show that TS-GCN has remarkable
generalization ability.

Further Remarks
To evaluate the effectiveness of our method, we perform an
in-depth analysis in this section. The experiments are con-
ducted in the transductive setting with 10 random splits.
How many objects should we use? The number of the
selected objects per action category controls the size of
the built knowledge graph. A larger K can make the built
knowledge graph more comprehensive since it uses more
objects to describe an action. However, too large K will re-
sult in high computational burden and may bring noisy to
the knowledge graph. As shown in Figure 3 (a), a moder-
ate value of K achieves the best performance. In addition,
we find that UCF101 and Olympic Sports need more objects
while HMDB51 achieves the best performance with K =
50. This is because some action categories in HMDB51 are
not object-sensitive.
The deeper, the better? We explore the importance of the

Table 3: Comparison results of different baseline methods.
Olympic HMDB51 UCF101

TS-GCN-GoogleNews 60.5 29.3 40.5
TS-GCN-w/o SelfAttention 57.1 27.2 39.6

OS-GCN 40.9 17.1 25.2
TS-GCN 59.2 30.8 42.8

depth of GCN in our framework. The performance of using
different numbers of layers on three benchmarks are shown
in Figure 3 (b). The 2-layer model has the output channel
numbers of 512 and 512. And we set the numbers as 2048,
1024, 1024, and 512 for the 4-layer model. Theoretically,
the deeper network will enhance the message propagation
between nodes thus improve the performance. However, we
observe that adding more layers above the 3-layer model
does not boost the accuracy of our framework significantly.
One potential reason might be that the number of the train-
ing data is not large-scale (from ∼ 700 videos in Olympic
Sports to ∼ 10, 000 videos in UCF101), which brings over-
fitting problem in the deeper networks.
How important is temporal modeling? We consider the in-
teraction among different video segments via a self-attention
mechanism. To show its effectiveness, we design a base-
line TS-GCN-w/o SelfAttention, which removes the self-
attention layer and simply averages the object scores of all
segments. Table 3 demonstrates that our proposed method
consistently outperforms the baseline.
Different Word Embeddings. To analyze the sensitivity
of our framework to different word embedding methods,
we test the performance on another Word2Vec embedding
method (Mikolov et al. 2013) trained on GoogleNews. Ta-
ble 3 shows the comparison between the proposed method
and the baseline TS-GCN-GoogleNews. Generally, the word
embedding trained on YFCC100M (Thomee et al. 2016)
achieves higher performance on two datasets. One potential
reason might be that using visual metadata is more suitable
for ZSAR tasks than training on Wikipedia or GoogleNews
data (Jain et al. 2015). Moreover, the performance gap be-
tween both methods is not very significant, which shows that
our framework is not sensitive to word embedding methods.
Is the Two-stream network redundant? We use the two-
stream framework to jointly model the relationships be-
tween action-attribute, action-action, and attribute-attribute.
To verify its necessity, we design a baseline One-Stream
GCN (OS-GCN) which only uses one branch of GCN to
model the relationships between all concepts. The input to
OS-GCN is the word embedding of all action categories and
the weighted attribute representation of each video instance
calculated from Eq. (3). Table 3 shows the effectiveness of
the two-stream design. The proposed TS-GCN outperforms
OS-GCN by (18.3%, 13.7%, 17.6%) on the three bench-
marks. Without the co-adaptation and co-operation between
the two branches, it is difficult to explicitly learn meaningful
classifiers and attribute features, which will result in training
dilemma and performance degradation.
Visualization of the Learned Classifiers and Features. We
perform t-SNE (Maaten and Hinton 2008) visualizations on
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Figure 4: t-SNE visualizations for (a) word embedding of
action categories. (b) classifiers generated by our TS-GCN
method (from classifier branch). (c) object features (pro-
duced by the instance branch) of 500 randomly chosen
videos from 20 unseen actions. Different categories are
shown in different colors. The experiment is conducted on
a random split of UCF101.

UCF101 experiments to show some characteristics of our
proposed TS-GCN. Figure 4 (a) and (b) plot both the word
embeddings and the classifiers (generated by the classifier
branch) of the seen and unseen action categories. It can be
seen that the word embeddings and the classifiers distributes
very differently , which indicates the proposed method can
leverage the relationships among concepts rather than only
implicit word embeddings. Moreover, the seen and unseen
classifiers are located more dispersedly than their word em-
beddings, which shows the good generalization ability of our
TS-GCN. To verify the discriminative power of the learned
object features from the instance branch, we randomly se-
lect 500 test videos from 25 unseen categories. Figure 4
(c) shows the distribution of the produced object features
with different color. We can find that the learned features
are effective since most samples in the same category are
dispersed in a close region.

Conclusions

In this paper, we propose an end-to-end ZSAR framework
with knowledge graphs to automatically generate classifiers
for new categories. By designing a two-stream GCN model
with a classifier branch and an instance branch, our method
is able to effectively model the relationships between action-
attribute, attribute-attribute, and action-action. In addition,
a self-attention mechanism is adopted to model the tempo-
ral information across video segments. Comprehensive per-
formance studies have been conducted by comparing our
framework with state-of-the-art methods over three bench-
mark datasets. The effectiveness of our method is evidenced
by its favorable performances compared with others. In the
future, we will consider richer knowledge information in our
framework such as the types of edges. We will also test other
types of methods for modeling the knowledge information in
ZSAR, such as GSNN and knowledge graph embedding. Be-
sides, motivated by the favorable performance of our frame-
work in video classification, we intend to apply this method
to other related tasks, such as zero-shot event detection and
multi-modality domain adaptation.
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