
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Distributed PageRank Computation: An Improved Theoretical Study

Siqiang Luo
The University of Hong Kong

Pokfulam, Hong Kong
sqluo@cs.hku.hk

Abstract

PageRank is a classic measure that effectively evaluates the
node importance in large graphs, and has been applied in
numerous applications ranging from data mining, Web al-
gorithms, recommendation systems, load balancing, search,
and identifying connectivity structures. Computing PageR-
ank for large graphs is challenging and this has motivated
the studies of distributed algorithms to compute PageRank.
Previously, little works have been spent on the distributed
PageRank algorithms with provably desired complexity and
accuracy. Given a graph with n nodes and if we model the
distributed computation model as the well-known congested
clique model, the state-of-the-art algorithm takes O(

√
logn)

communication rounds to approximate the PageRank value
of each node in G, with a probability at least 1 − 1

n
. In

this paper, we present improved distributed algorithms for
computing PageRank. Particularly, our algorithm performs
O(log log n) rounds (a significant improvement compared
with O(

√
logn) rounds) to approximate the PageRank val-

ues with a probability at least 1 − 1
n

. Moreover, under a
reasonable assumption, our algorithm also reduces the edge
bandwidth (i.e., the maximum communication message size
that can be exchanged through an edge during a commu-
nication round) by a O(logn) factor compared with the
state-of-the-art algorithm. Finally, we show that our algo-
rithm can be adapted to efficiently compute another variant of
PageRank, i.e., the batch one-hop Personalized PageRanks, in
O(log log n) communication rounds.

Introduction
Given a graph G of n nodes, and a probability α ∈ (0, 1),
the PageRank vector of a graph is the stationary distribution
π of the following specific type of random walk (Sarma,
Gollapudi, and Panigrahy 2011): at each step, with proba-
bility α the walk restarts from a node chosen uniformly at
random; with the remaining probability 1 − α, the walker
jumps to a randomly chosen neighbor v of the current node.
PageRank has emerged as a very powerful measure of rel-
ative importance of nodes in a network. It was first pro-
posed as the pioneering idea for Google’s search engine
for document ranking. Since then, PageRank has been ap-
plied in extensive applications, such as data mining, dis-
tributed networks, Web algorithms, and recommendation

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

systems (Sarma et al. 2015; Florescu and Caragea 2017;
Fujiwara et al. 2013; Ahmadi, Kersting, and Sanner 2011;
Neumann, Ahmadi, and Kersting 2011; Ponzetto and Strube
2007).

There have been a number of works on distributed PageR-
ank algorithms (Guo et al. 2017; Sarma et al. 2015; Zhu,
Ye, and Li 2005). Among them, the algorithm presented
in (Sarma et al. 2015) has the best complexity under a fully-
distributed model which is a kind of congested clique model.
It models the graph G with n independent nodes such that
each node communicates with each other over a complete
network (i.e., the clique on the n nodes) in order to com-
pute some function of their inputs. Each pair of nodes can
communicate at most b bits (which is also known as the
edge bandwidth). The computation is performed in syn-
chronous rounds. The algorithm in (Sarma et al. 2015) fin-
ishes computing PageRank of an undirected n-node graph
G in O(

√
log n) rounds with a probability at least 1 − 1

n ,
whereas the edge bandwidth is b = O(log3 n) bits.

The congested clique model (definitions may be slightly
different in different papers) has received tremendous in-
terest in recently years, and has been studied extensively
on many important problems (e.g., (Jurdziński and Now-
icki 2018; Drucker, Kuhn, and Oshman 2014; Hegeman et
al. 2015; Ghaffari and Parter 2016; Hegeman, Pemmaraju,
and Sardeshmukh 2014; Lenzen 2013)). One attractiveness
of the congested clique model is that the model is funda-
mental to other distributed models. In particular, an effi-
cient algorithm based on the congested clique model can
be translated into an efficient algorithm on other distributed
models such as the k-machine model (Klauck et al. 2015;
Luo et al. 2014) and MapReduce model (Hegeman and Pem-
maraju 2015; Dean and Ghemawat 2008; Luo et al. 2012).

Our Contributions. In this paper, we present improved
distributed PageRank algorithms based on the congested
clique model 1. Particularly, given an undirected connected
graph G of n nodes, we show that with a probability at least
1− 1

n , our algorithm finishes computing approximate PageR-
ank vector in O(log log n) rounds and the edge bandwidth
is O(log2 n) bits (under a reasonable degree assumption).
This significantly improves over the algorithm presented

1In this paper we consider the model that allows each node v to
store O(d(v) · polylogn) bits, where d(v) is the degree of v.

4496

in (Sarma et al. 2015), which costs O(
√

log n) rounds, en-
tailing an edge bandwidth of O(log3 n) bits.

We show that our algorithm can be adapted to compute
another variant of the PageRank, i.e., batch one-hop per-
sonalized PageRanks (BPPR) (Luo et al. 2019) (The def-
inition can be referred to Section “Extensions to BPPR”).
With at least 1− 1

n probability, our algorithm handles BPPR
in O(log log n) rounds and the edge bandwidth is O(log2 n)
bits (under a reasonable degree assumption). To the best of
our knowledge, this is the first distributed algorithm that
handles the BPPR in o(log n) rounds.

Preliminaries
PageRank based on α-Decay Random Walk. Given a
graph G(V,E), a reset probability α ∈ (0, 1), the PageRank
(PR) value of a node v, denoted by π(v), is the stationary
probability of the following α-decay random walk: a random
walk is chosen from a node of G uniformly at random, such
that at each step of the traversal, it terminates with proba-
bility α and, with the other 1 − α probability, moves to a
randomly selected out-neighbor of the current node. For any
node v, the PageRank of v is denoted by π(v). In this paper,
we focus on undirected graph G of n nodes.

Congested Clique Model. The congested clique model
is one of the most well-known models in distributed graph
computation. Given a connected n-node undirected graph
G(V,E), a congested clique model models the nodes in G
as independent nodes who communicate with each other via
message passings. A node u can send a message to a node
v if u knows the identity (ID) of v. The computation is per-
formed in synchronous rounds, such that the messages that
have been sent in round i would be received at the beginning
of the round i + 1. It defines a bandwidth b. At each round,
each pair of nodes (u, v) can exchange at most messages of
b bits. In this paper, we assume initially each node knows the
IDs of its neighbors in G.

There are several measures for the efficiency of a dis-
tributed algorithm based on the congested clique model.
Following existing works (e.g., (Hegeman and Pemmaraju
2015; Sarma et al. 2015)), we focus on two measures of
an algorithm in this paper: 1) the round complexity, or the
number of rounds (asymptotically) that the algorithm takes
to finish; 2) the edge bandwidth b. Based on these measures,
Algorithm A is considered to be better than algorithm B, if
A has a smaller round complexity as well as an edge band-
width. Note that, typically the local computation within each
node is for free, following the assumptions of the standard
congested clique model.

Monte Carlo (MC). The Monte Carlo method gener-
ates a number, Θ(log n), of random walks from every node,
and π(v) is estimated by the probability of a walk ends
at node v. To implement the idea in the congested clique
model, initially, each node generates Θ(log n) random walk
tokens. A node forwards each token with probability 1 − α
and terminates the token with probability α. From Lemma
2.2 of (Das Sarma, Nanongkai, and Pandurangan 2009) we
know that these steps can be implemented in O(log2 n)
rounds in the congested clique model with a probability at

least 1 − 1
n . It can be also shown that it consumes an edge

bandwidth of O(log2 n) bits.
Length-L Random Walk. The length-L random walk is

a random walk without decay, but with a fixed length L.

Related Works
In this section we review the closest existing works on dis-
tributed computation under the congested clique model. Dis-
tributed PageRank computation is studied in (Sarma et al.
2015) and it is the closest literature to this paper. The algo-
rithm presented in (Sarma et al. 2015) improves the round
complexity for PageRank computation in undirected graphs
over a naive baseline approach. The main idea is to first gen-
erate a number of short walks of length O(

√
log n) from

each node. Then, these generated short walks are stitched
together, by at most O(

√
log n) steps, to compose random

walks of length O(log n). It can be shown that the algorithm
takes O(

√
log n) rounds to finish with high probability 2,

and the edge bandwidth is O(log3 n) bits. To the best of
our knowledge, this is the current best theoretical result for
PageRank computation in congested clique model.

There are a number of existing algorithms about round
complexity of computing a length-L random walk, and
fruitful results have been presented for this problem.
In (Das Sarma, Nanongkai, and Pandurangan 2009), the au-
thors give a round complexity of Õ(L

2
3D

1
3) (where D is

the diameter of the network) for computing a single random
walk of length L, which is among the first algorithms that
improve over the baseline linear round complexity O(L).
This round complexity is further improved in (Das Sarma
et al. 2010) to achieve Õ(

√
LD) rounds, In this algorithm,

the total number of messages passed is Ω(m
√
L), where

m is the number of edges in the graph. Later, the authors
of (Sarma, Molla, and Pandurangan 2012) improve the re-
quired number of messages to O(L), with the same round
complexity guarantee as Õ(

√
LD). While the results on the

distributed computation of a single random walk is closely
related to the distributed PageRank algorithms, it is not
clear whether the same round complexity (with reasonable
bandwidth) can be achieved, as computing PageRank re-
quires multiple random walks to be conducted simultane-
ously. There can be pressing challenges in extending the
algorithm for computing a single random walk to compute
multiple random walks in the congested clique model. The
reason is that, when multiple random walks are processed at
the same time, the message complexity (or bandwidth) can
be significantly enlarged, resulting in an unacceptable band-
width.

To conclude, little works have been done in distributed
PageRank algorithms based on the congested clique model
besides the works (Sarma et al. 2015). While there are other
relevant literatures that address distributed random walks,
they can not be easily adapted to an efficient distributed
PageRank algorithm based on the congested clique model.

2“With high probability” means with a probability at least 1 −
1
nc

for c ≥ 1.

4497

Our Solution
In this section we present our improved algorithm. We first
present an algorithm called the Radar-Push (RP) algorithm,
that improves MC in terms of the edge bandwidth. We then
present a further improved algorithm by recursively using
the RP algorithm, called the Multiple-round RP (MRP) al-
gorithm. MRP improves the round complexity significantly.
Finally, we show how the MRP algorithm can be employed
to compute PageRanks.

Basic Idea of Radar Push
The MC algorithm has an edge bandwidth as high as
O(log2 n) bits 3. The high edge bandwidth of MC is due to
the randomness of the random walk. Particularly, given that
a random walk would extend the walk to a randomly chosen
neighboring node of the current node, there is a probabil-
ity that certain nodes be visited by many walks at the same
time. These nodes therefore become the hubs of the walks
and the hubs have to communicate with their neighbors fre-
quently, resulting in a high edge bandwidth. To address this
issue, we need to avoid such hubs and make the generation
of the random walks more controllable. Based on this idea,
we propose the Radar-Push (RP in short) algorithm such
that, instead of randomly extending a walk to a neighboring
node, it conducts a deterministic push to all the neighboring
nodes. For ease of presentation, let us consider a unit task as
follows:
Unit Task: Generate for each node v ∈ V a number d(v) of
length-L random walks 4, where d(v) is the degree of node
v in G.

Note that, the purpose of introducing the unit task is two-
fold: 1) It is much easier to present our idea of RP if to han-
dle the unit task. 2) Computing the unit task can be closely
related to computing the PageRank (as will be introduced in
the following sections). We will explain the Radar-Push al-
gorithm based on this simple task, and also introduce how
the computation of PageRank reduces to this simple task.

Let (s, t, i) be a walk label to describe the computation
state of a length-i walk that starts from node s and currently
resides at node t. The main idea of the RP algorithm is that,
when a certain random walk (residing at node v) is extended
one step further, we do not select a neighbor node of v uni-
formly at random to extend the walk. Instead, we collect all
the random walks which currently reside at v, and manually
assign their next nodes as evenly as possible. Interestingly,
this will not hurt the ending node distribution of a random
walk (i.e., the probability of a node becoming the ending
node of a walk), and hence the correctness of computing
PageRank is guaranteed. The detailed procedure can be re-
ferred to the following algorithm.
Algorithm 1.
• Round 0. For any node v and each neighbor u of v, v

initializes a random walk with the label (v, u, 1), and node
v sends the label as a message to node u.
3It can be simply derived based on Lemma 4.1 of (Sarma et al.

2015)
4Precisely, we are only interested in the ending node of a walk.

We call a walk is generated if we know its ending node.

• Round i (1 ≤ i ≤ L − 1). At the beginning of Round
i each node v receives k = d(v) walk labels (will ex-
plain shortly why such number of walk labels received)
which are {(s1, v, i), (s2, v, i), . . . , (sk, v, i)}. We shuf-
fle the labels and increase their lengths by 1, forming a
new label list represented as {(s∗1, v, i + 1), (s∗2, v, i +
1), . . . , (s∗k, v, i + 1)}. Note that {s∗1, . . . , s∗k} is a per-
mutation of {s1, . . . , sk}. We change the second element
in each of the labels to one of v′s neighbors, such that
each neighbor appears exactly once (this can be done be-
cause we have exactly d(v) labels). For example, if v′s
neighbors are {u1, u2, . . . , ud(v)}. Then the labels be-
come {(s∗1, u1, i+ 1), (s∗2, u2, i+ 1), . . . , (s∗k, uk, i+ 1)}.
Node v sends the labels to the nodes indicated by their
corresponding second elements in the labels, respectively.

• Round L. Each label (s, v, L) that is received corre-
sponds to a generation of a length-L random walk from
s to v.

• Backtrack (optional). In some cases, we require node s
to collect the random walks that are sourced at node s.
This can be simply done by sending the walk label back
to the source node of the walk.

The above algorithm can be understood as a propagate
algorithm that for each node v, there are d(v) walks start
at v, and walks are propagated to immediate neighboring
nodes, as evenly as possible. There are several interesting
designs of the algorithm.

First, we show that the estimator based on RP is not looser
than directly using Monte-Carlo (MC), which samples d(v)
random walks from node v. There is a crucial difference be-
tween RP and MC: in MC, suppose we need to extend p
walks from node v to v′s neighbors, we select p times for
p neighbors uniformly at random and extend the walks to
the neighbors respectively. In RP, the walks are extended to
v′s neighbor evenly. This results in the fact that each node
v will receive exactly d(v) walks (under the condition that
G is undirected). To explain, at each round there is exactly
one message sent through an edge and therefore exactly one
message received through the edge. The difference made
here is crucial to an improved bandwidth. It means that,
at each round each edge conveys at most O(1) labels (and
therefore O(log n) bits as an integer in [1, n] costs O(log n)
bits). Whereas in MC, the message received by each node
can be much worse. Consider that in the worst case, all the
neighbors of v may send all their messages to v, resulting in
a message bottleneck. This results in an unsatisfactory edge
bandwidth in MC.

Second, the random walks in RP become dependent with
each other, making the correctness analysis much more dif-
ficult than MC. To illustrate, consider that node s has two
neighbors u1 and u2 and we need to extend two walks from
s to its neighbors (see Figure 1). In MC, the two walks are
independent of each other, i.e., which neighbor the first walk
extends to does not affect the other walk. As a result, there
are 4 cases shown in Figure 1, each would happen with prob-
ability 1/4. However, in RP, if the first walk extends to u1,
then the second walk must extend to u2, making them depen-
dent of each other. Then there are only 2 cases (Figure 1 bot-

4498

First walk

Second walk

MC
(4 cases)

Radar Push
(2 cases)

u1 u1 u1 u1

u1 u1

u2 u2 u2 u2

u2 u2

s s
u2

s s

s s

Figure 1: Differences between MC and Radar Push (RP)
when extending a random walk.

tom) each with a probability 1/2. The side-effect of the walk
dependency is that, it invalidates the analysis that is used in
MC. Therefore we need new analysis to show that the RP
gives an unbiased estimator and the estimate does not be-
come looser. To give a formal analysis, we define P̃r(s, v, L)
as the RP’s estimator of Pr(s, v, L), the probability that a
walk which starts at node swill reach node v at theL-th step,
and P̃rmc(s, v, L) is that given by MC. We give the follow-
ing lemmas to complete the correctness proofs of PR. Partic-
ularly, Lemma 1 tells that using RP will not affect the end-
ing node distribution of a random walk, whereas Lemma 2
shows that using RP can even gain a smaller variance for its
estimator, compared with that of the MC method.

Lemma 1. The P̃r(s, v, L) is an unbiased estimator of
Pr(s, v, L).

Proof. We prove by mathematical induction on walk length
L. When L = 1. Based on Radar-Push, for each neigh-
bor v of s, we have E[P̃r(s, v, 1)] = 1

d(s) = Pr(s, v, 1).
Lemma holds. Assume that the lemma holds when L = i,
we consider the case when L = i + 1. Consider any fixed
node v, given the randomness of the shuffle, for any neigh-
boring node u there is 1

d(u) probability that a walk is ex-

tended to v. Therefore, for any s and v, E[P̃r(s, v, i +

1)] = E[
∑
u∈N(v) P̃r(s, u, i)· 1

d(u)] =
∑
u∈N(v) Pr(s, u, i)·

1
d(u) = Pr(s, v, i+1). The lemma also holds whenL = i+1.
By induction, the lemma holds for all L ≥ 1.

Lemma 2. Var[P̃ r(s, v, L)] ≤ Var[P̃ rmc(s, v, L)].

Proof. Let x(s, v, i) be the number of random walks from s
that ends at node v at step i for the RP algorithm, whereas
xmc(s, v, i) be that for the MC algorithm. Our goal is to
show that

Var[x(s, v, L)] ≤ Var[xmc(s, v, L)]

Let the neighbors of v be {u1, . . . , ud(v)}. Conditioned
on x(s, ui, L − 1) for all i, the probability that v receives a
random walk from ui is x(s, ui, L− 1)/d(ui). Thus

x(s, v, L) =
∑

1≤i≤d(v)

yi

where yi = 1 with probability x(s, ui, L − 1)/d(ui), and
yi = 0 otherwise.

It is easy to show that the conditional variance

Var[x(s, v, L)|x(s, u1, L− 1), . . . , x(s, ud(v), L− 1)]

=
∑

1≤i≤d(v)

Var[yi]

=
∑

1≤i≤d(v)

E[y2i]− (E[yi])
2

=
∑

1≤i≤d(v)

x(s, ui, L− 1)

d(ui)
− x(s, ui, L− 1)2

(d(ui))2
(1)

Taking over the expectation of the variables x(s, ui, L−1)
for all i, we have

Var[x(s, v, L)]

=
∑

1≤i≤d(v)

E[x(s, ui, L− 1)]

d(ui)
− E[x(s, ui, L− 1)2]

(d(ui))2
(2)

On the other hand, conditioned on xmc(s, ui, L − 1), for
all i = 1, 2, . . . , d(v), we can express

xmc(s, v, L) =
∑

1≤i≤d(v)

∑
1≤j≤xmc(s,ui,L−1)

zij

where zij = 1 with probability 1/d(ui) and zij = 0 other-
wise. Given that Var[zij] = 1/d(ui)− 1/(d(ui))

2, and that
the variables zij are independent, we have the conditional
variance

Var[xmc(s, v, L)|{xmc(s, ui, L− 1)}i≤d(v)]

=
∑

1≤i≤d(v)

xmc(s, ui, L− 1)

d(ui)
− xmc(s, ui, L− 1)

(d(ui))2
(3)

Taking over expectation of xmc(s, ui, L− 1), for all i, we
have

Var[xmc(s, v, L)]

=
∑

1≤i≤d(v)

E[xmc(s, ui, L− 1)]

d(ui)
− E[xmc(s, ui, L− 1)]

(d(ui))2

=
∑

1≤i≤d(v)

E[x(s, ui, L− 1)]

d(ui)
− E[x(s, ui, L− 1)]

(d(ui))2

≥
∑

1≤i≤d(v)

E[x(s, ui, L− 1)]

d(ui)
− E[x(s, ui, L− 1)2]

(d(ui))2

=Var[x(s, v, L)] (4)

where the inequality holds since x(s, ui, L−1) are integers.

4499

To conclude, the RP algorithm handles the unit task by
O(L) rounds, entailing an edge bandwidth of O(log n) bits
per round (note that in each round each edge only conveys
O(1) integers as messages, and therefore O(log n) bits edge
bandwidth.). This improves over the MC algorithm, which
has the same round complexity but with O(log2 n) bits edge
bandwidth.

Multi-Round Radar Push (MRP)
When L = 2r (for integer r ≥ 1), we show that recur-
sively using the RP algorithm effectively reduces the round
complexity to O(logL). The idea is to first compute enough
walks of length 2, and then stitch two such walks to gener-
ate a longer walk of length 4 = 2 · 2. Recursively, finally the
walks of length 2r can be stitched by two walks of length
2r−1. To implement this procedure, we consider the follow-
ing r batches of computation in the congested cliques. In
Batch 1 we first generate 2r−1 · d(v) length-2 walks from
node v, for v ∈ V , by using the RP algorithm 2r−1 times.
The i-th invocation correspondingly generates the length-2
sub-walks, which can be regarded as the sub-walks (of the
final length-L walks) containing the i-th jump and i + 1-th
jump for i = 1, 3, . . . , 2r − 1. We use step-{a,b} walk to
refer to the sub-walks from the a-th jump to the b-th jump.
In Batch 2 (if L ≥ 4) we stitch the short walks generated
in Batch 1, such that the step-{i, i + 1} walks and step-
{i + 2, i + 3} walks are stitched, for i = 1, 5, . . . , 2r − 3.
This generates length-4 walks, which are denoted by step-
{i, i+3}walks. Note that, such walk concatenations are pos-
sible because the RP algorithm done by the previous batch
guarantees that each node v has d(v) step-{i, i + 1} walks
that end at v, and d(v) step-{i+ 2, i+ 3} walks that start at
v (and this property similarly applies to later batches). The
stitches of the walks at each node are similar in spirit to the
Radar Push in that the incoming walks of node v are stitched
to a random permutation of the outgoing walks. Recursively,
in Batch i (1 ≤ i ≤ r) we generate length-2i walks, and
using r(= O(logL)) batches we generate all the length-L
walks.
Algorithm 2.
• Batch 1. Generate 2r−1 · d(v) length-2 walks from node
v, for v ∈ V , by using the RP algorithm for 2r−1 times.
The i-th invocation correspondingly generates the i-th and
i+ 1-th steps (i.e., the i-th and i+ 1-th jumps) in each of
the random walks, for 1 ≤ i ≤ 2r−1. We call them step-
{i, i+ 1} walks, for i = 1, 3, . . . , 2r − 1.

• Batch i (2 ≤ i ≤ r). In the previous batch we have
generated length-2i−1 walks, which are the step-{1, 2i−1}
walks, step-{2i−1 + 1, 2i} walks, . . . , step-{2r − 2i−1 +
1, 2r} walks. We stitch two length-2i−1 walks together to
generate length-2i short walks, which are the step-{1, 2i}
walks, step-{2i+1, 2i+1}walks, . . . , step-{2r−2i+1, 2r}
walks.
Remarks. The above MRP algorithm can be understood

as recursively connecting two shorter walks to longer walks.
Consider that a walk W2 is connected to a walk W1, we call
the ending node of the W1 (which is also the starting node
of W2) the connector.

Complexity. Each batch costs O(1) rounds. In total
there are O(logL) batches and therefore the algorithm
takes O(logL) rounds. As for bandwidth, we use a lemma
in (Lenzen 2013) for the analysis.

Lemma 3. (Lenzen 2013) Assume that each node of the con-
gested clique is given a set of O(n) messages (each of size
O(log n) bits) with fixed destination nodes. Moreover, each
node is the destination of O(n) messages from other nodes.
Then, it is possible to deliver all messages inO(1) rounds of
the congested clique with edge bandwidth of O(log n) bits.

Lemma 3 tells that, Batch 1 in Algorithm 2 can be per-
formed in O(1) rounds with an edge bandwidth of O(L ·
log n) bits, as each node v receives or sends at most O(L ·
d(v)) = O(L · n) messages in each round. Note that later
batches do not have a per-edge message communication
cost higher than Batch 1. Therefore, Algorithm 2 runs in
O(logL) rounds with edge bandwidth of O(L · log n) bits.

MRP for 2r-Bounded Unit Task
In PageRank computation it requires that every node gen-
erates a random walk, with its length independently drawn
from a geometric distribution Geom(α). Therefore, we need
to further consider the following task for the preparation of
computing PageRank.
2r-Bounded Unit Task: Given L = 2r for an integer
r > 0, each node v generates d(v) random walks of lengths
Lv1, . . . L

v
d(v), such that Lvi ≤ L for 1 ≤ i ≤ d(v).

Note that, the aforementioned Algorithm 2 is efficient in
generating fixed length random walks from each node. Fur-
ther extending this algorithm to handle the 2r-Bounded Unit
Task would give us a challenge: how to modify the MRP al-
gorithm so that we can extract the ending node of a length-
L∗ walk (L∗ ≤ L) in O(logL) rounds?

To address the challenge, our main idea is to conduct a bi-
section search to locate the ending node of a length-L∗ walk.
To see this, observe that each walk generated by MRP can
be organized by the hierarchy illustrated by Figure 2. From
Figure 2 we see that the walk is recursively divided by the
connector and two walks. Note that it is simple to include
the connector into the walk label, such that we have four
elements in a walk label, respectively indicating the start-
ing node, ending node, the connector as well as the walk
length. For a walk label W , we respectively use W.start,
W.end, W.connect and W.len to refer to its four elements.
With such an expanded walk label, we can conduct a binary
search on the hierarchy from tree-note 0 to locate the tree
node that contains the sub-walk containing the desired end-
ing node. For example, suppose we would like to extract the
sub-walk of length 5 for the walk in tree-node 0 in Figure 2.
Based on the binary search, the search first goes from tree-
node 0 to tree-node 2, as 5 is larger than half length of the
current random walk. When the search goes to tree-node 2,
the current walk length is updated to 8/2 = 4 and the cur-
rent searching length is updated to 5−8/2 = 1, meaning we
would like to search a sub-walk of length 1 from the current
random walk. Similarly, the search further goes to tree-node
5 as the current searching length (which is 1) is not larger
than half length of the current walk. And then we update

4500

Figure 2: The hierarchical structure of a walk in MRP (con-
nector in green).

the current random walk length to be 4/2 = 2 and current
searching length remains to be 1. The search goes on and fi-
nally it goes to tree-node 11, which correctly identifies node
F as the ending node of the length-5 sub-walk. Each drilling
down of the hierarchy would cost one round in the congested
clique model, and therefore it requires onlyO(logL) rounds
(as the height of the hierarchy isO(logL)) in total to retrieve
a length L∗-walk where L∗ ≤ L. The algorithm is described
as follows.
Algorithm 3.

• Use Algorithm 2 to generate d(v) length-L random walks
that are started at v, ∀v ∈ V . We denote the walks sourced
at v by W1, . . . ,Wd(v).

• We subtract the walk Wi (1 ≤ i ≤ d(v)) a sub-walk of
length Lvi (with the same source node) by the following
method:
• Round 0. Consider each walk Wi = (v, u, c, L),

which is a length-L walk from node v to node u with con-
nector c. The current walk length cur walk len = L, and
the current searching length cur search len = Lvi . Node
u, the holder of Wi, would either send messages to the
connector c or itself or node v, depending on the follow-
ing three conditions (in a way similar to the binary search
in the hierarchy of the current random walk.)

[Case 1.] If cur search len < cur walk len/2,
then node u sends a sub-walk message, which is a mes-
sage that facilitates the sub-walk search, to the connec-
tor c, such that the sub-walk message is represented
by (v, u, v, c, cur walk len/2, Lvi). Essentially, this sub-
walk message tells node c that we need to get a sub-walk
of length Lvi (the last element in the message), and the
current walk length should be updated to cur walk len/2
(the fifth element in the message). The other elements in
the sub-walk message have the following meaning: the
first two elements record the start/end node of the orig-
inal walk of length L; the next two elements record the
start/end node of the current sub-walk.

[Case 2.] If cur search len > cur walk len/2,
then node u sends a sub-walk message to node
u itself, with the sub-walk message represented as
(v, u, c, u, cur walk len/2, Lvi − cur walk len/2).

[Case 3.] If cur search len = cur walk len/2,
send a message to node v saying that a walk ending at
node c is generated.
• Round j (0 < j ≤ r). For each received sub-walk

message (s1, t1, s2, t2, cur walk len, cur search len)
from round j − 1, we do the following two steps.

[Step 1 of Round j.] In this step we aim to identify
the current sub-walk from s2 to t2. This can be done
by searching the walk labels and the connection infor-
mation 5 holding at node s2. The identified sub-walk W
must satisfy: 1) W.start = s2; 2) W.end = t2; 3)
W.len = cur walk len.

[Step 2 of Round j.] In this step we conduct the
same binary search as that in Round 0 based on the iden-
tified walk W .
Edge Bandwidth. Note that the additional sub-walk ex-

traction steps included in Algorithm 3 does not affect the
edge bandwidth. To see this, observe that during each round
the connector would not receive more sub-walk messages
than the walks (of the same lengths) it has stitched. That
means, during the sub-walk extraction, each connector will
send/receive at most the number of messages that it has
sent/received in Algorithm 2. Therefore, the edge bandwidth
remains the same as Algorithm 2, which is O(L log n) bits
for the unit task.

Computing PageRank using MRP
In this section we show that the MRP algorithm (Algorithm
3) can be used to efficiently compute PageRank. We first
give the number of random walks that need to be sampled
using MC (see Lemma 5).
Lemma 4 (Chernoff Bound). LetX =

∑m
i=1Xi be the sum

of m independent random variables, where Xi = 1 with
probability pi and Xi = 0 with probability 1 − pi. Let µ =
E[X]. Then for all 1 > δ > 0,

Pr[|X − µ| ≥ δµ] ≤ 2e−
δ2µ
3

Let π(u) be the PageRank of node u. Fix an error bound
ε ∈ (0, 1), and a failure probability pf , we show that with
probability at least 1− pf , we can estimate the PageRank of
each node with a multiplicative error ε.

Suppose we initiate k · d(s) random walks from each
node s with RP, where k is an integer, and estimate π(u)

by π̂(u) = 1
n

∑
s∈V

c(s)
k·d(s) , where c(s) is the number of ran-

dom walks that start at s and end at u. By Lemma 1, π̂(u) is
an unbiased estimator of π(u), i.e., E[π̂(u)] = π(u).

5We assume that each node stores the walk labels of incoming
walks and outgoing walks, as well as how they are connected to
generate longer walks. Since each node conducts O(L) walk con-
nections and the information for each connection costs a storage
of O(d(v) logn) bits for a node v, it requires each node v to store
O(d(v)L logn) bits.

4501

Lemma 5. For k =
3 log(2/pf)

ε2α , we have

Pr[|π̂(u)− π(u)| > ε · π(u)] ≤ pf .
Proof. Observe that the k ·d(s) random walks initiated from
node s can be grouped into k sets, each of size d(s). We only
require that the random walks within the same group are sent
to different neighbors of s. Hence initiating k · d(s) random
walks from node s is equivalent to repeating k independent
MRP, in which each node s initiates d(s) random walks.

Let ni be the number of random walks that end at node
v, in the i-th run of MRP. In Lemma 1, we have shown that
ni
n is an unbiased estimator of π(v); in Lemma 2, we have

shown that the variable has a better concentration than the
estimator given by the MC model. Let ñi be the estimator
given under the MC model, which is the summation of n
random variables xj , each with E[xj] = π(v). Then we have

Pr
[∣∣∣ 1k∑k

i=1
ni
n − π(v)

∣∣∣ > επ(v)
]

≤Pr
[∣∣∣ 1k∑k

i=1
ñi
n − π(v)

∣∣∣ > επ(v)
]

= Pr
[∣∣∣∑kn

i=1 xi − kn · π(v)
∣∣∣ > εkn · π(v)

]
≤2 · exp(ε

2

3 · kn · π(v))

≤2 · exp(
ε2α

3
· k) = pf . (due to π(v) ≥ α

n
)

In Lemma 5, let pf = 1
n , then k = 3 log(2n)

ε2α . Therefore,
one can sample O(logn

ε2α · d(u)) walks from each node u to
achieve the approximation guarantee given by Equation 5.

As pointed out in (Sarma et al. 2015), sampling α-
decay random walks is equivalent to generating a random
walk of length L where L follows a geometric distribu-
tion Geom(α). That means, to compute the PageRank, we
can perform O(d(v) · logn

ε2α) = O(d(v) log n) times ran-
dom walks from each node v, where the length of the walks
are respectively drawn from Geom(α) independently. Note
that, the length of the random walk with a length larger
than 4 log 1

1−α
n == 4 logn

log 1
1−α

= O(log n) has probability

(1− α)
4 log 1

1−α
n

= 1
n4 .

In total we need to perform O(
∑
v∈V d(v) · lognε2α) =

O(n2 log n) random walks. Hence, by union bound, the case
that there are at least one random walks with length larger
than 4 log n would happen with probability at most

O

(
1

n4
· n2 log n

)
<

1

n

when n is enough large.
Therefore, with a probability at least 1 − 1

n , every ran-
dom walk has a length at most 4 log 1

1−α
n = O(log n). To

compute the PageRank, therefore, we can invoke O(logn
ε2α)

runs of MRP (Algorithm 3), each runs with walk length L =
O(log n) to generate d(v) random walks from each node v.
As such, there are O(logn

ε2α) instances of MRP and that they
are merged together for concurrently processing in the same

rounds. This ensures that it only requires O(log log n) 6

rounds to finish with a probability at least 1− 1
n . Since MRP

entails a O(L · log n) = O(log2 n) bits edge bandwidth,
invoking O(logn

ε2α) MRP algorithms at the same time will re-
sult in an edge bandwidth of O(log3 n) bits. Next, we show
that this edge bandwidth can be improved to O(log2 n), if
we assume that the maximum degree dm is at most n

logn .
To explain, if dm ≤ n

logn , then in the current processing

of the O(logn
ε2α) instances of MRP algorithm, in each round

each node v sends/receives O(logn
ε2α · d(v)L) = O(logn

ε2α ·
n

lognL) = O(nL) messages, i.e., O(n log n) messages with
high probability. By Lemma 3, with high probability, the op-
erations can be guaranteed to be finished in O(1) rounds,
with an edge bandwidth ofO(log2 n) bits. To conclude, with
a probability at least 1− 1

n , the MRP algorithm computes the
PageRank inO(log log n) rounds with an edge bandwidth of
O(log2 n) bits in the congested clique model. This algorithm
is summarized as follows.
Algorithm 4 (Compute PageRank).

• Invoking O(logn
ε2α) instances of Algorithm 3 simultane-

ously. All together, each node v generates Nv = O(logn
ε2α ·

d(v)) random walks.
• Estimate π(v) by 1

|V | ·
∑

walk from s to v
1
Ns

.

Extensions to BPPR
Very recently, there is another variant of PageRank, called
BPPR, that finds interesting applications in recommendation
systems (Luo et al. 2019). BPPR is defined based on the
Personalized PageRank (PPR), which is defined as follows.
Definition 1 (PPR). Given a pair of nodes (s, t), the PPR
value of node t with respect to s, denoted by π(s, t), is de-
fined as the probability that an α-decay random walk from s
would terminate at t.

BPPR (Batch One-Hop Personalized PageRanks) is de-
fined as follows.
Definition 2 (BPPR). Given a threshold δ, an error bound ε,
and a failure probability pf , an approximate batch one-hop
PPR query returns an estimated PPR π̂(s, v) for every node
pair (s, v) such that s ∈ V and v is an out-neighbor of s,
such that for all π(s, v) ≥ δ,

|π(s, v)− π̂(s, v)| ≤ ε · π(s, v) (5)

holds with a probability at least 1− pf .
We show that our algorithm can be applied to compute

BPPR very naturally and efficiently. To explain, in (Luo et
al. 2019) there is a lemma (summarized as Lemma 6) says
that it can effectively approximate the BPPR by letting each
node v generate O(d(v) log n) α-decay random walks.

Lemma 6. Let node s generate ω = O(d(s) lognα·(1−α)ε2) random
walks. If there are c(v) random walks end at a neighboring

6Careful readers may notice that we omit the factors about ε and
α in complexities as we treat them as given constants. However, it
is fairly convenient to add those factors back to the complexities.

4502

node v of s, then π̃(s, v) = c(v)
ω is an unbiased estimator

of π(s, v), such that Equation 5 holds with a probability at
least 1− 1

n , for δ = 0.

Lemma 6 interestingly points out that, to compute BPPR,
the number of random walks started at node v should be pro-
portional to d(v). Precisely, the number of walks started at
node v is O(d(v) log n). This naturally suits the unit tasks
performed by MRP, and it is easy to see that computing
BPPR requires the same complexities as those of computing
the PageRank, which is, with a probability at least 1− 1

n , the
algorithm finishes inO(log log n) rounds with an edge band-
width ofO(log2 n) under the condition that dm ≤ n

logn . The
algorithm is described as follows.
Algorithm 5 (Compute BPPR).

• Invoking O(logn
ε2α(1−α)) runs of Algorithm 3 simulta-

neously. All together, each node v generates Nv =
O(logn

ε2α(1−α) · d(v)) random walks.

• Estimate π(s, v) by
∑

walk from s to v
1
Ns

.

Conclusion
In this paper we present improved distributed PageRank al-
gorithms based on a kind of congested clique model. Partic-
ularly, given an undirected connected graph G of n nodes,
we propose an algorithm, called MRP, that finishes com-
puting approximate PageRank vector inO(log log n) rounds
with a probability at least 1− 1

n . This significantly improves
over the state-of-the-art approaches. We also present solu-
tions to optimize the edge bandwidth as well as to extend
the techniques for computing the BPPR, which is another
variant of batch Personalized PageRanks that has found ap-
plications in practice.

Acknowledgements
I sincerely thank Dr. Xiaowei Wu for his contributions on
Lemma 2 and Lemma 5, and his comments that greatly im-
proved the manuscript.

References
Ahmadi, B.; Kersting, K.; and Sanner, S. 2011. Multi-
evidence lifted message passing, with application to pager-
ank and the kalman filter. In IJCAI, 1152–1158.
Das Sarma, A.; Nanongkai, D.; Pandurangan, G.; and Tetali,
P. 2010. Efficient distributed random walks with applica-
tions. In PODC, 201–210.
Das Sarma, A.; Nanongkai, D.; and Pandurangan, G. 2009.
Fast distributed random walks. In PODS, 161–170.
Dean, J., and Ghemawat, S. 2008. Mapreduce: simplified
data processing on large clusters. Communications of the
ACM 51(1):107–113.
Drucker, A.; Kuhn, F.; and Oshman, R. 2014. On the power
of the congested clique model. In PODC, 367–376.
Florescu, C., and Caragea, C. 2017. A position-biased
pagerank algorithm for keyphrase extraction. In AAAI,
4923–4924.

Fujiwara, Y.; Nakatsuji, M.; Shiokawa, H.; Mishima, T.; and
Onizuka, M. 2013. Fast and exact top-k algorithm for pager-
ank. In AAAI, 1106–1112.
Ghaffari, M., and Parter, M. 2016. MST in log-star rounds
of congested clique. In PODC, 19–28.
Guo, T.; Cao, X.; Cong, G.; Lu, J.; and Lin, X. 2017. Dis-
tributed algorithms on exact personalized pagerank. In SIG-
MOD, 479–494.
Hegeman, J. W., and Pemmaraju, S. V. 2015. Lessons
from the congested clique applied to mapreduce. Theoret-
ical Computer Science 608:268–281.
Hegeman, J. W.; Pandurangan, G.; Pemmaraju, S. V.;
Sardeshmukh, V. B.; and Scquizzato, M. 2015. Toward opti-
mal bounds in the congested clique: Graph connectivity and
MST. In PODC, 91–100.
Hegeman, J. W.; Pemmaraju, S. V.; and Sardeshmukh, V. B.
2014. Near-constant-time distributed algorithms on a con-
gested clique. In DISC, 514–530.
Jurdziński, T., and Nowicki, K. 2018. MST in O(1) rounds
of congested clique. In SODA, 2620–2632.
Klauck, H.; Nanongkai, D.; Pandurangan, G.; and Robinson,
P. 2015. Distributed computation of large-scale graph prob-
lems. In SODA, 391–410.
Lenzen, C. 2013. Optimal deterministic routing and sorting
on the congested clique. In PODC, 42–50.
Luo, S.; Luo, Y.; Zhou, S.; Cong, G.; and Guan, J. 2012.
Disks: a system for distributed spatial group keyword search
on road networks. PVLDB 5(12):1966–1969.
Luo, S.; Luo, Y.; Zhou, S.; Cong, G.; Guan, J.; and Yong,
Z. 2014. Distributed spatial keyword querying on road net-
works. In EDBT, 235–246.
Luo, S.; Xiao, X.; Lin, W.; and Kao, B. 2019. Efficient batch
one-hop personalized pageranks. In ICDE.
Neumann, M.; Ahmadi, B.; and Kersting, K. 2011. Markov
logic sets: Towards lifted information retrieval using pager-
ank and label propagation. In AAAI, 447–452.
Ponzetto, S. P., and Strube, M. 2007. Deriving a large scale
taxonomy from wikipedia. In AAAI, volume 7, 1440–1445.
Sarma, A. D.; Molla, A. R.; Pandurangan, G.; and Upfal, E.
2015. Fast distributed pagerank computation. Theoretical
Computer Science 561:113–121.
Sarma, A. D.; Gollapudi, S.; and Panigrahy, R. 2011. Es-
timating pagerank on graph streams. Journal of the ACM
58(3):13:1–13:19.
Sarma, A. D.; Molla, A. R.; and Pandurangan, G. 2012.
Near-optimal random walk sampling in distributed net-
works. arXiv preprint arXiv:1201.1363.
Zhu, Y.; Ye, S.; and Li, X. 2005. Distributed pagerank
computation based on iterative aggregation-disaggregation
methods. In CIKM, 578–585.

4503

