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Abstract
There is an accumulating evidence in the literature that stabil-
ity of learning algorithms is a key characteristic that permits
a learning algorithm to generalize. Despite various insightful
results in this direction, there seems to be an overlooked di-
chotomy in the type of stability-based generalization bounds
we have in the literature. On one hand, the literature seems
to suggest that exponential generalization bounds for the es-
timated risk, which are optimal, can be only obtained through
stringent, distribution independent and computationally in-
tractable notions of stability such as uniform stability. On the
other hand, it seems that weaker notions of stability such as
hypothesis stability, although it is distribution dependent and
more amenable to computation, can only yield polynomial
generalization bounds for the estimated risk, which are sub-
optimal. In this paper, we address the gap between these two
regimes of results. In particular, the main question we address
here is whether it is possible to derive exponential generaliza-
tion bounds for the estimated risk using a notion of stability
that is computationally tractable and distribution dependent,
but weaker than uniform stability. Using recent advances in
concentration inequalities, and using a notion of stability that
is weaker than uniform stability but distribution dependent
and amenable to computation, we derive an exponential tail
bound for the concentration of the estimated risk of a hypoth-
esis returned by a general learning rule, where the estimated
risk is expressed in terms of the deleted estimate. Interest-
ingly, we note that our final bound has similarities to previous
exponential generalization bounds for the deleted estimate, in
particular, the result of Bousquet and Elisseeff (2002) for the
regression case.

1 Introduction
There is an accumulating evidence in the literature that sta-
bility of learning algorithm is a key characteristic that per-
mits a learning algorithm to generalize. The earliest result
in this regard is due to Devroye and Wagner (1979a) and
Devroye and Wagner (1979b) where they derive distribution
free polynomial generalization bounds for the concentration
of the leave-one-out estimate, or the deleted estimate, for
the expected error of some nonparametric learning rules. Al-
though the notion of stability was not explicitly mentioned
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in their work, the polynomial bounds of Devroye and Wag-
ner (1979b) for instance relied on the so called hypothesis
stability; a name that is due to Kearns and Ron (1999). Vari-
ous results for different estimates followed the works of De-
vroye and Wagner (1979b). Lugosi and Pawlak (1994) ex-
tended the work of Devroye and Wagner (1979b) to smooth
estimates of the error developed in terms of a posteriori dis-
tribution for the deleted estimate. Holden (1996) derived
sanity-check bounds for the deleted estimate and the k folds
cross–validation (KFCV) estimate using hypothesis stabil-
ity for few algorithms in the realizable setting. Kearns and
Ron (1999), using the notion of error stability, give sanity-
check bounds for the deleted estimate but for more general
classes of learning rules (in the unrealizable or agnostic set-
ting). More recently, Kale, Kumar, and Vassilvitskii (2011)
show that, using a weak notion of stability known as mean-
square stability, the averaging taking place in the KFCV es-
timation procedure can reduce the variance of the general-
ization error; i.e. the averaging in the KFCV estimation pro-
cedure can improve the concentration of the estimated error
around the expected error of the hypothesis returned by the
learning rule.

For general learning rules and for regularized empiri-
cal risk minimization learning rules, Bousquet and Elisse-
eff (2002) using the notion of uniform stability, extended
the work of Lugosi and Pawlak (1994) and derived exponen-
tial generalization bounds for the resubstitution estimate and
the deleted estimate. Further generalization results based on
uniform stability (or one of its variants) were obtained in the
works of Kutin and Niyogi; Rakhlin, Mukherjee, and Pog-
gio; Mukherjee et al.; Shalev-Shwartz et al. (2002; 2005;
2006; 2010), to name but a few. These results were extended
in various directions such as deriving new results for ran-
domized learning algorithms (Elisseeff, Evgeniou, and Pon-
til 2005), transfer and meta learning (Maurer 2005), adap-
tive data analysis (Bassily et al. 2016), stochastic gradient
descent (Hardt, Recht, and Singer 2016), structured predic-
tion (London, Huang, and Getoor 2016), multi-task learn-
ing (Zhang 2015), ranking algorithms (Agarwal and Niyogi
2009), as well as in understanding the trade-off between
sparsity and stability (Xu, Caramanis, and Mannor 2012).

Despite these recent advances, and excluding sanity-
check bounds, there seems to be an overlooked dichotomy in
the type of stability-based generalization results. In particu-
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lar, the results on stability and generalization can be grouped
into two regimes:

1. Polynomial generalization bounds, which are sub-optimal
and based on hypothesis stability for instance.

2. Exponential generalization bounds, which are optimal
and based on uniform stability (and its variants).

Comparing uniform stability to other notions of stability
in the literature, uniform stability is the strongest notion of
stability in the sense that it implies all other notions of sta-
bility such as hypothesis stability, error stability, and mean-
square stability (Bousquet and Elisseeff 2002). A learning
rule is uniformly stable if the change in the prediction loss
is small, no matter how the input to the learning rule is se-
lected, no matter what value is used as a test example, and no
matter which example is removed (or replaced) in the input.

Despite the strength of uniform stability, it is unpleas-
antly restrictive. First, unlike other notions of stability (e.g.
L2 and L1 stability), uniform stability is a stringent no-
tion of stability that is insensitive to the data-generating
distribution. This is problematic since it removes the pos-
sibility of studying large classes of learning rules, or even
classes of problems. One particularly striking example is
binary classification with the zero-one loss. For this prob-
lem, as it was already noted by (Bousquet and Elisseeff
2002), no trivial algorithm can be uniformly β-stable with
β < 1. Another example when uniform stability fails is re-
gression with unbounded losses and response variables. Sec-
ond, as noted earlier, uniform stability is distribution-free
and is thus unsuitable for studying finer details of learn-
ing algorithms. Computation is another aspect that distin-
guishes uniform stability from other notions of stability.
While hypothesis, error, and mean-square stability can be
estimated using a finite sample, uniform stability is com-
putationally intractable which is problematic if it is desired
to obtain empirical high probability generalization bounds
for the expected risk in the spirit of empirical Bernstein
bounds for instance (Audibert, Munos, and Szepesvári 2007;
Mnih, Szepesvári, and Audibert 2008).

In this research, we are particularly motivated by these
previous observations. That is, on the one hand, the litera-
ture seems to suggest that exponential generalization bounds
for the estimated risk, which are optimal, can be only ob-
tained through stringent, distribution independent, and com-
putationally intractable notions of stability such as uniform
stability (and its variants). On the other hand, it seems that
weaker notions of stability such as hypothesis and mean-
square stability, although they are distribution dependent
and more amenable to computation, can only yield polyno-
mial generalization bounds for the estimated risk, which are
sub-optimal.

The chief purpose of this paper is to address the gap be-
tween these two regimes of results. In particular, the main
question we address here is whether it is possible to derive
exponential generalization bounds for the estimated risk us-
ing a notion of stability that is computationally tractable,
distribution dependent, but weaker than uniform stability. In
this work, we show that using recent advances in exponen-
tial concentration inequalities, and using a notion of stability

that is distribution dependent, amenable to computation, but
weaker than uniform stability, we derive in Theorem 4 an
exponential tail bound for the concentration of the estimated
risk of a hypothesis returned by a general learning rule,
where the estimated risk is developed in terms of the deleted
estimate. Interestingly, we note that our final bound has sim-
ilarities to previous exponential generalization bounds for
the deleted estimate, in particular the result of Bousquet and
Elisseeff (2002) for the regression case.

Two main ingredients that allowed us to bridge the gap
between these two regimes of results; (i) recent advances
in exponential concentration inequalities, in particular the
exponential Efron-Stein inequality due to Boucheron, Lu-
gosi, and Massart (2003) and Boucheron, Lugosi, and Mas-
sart (2013); and (ii) the elegant and smart notion of Lq sta-
bility due to Celisse and Guedj (2016) which is distribu-
tion dependent, computationally tractable, but weaker than
uniform stability, and generalizes hypothesis stability and
mean-square stability to higher order moments.

2 Setup and Notations
We consider learning in Vapnik’s framework for risk min-
imization with bounded losses (Vapnik 1995): A learning
problem is specified by the triplet (H,X , `), where H,X
are sets and ` : H × X → [0, 1]. The set H is called the
hypothesis space, X is called the instance space, and ` is
called the loss function. The loss `(h, x) indicates how well
a hypothesis h explains (or fits) an instance x ∈ X . The
learning problem is defined as follows. A learner A sees a
sample in the form of a sequence Sn = (X1, . . . , Xn) ∈ Xn
where (Xi)i is sampled in an independent and identically
distributed (i.i.d) fashion from some unknown distribution
P and returns a hypothesis ĥn = A(Sn) ∈ H based solely
on X1, . . . , Xn.1 The goal of the learner is to pick hypothe-
ses with a small risk (defined shortly).

We assume that a learner is able to process samples (or
sequences) of different cardinality. Hence, a learner will be
identified with a map A : ∪nXn → H. We only consider
deterministic learning rules in this work; the extension to
randomizing learning rules is left for future work.

Given a distribution P on X , the risk of a fixed hypothe-
sis h ∈ H is defined to be R(h,P) = E [` (h,X)], where
X ∼ P . Since Sn is a random quantity, so are A(Sn) and
R(A(Sn),P), the latter of which can be also written as
E[` (A(Sn), X) |Sn], where X ∼ P is independent of Sn.
Ideal learners keep the risk R(A(Sn),P) of the hypothesis
returned by A “small” for a wide range of distributions P .

q-Norm of Random Variables: In the sequel, we will heav-
ily rely on the q-norm for random variables (RVs). For a real
RV X , and for 1 ≤ q ≤ +∞, the q-norm of X is defined
as: ‖X‖q

.
= (E [|X|q])1/q , and ‖X‖∞ is the essential supre-

mum of |X|. Note that for 1 ≤ q ≤ p ≤ +∞, these norms
satisfy ‖·‖q ≤ ‖·‖p.

1The set X is thus measurable. In general, to minimize clutter,
all functions are assumed to be measurable as needed.
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2.1 Risk Estimators
The generalization bounds on the risk usually center on
some point-estimate of the random riskR(A(Sn),P). Many
estimators are based on calculating the sample mean of
losses in one form or another. For any fixed hypothesis
h ∈ H and dataset Sn, the sample mean of losses of h
against Sn, also known as the empirical risk of h on Sn,
is given by

R̂(h,Sn) =
1

n

n∑
i=1

` (h,Xi) . (1)

Plugging A(Sn) into R̂(·,Sn) we get the resubstitution
(RES) estimate, or the training error (Devroye and Wagner
1979b): R̂RES (A,Sn) = R̂ (A (Sn) ,Sn). The resubstitution
estimate is often overly “optimistic”, i.e., it underestimates
the actual risk R(A(Sn),P). The deleted (DEL) estimate
defined as

R̂DEL (A,Sn) =
1

n

n∑
i=1

`
(
A(S−in ), Xi

)
, (2)

is a common alternative to the resubstitution estimate
that aims to correct for this optimism. Here, S−in =
(X1, . . . , Xi−1, Xi+1, . . . , Xn), i.e., it is the sequence Sn
with example Xi removed. Since E[`

(
A(S−in ), Xi

)
] =

Rn−1(A,P), then E[R̂DEL(A,Sn)] = Rn−1(A,P). When
the latter is close to Rn(A,P), i.e., A is “stable”, the
deleted estimate may be a good alternative to the resubsti-
tution estimate (Devroye, Györfi, and Lugosi 1996). How-
ever, due to the potentially strong correlations between ele-
ments of (`(A(S−in ), Xi))i, the variance of the deleted esti-
mate may be significantly higher than that of the resubstitu-
tion estimate due to the overly redundant information con-
tent between `(A(S−in ), Xi) and `(A(S−jn ), Xj) for i 6= j.
The main goal of this work is to develop a high probabil-
ity upper bound on the absolute deviation |R̂DEL (A,Sn) −
R (A(Sn),P) | in terms of the “stability” of A, which is de-
fined next.

3 Notions of Stability for Learning Rules
In the following, and due to space limitations, we go briefly
over two notions of algorithmic stability that will be needed
in our context; namely the uniform stability due to Bousquet
and Elisseeff (2002), and the Lq stability due to Celisse and
Guedj (2016).

Definition 1 (Uniform Stability). Algorithm A has uniform
stability βu w.r.t the loss function ` if the following holds:
∀ Sn ∈ Xn, ∀i ∈ {1, . . . , n} ,

‖` (A(Sn), X)− `
(
A(S−in ), X

)
‖∞ ≤ βu ,

where X ∼P is independent of Sn.

Definition 2 (Lq Stability Coefficient). Let Sn be a se-
quence of n i.i.d random variables (RVs) drawn from X ac-
cording to P . Let A be a deterministic learning rule, and `
be a loss function as defined in Section 2. For q ≥ 1, the

Lq stability coefficient of A w.r.t `, P , and n is denoted by
βq(A, `,P, n) and is defined as

βqq (A, `,P, n) = E
[∣∣` (A(Sn), X)− `

(
A(S−1n ), X

)∣∣q] ,
where X ∼P is independent of Sn.

In our definition of Lq stability coefficients, we simply
assume that it is always the first example that is removed.
This is because the examples in Sn are i.i.d, and hence the
joint distribution of (A(Sn), A(S−1n ), X) does not depend
on which example is removed from Sn. Note that quite a
few previous works restrict notions of algorithmic stability
to learning rules that are permutation invariant, or “sym-
metric”; i.e. learning rules that yield identical output under
different permutations of the examples presented to them
(Rogers and Wagner 1978; Devroye and Wagner 1979b;
Bousquet and Elisseeff 2002; Shalev-Shwartz et al. 2010).
For the same reason of why it does not matter which ex-
amples are removed, it does not matter whether the learning
rule is symmetric or not.

Since often A, `, P are fixed, we will drop them from the
notation and will just use βqq (n).2 Note that when q = 1 and
q = 2, Lq stability reduces to hypothesis stability (Devroye
and Wagner 1979b) and MS stability (Kale, Kumar, and Vas-
silvitskii 2011), respectively, which were introduced earlier
in the literature. Note also that uniform stability implies Lq
stability for every q ≥ 1. The Lq stability coefficient quan-
tifies the variation of the loss of A induced by removing one
example from the training set. This is known as a removal
type notion of stability and is in accordance with the pre-
vious notions of stability introduced earlier. The difference
betweenLq stability and earlier notions of stability is thatLq
stability is in terms of the higher order moments of the RV
|` (A(Sn), X) − `

(
A(S−1n ), X

)
|. The reason we care about

higher moments is because we are interested in controlling
the tail behavior of the deleted estimate. As will be shown,
the tail behavior of the deleted estimate is also dependent
on the tail behavior of RVs characterizing stability. As is
well-known, knowledge of the higher moments of a RV is
equivalent to knowledge of the tail behavior of the RV. As
such, controlling the higher order moments provides more
information on the distribution of this RV than simply con-
sidering first order (L1) and second order (L2) moments.

From the definition of q–Norm of a RV in Section 2, ob-
serve that the stability coefficient βq(n)

.
= βq(A, `,P, n) is

in fact a q–norm for the RV: ` (A(Sn), X)− `
(
A(S−1n ), X

)
.

From the properties of q-norms, we have that for 1 ≤ q ≤
p ≤ +∞, it holds that βq(n) ≤ βp(n); i.e. βq(n) is an in-
creasing function of q. Furthermore, we expect that βq(n)
has the following trend as a function of n
Assumption 1. For a fixed q > 0, βq(n) is a decreasing
function of n.

4 The Exponential Efron-Stein Inequality
The main tool for our work is an extension of the celebrated
Efron-Stein inequality (Efron and Stein 1981; Steele 1986),

2This should not be mistaken to taking a supremum over any
subset of the dropped quantities.
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to a stronger version known as the exponential Efron-Stein
inequality (Boucheron, Lugosi, and Massart 2003). We start
by introducing the Efron-Stein inequality and some varia-
tions. Let f : Xn 7−→ R be a real-valued function of n vari-
ables, whereX is a measurable space. LetX1, . . . , Xn be in-
dependent (not necessarily identically distributed) RVs tak-
ing values in X and define the RV Z = f(X1, . . . , Xn) ≡
f(Sn). Define the shorthand for the conditional expectation
E−iZ

.
= E

[
Z|S−in

]
, where S−in is defined as in the previ-

ous section. Informally, E−iZ “integrates” Z over Xi and
also over any other source of randomness in Z except S−in .
For every i = 1, . . . , n, let X ′i be an independent copy from
Xi, and let Z ′i = f(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn). The

Efron-Stein inequality bounds the variance of Z as shown in
the following theorem.

Theorem 1 (Efron-Stein Inequality – Replacement Case).
Let V =

∑n
i=1(Z − E−iZ)2. Under the settings described

in this section, it holds that

V[Z] ≤ EV = 1
2

n∑
i=1

E[(Z − Z ′i)2].

The proof of Theorem 1 can be found in (Boucheron, Lu-
gosi, and Massart 2004). Another variant of the Efron-Stein
inequality that is more useful for our context, is concerned
with the removal of one example from Sn. To state the result,
let fi : Xn−1 7−→ R, for 1 ≤ i ≤ n, be an arbitrary mea-
surable function, and define the RV Z−i = fi(S−in ). Then,
the Efron-Stein inequality can be also stated in the following
interesting form (Boucheron, Lugosi, and Massart 2004).

Corollary 1 (Efron-Stein Inequality – Removal Case). As-
sume that E−i[Z−i] exists for all 1 ≤ i ≤ n, and let
VDEL =

∑n
i=1 (Z − Z−i)2. Then it holds that

V[Z] ≤ EV ≤ EVDEL . (3)

4.1 An Exponential Efron-Stein Inequality
The work of Boucheron, Lugosi, and Massart (2003) has fo-
cused on controlling the tail of general functions of inde-
pendent RVs in terms of the tail behavior of Efron-Stein
variance-like terms such as V and VDEL, as well as other
terms known as V + and V −. The variance-like terms V ,
V + and V − measure the sensitivity of a function of n in-
dependent RVs w.r.t the replacement of one RV from the n
independent RVs. The term VDEL on the other hand, mea-
sures the sensitivity of a function of n independent RVs w.r.t
the removal of one RV from the n independent RVs. In this
work, we favor VDEL over the other terms since it is more
suitable for our choice of stability coefficient (the Lq stabil-
ity), which is also a removal version. The removal version
of stability is preferred as it is more natural in the learning
context where one is given a fixed sample. In particular, the
removal version seems to be a better fit when it comes to
empirically estimating stability (which is an interesting fu-
ture direction), where working with the replacement version
will need extra data, or extra assumptions.

The tail of a RV is often controlled through bounding
the logarithm of the moment generating function (MGF) of

the RV. This is known as the cumulant generating function
(CGF) of the RV and is defined as

ψZ(λ)
.
= logE [exp(λZ)] , (4)

where λ ∈ dom(ψZ) ⊂ R and belongs to a suitable neigh-
borhood of zero. The main result of (Boucheron, Lugosi,
and Massart 2003) bounds ψZ in terms of the MGF for V ,
V + and V −, but not in terms of the MGF for VDEL. Since
we are particularly interested in the RV VDEL, the following
theorem bounds the tail of ψZ in terms of the MGF for VDEL.
The proof is given in the Appendix.

Theorem 2. Let Z, VDEL be defined as in Corollary 1 and
assume that |Z − Z−i| ≤ 1 almost surely for all i. For all
θ > 0, such that λ ∈ (0, 1], θλ < 1, and EeλVDEL < ∞, the
following holds

logE [exp (λ(Z − EZ))] ≤ λθ
(1−λθ) logE

[
exp

(
λVDEL
θ

)]
.

(5)

Theorem 2 states that the CGF of the centered RV Z−EZ
is upper bounded by the CGF of the RV VDEL. Hence, when
VDEL behaves “nicely”, the tail of Z can be controlled. The
value of θ in the upper bound is a free parameter that can be
optimized to give the tightest bound.

For Theorem 2 to be useful in our context, further con-
trol is required to upper bound the tail of the RV VDEL. Our
approach to control the tail of VDEL will be, again, through
its CGF. In particular, we aim to show that when VDEL is a
sub-gamma RV (defined shortly) we can obtain a high prob-
ability tail bound on the deviation of the RV Z. The obtained
tail bound will be instrumental in deriving the exponential
tail bound for the deleted estimate.

4.2 Sub-Gamma Random Variables
We follow here the notation of (Boucheron, Lugosi, and
Massart 2013). A real valued centered RV X is said to be
sub-gamma on the right tail with variance factor v and scale
parameter c if for every λ such that 0 < λ < 1/c, the fol-
lowing holds

ψX(λ) ≤ λ2v

2(1− cλ)
. (6)

This is denoted by X ∈ Γ+(v, c). Similarly, X is said to
be a sub-gamma RV on the left tail with variance factor v
and scale parameter c if −X ∈ Γ+(v, c). This is denoted as
X ∈ Γ−(v, c). Finally, X is simply a sub-gamma RV with
variance factor v and scale parameter c if bothX ∈ Γ+(v, c)
and X ∈ Γ−(v, c). This is denoted by X ∈ Γ(v, c).

The sub-gamma property can be characterized in terms of
moments conditions or tail bounds. In particular, if a cen-
tered RV X ∈ Γ(v, c), then for every t > 0,

P
[
X >

√
2vt+ ct

]
∨ P

[
−X >

√
2vt+ ct

]
≤ e−t , (7)

where a ∨ b = max(a, b). The following theorem from
(Boucheron, Lugosi, and Massart 2013) characterizes this
notion more precisely.
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Theorem 3. Let X be a centered RV. If for some v > 0,
c ≥ 0, and for every t > 0,

P
[
X >

√
2vt+ ct

]
∨ P

[
−X >

√
2vt+ ct

]
≤ e−t , (8)

then for every integer q ≥ 1

‖X‖2q ≤ (q!Aq + (2q)!B2q)1/2q

≤
√

16.8qv ∨ 9.6qc ≤ 10(
√
qv ∨ qc) ,

where A = 8v, B = 4c. Conversely, if for some positive
constants u and w, for any integer q ≥ 1,

‖X‖2q ≤
√
qu ∨ qw ,

then X ∈ Γ(v, c) with v = 4(1.1u + 0.53w2) and c =
1.46w, and therefore (8) also holds.

The reader may notice that Theorem 3 is slightly different
than the version in the book of Boucheron, Lugosi, and Mas-
sart (2013). Our extension is based on simple (and standard)
calculations that are merely for convenience with respect to
our purpose.

4.3 An Exponential Tail Bound for Z
In this section we assume that VDEL−EVDEL is a sub-gamma
RV with variance factor v > 0, scale parameter c ≥ 0, λ >
0, and cλ < 1. Hence, from inequality (6) it holds that

ψVDEL−EVDEL(λ) = logE [exp(λ(VDEL − EVDEL))]

≤ 1
2λ

2v(1− cλ)−1 .

The sub-gamma property of VDEL provides the desired con-
trol on its tail. That is, after arranging the terms of the above
inequality, the CGF of VDEL which controls the tail of VDEL,
is upper bounded by the deterministic quantities: EVDEL, the
variance v, and the scale parameter c.

It is possible now to use the sub-gamma property of VDEL

in the result of the exponential Efron-Stein inequality in
Theorem 2. In particular, the following lemma gives an ex-
ponential tail bound on the deviation of a function of inde-
pendent RVs, i.e. Z = f(X1, . . . , Xn), in terms of EVDEL,
the variance factor v, and the scale parameter c. This lemma
will be our main tool to derive the exponential tail bound on
the DEL estimate. The proof is given in the Appendix.

Lemma 1. Let Z, Z−i, VDEL be as in Corollary 1. If VDEL −
EVDEL is a sub-gamma RV with variance parameter v > 0
and scale parameter c ≥ 0, then for any δ ∈ (0, 1), a > 0,
with probability 1− δ,

|Z − EZ| ≤ 2
3
(ac+ 1/a) log

(
1
δ

)
+ 2

√
(EVDEL + a2v/2) log

(
1
δ

)
.

Parameter a is a free parameter that can be optimized to
give the tightest possible bound. In particular, a can be cho-
sen to provide the appropriate scaling for the RV Z such that
the bound goes to zero as fast as possible. A typical choice
of a would be the inverse standard deviation of Z.

5 Main Result
In this section we derive the main result of this paper; an
exponential tail bound for the concentration of the estimated
risk, developed in terms of the deleted estimate, using the
weak, distribution dependent and computationally tractable
notion of Lq stability from Definition 2, and the Exponential
Efron-Stein inequality from Lemma 1. In particular, we are
interested in the concentration of the following RV

|R̂DEL(A,Sn)−R(A(Sn),P)| .
To bound this RV, we decompose into three terms∣∣∣R̂DEL(A,Sn)−R(A(Sn),P)

∣∣∣ ≤ I + II + III , (9)

where

I = |ER̂DEL(A,Sn)− R̂DEL(A,Sn)| ,
II = |ER(A(Sn),P)−R(A(Sn),P)| , and

III = |ER(A(Sn),P)− ER̂DEL(A,Sn)| .
If the three terms in the RHS of (9) are properly upper
bounded, we will have the desired final high probability
bound. Terms I and II shall be bounded using the exponen-
tial Efron-Stein inequality in Lemma 1. Further, we hope
that the final upper bounds can be in terms of the Lq stability
coefficient of A. Term III, however, is non-random and shall
be directly bounded using some Lq stability coefficient.

5.1 Upper Bounding Term I

We begin by deriving an upper bound for term I in the RHS
of (9). This is the deviation |ER̂DEL(A,Sn) − R̂DEL(A,Sn)|.
Note that R̂DEL(A,Sn) is a function of n independent random
variables, and hence the Exponential Efron-Stein inequality
from Lemma 1 seems to be applicable to bound this devia-
tion. Following our two-steps plan to use Lemma 1, we de-
fine the random variables Z and Z−i as follows

Z = R̂DEL(A,Sn) =
1

n

n∑
i=1

`
(
A(S−in ), Xi

)
Z−i =

1

n− 1

n∑
j=1
j 6=i

`
(
A(S−i,−jn ), Xj

)
,

(10)

where S−i,−jn indicates the removal of examples Xi and Xj

from Sn. Recall that VDEL =
∑
i(Z − Z−i)2, and given the

definition of Z and Z−i in (10), we need to show that VDEL

is a sub-gamma RV and derive a bound on EVDEL. This can
be done by bounding the higher order moments of VDEL as
stated in the following lemma. The proof is given in the Ap-
pendix.
Lemma 2. Let Z, Z−i be defined as in (10), and let VDEL =∑n
i=1 (Z − Z−i)2. Then for any real q ≥ 1/2 and n ≥ 2,

the following holds

‖VDEL‖2q ≤ nβ2
4q(n− 1) , (11)

and hence

EVDEL ≤ nβ2
2(n− 1) .
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Lemma 2 gives the desired upper bound for the higher or-
der moments of VDEL including the upper bound for EVDEL.
To use Lemma 1, it remains to show that VDEL is a sub-
gamma RV according to the characterization in Theorem 3.
However, since our results are for a generic learning rule A
with minimal knowledge on its stability, we need to pos-
tulate the following mild assumption on the behavior of
(nβ2

4q(n− 1))q≥1. Once A is specified, this assumption will
not be needed since an upper bound can be realized for β2

4q .
For instance, as shown in (Celisse and Guedj 2016), and for
the bounded ridge regression case, βq is upper bounded by
the q-norm of the response variable Y .
Assumption 2. ∃ u1, w1 ≥ 0 s.t. for any integer q ≥ 1, it
holds that nβ2

4q(n− 1) ≤ √qu1 ∨ qw1.
From Assumption 2, it follows immediately that VDEL is a
sub-gamma RV as stated in the following corollary.
Corollary 2. Using the previous definitions, and under As-
sumption 2, VDEL ∈ Γ(v1, c1), where v1 = 4(1.1u1 +
0.53w2

1) and c1 = 1.46w1.
The statement of Corollary 2 follows from Lemma 2, and
using Assumption 2 and Theorem 3. Plugging the result of
Lemma 2 and Corollary 2 into Lemma 1 gives the desired
final upper bound for Term I in the RHS of (9).
Lemma 3. Suppose that Assumption 2 holds and n ≥ 2.
Then for any δ ∈ (0, 1) and a > 0, with probability 1 − δ
the following holds

R̃I = |ER̂DEL(A,Sn)− R̂DEL(A,Sn)|
≤ 2

3 (1.46aw1 + 1
a ) log

(
1
δ

)
+ 2
√

(nβ2
2(n− 1) + ρ1(u1, w1)) log

(
1
δ

)
,

where ρ1(u1, w1) = 2.2a2u1 + 1.07a2w2
1 .

Consider now the choice of a in the context of how it may
scale with n and its impact on the behavior of this bound.
First, note that u1 and w1 are controlled by nβ2

4q(n − 1),
and from Assumption 1, we assume that β2

4q(n − 1) is a
decreasing function of n. If, for example, nβ2

2(n− 1) ∼ 1
np

for some p > 0, then u1 ∼ n−2p, w1 ∼ n−p, and w1 ≈√
u1. The terms in the bound that depend on a scale as a

np +
1
a with n. Hence, choosing a = np/2, or a = w

−1/2
1 , makes

both, the a dependent term, as well as the whole bound, scale
with n−p/2 as a function of n; i.e. the bound scales as w1/2

1 ,
and w1/2

1 = o(1) as n → ∞. This translates to nβ2
4q(n −

1) = o(1) as n → ∞; i.e. β2(n − 1) = o(n−1/2) which
is sufficient for the consistency of R̂DEL(A,Sn). A similar
condition for consistency was also identified by Bousquet
and Elisseeff (2002) and Celisse and Guedj (2016).

5.2 Upper Bounding Term II
Consider now term II in inequality (9). This is the deviation
|ER (A(Sn),P)−R (A(Sn),P) |. Note that R (A(Sn),P)
is a function of n independent RVs, and therefore, Lemma 1
will be our tool to bound this deviation. Following the steps
for upper bounding Term I in the previous section, we need

to define the RVs Z and Z−i, and show that VDEL is a sub-
gamma RV. Let the RVs Z and Z−i be defined as follows

Z = R (A(Sn),P)

Z−i = R
(
A(S−in ),P

)
.

(12)

Similar to Lemma (2) we have the following result:

Lemma 4. Let Z and Z−i be defined as in (12) and let
VDEL =

∑n
i=1(Z − Z−i)2. Then for any real q ≥ 1/2, and

n ≥ 2, the following holds

‖VDEL‖2q ≤ nβ2
4q(n, 1) , (13)

and hence

EVDEL ≤ nβ2
2(n, 1) . (14)

For the same reason we made Assumption 2, we need to
make the following assumption.

Assumption 3. ∃ u2, w2 ≥ 0 s.t. for any integer q ≥ 1, it
holds that nβ2

4q(n, 1) ≤ √qu2 ∨ qw2.

Corollary 3. Using the previous definitions, and under As-
sumption 3, VDEL ∈ Γ(v2, c2), where v2 = 4(1.1u2 +
0.53w2

2) and c2 = 1.46w2.

The steps to derive the final bound for Term II are exactly
the same derivation steps for the previous bound. The final
bound is given by the following lemma which plugs in the
results of Lemma (4) and Corollary (3) into Lemma 1.

Lemma 5. Suppose that Assumption 3 holds and n ≥ 2.
Then for any δ ∈ (0, 1) and a > 0, with probability 1 − δ
the following holds

R̃II = |ER (A(Sn),P)−R (A(Sn),P)|
≤ 2

3 (1.46aw2 + 1
a ) log

(
1
δ

)
+ 2
√

(nβ2
2(n) + ρ2(u2, w2)) log

(
1
δ

)
,

where ρ2(u2, w2) = 2.2a2u2 + 1.07a2w2
2 .

Concerning the choice of a, the discussion after Lemma 3
applies.

5.3 Upper Bounding Term III
For term III in inequality (9) there are no random quantities
to account for since both terms in the modulus are expecta-
tions of RVs. Hence, an upper bound on this deviation will
always hold.

Lemma 6. Using the previous setup and definitions, let A be
a learning rule with L2 stability coefficient β2(n). Then for
n ≥ 2, the following holds

|ER(A(Sn),P)− ER̂DEL(A,Sn)| ≤ β2(n) .

5.4 Main Result
We arrive now to the main result of this work, namely an
exponential tail bound for the concentration of the estimated
risk, expressed in terms of the deleted estimate, for a general
learning rule using the notion of Lq stability.
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Theorem 4. Let X , H and ` be as previously defined. Let
Sn be the dataset defined in Section 2.1, where n ≥ 2. Let
R̂DEL (A,Sn) be the deleted estimate defined in Eq. (2), and
R(A(Sn),P) be the risk for hypothesis A(Sn). Then, under
Assumption 2 and Assumption 3, for δ ∈ (0, 1) and a > 0,
with probability 1− δ the following holds

R̃DEL = |R̂DEL (A,Sn)−R(A(Sn),P)|

≤ β2(n) + 4

√
(nβ2

2(n− 1) + C1) log
(
1
δ

)
+ C2 log

(
1
δ

)
,

where C1 = 2.2a2u1 + 1.07a2w2
1 , and

C2 = 4
3 (1.46aw1 + 1

a ).

The proof of Theorem 4 starts by plugging the results
of Lemma 3, Lemma 5, and Lemma 6 into inequality (9).
Next, to simplify the expression and improve the presen-
tation of the final result, we proceed as follows. From As-
sumption 1 we have that β2

2(n − 1) ≥ β2
2(n). Combining

this with Assumption 2 and Assumption 3, we expect that
(
√
qu1 ∨ qw1) ≥ (

√
qu2 ∨ qw2), and hence ρ1(u1, w1) ≥

ρ2(u2, w2). This implies that the RHS for the inequality
in Lemma 3 upper bounds the RHS for the inequality in
Lemma 5. Thus, replacing β2

2(n) with β2
2(n−1), ρ2(u2, w2)

with ρ1(u1, w1), 2
3 (1.46aw2 + 1

a ) with 2
3 (1.46aw1 + 1

a ),
and summing all the terms yields the final bound in Theo-
rem 4. Concerning the choice of a, the discussions that fol-
low Lemma 3 and Lemma 5 apply here.

Discussion: Consider the three terms that constitute the
bound in Theorem 4 and note that all the terms depend on
the stability of the learning rule. While the first term is ob-
vious in this regard, the second term has an explicit depen-
dence on the stability through β2

2(n − 1), as well as an im-
plicit dependence through the constant C1 which itself is de-
pendent on the higher order moments of the Lq stability RV
β2
4q . Recall from Assumption 2 that u1 andw1 are dependent

on β2
4q . The same applies for the third term where constant

C2 also depends on w1. Thus, as the stability is improving
(i.e. smaller β2

4q), w1 and u1 become smaller, and the whole
bound becomes tighter. Note that from C2, there is a small
factor of 4

3a log
(
1
δ

)
that cannot be avoided even for very

stable learning rules.
At a higher level, the proof technique followed from

Lemma 1 to the final bound in Theorem 4 can be summa-
rized as follows: in order to control the concentration of
the random quantity R̂DEL (A,Sn) around the true risk, one
has to control the tails (or the higher order moments) of
R̂DEL (A,Sn). In turn, to control the tails of R̂DEL (A,Sn),
one has to control the tails (or the higher order moments)
of another random variable, VDEL, which turns to be the Lq
stability coefficients of the learning rule.

Before closing, we believe it can be useful to qualita-
tively compare our bound in Theorem 4 with the exponential
bound for the deleted estimate obtained by Bousquet and
Elisseeff (2002) (Theorem 12) for the regression case. To
make the comparison easier, we first state their result using
our notation.
Theorem 5. Let A be a learning rule with uniform sta-
bility βu (see Section 3) with respect to the loss function
` such that ∀X ∼ P , and ∀S ∼ Pn, it holds that

0 ≤ ` (A(Sn), X) ≤ M . Then, for any n ≥ 1, and any
δ ∈ (0, 1), with probability 1− δ, the following holds

R(A(Sn),P)− R̂DEL (A,Sn) ≤ βu(n) + 4nβu(n)

√
log(1/δ)

2n

+M

√
log(1/δ)

2n
.

The bound in Theorem 5 has three main terms; the first
two terms are dependent on the uniform stability of the
learning rule, and a third term that only depends on the loss
function ` and the sample size n. When βu scales as 1/n the
bound becomes tight, however, even for very stable learning
rules, the third term cannot be avoided. The first term in the
RHS of Theorem 5 corresponds to the first term in our bound
in Theorem 4 where both terms are derived from the same
quantity, i.e. |ER(A(Sn),P)−ER̂DEL(A,Sn)|, but under dif-
ferent notions of stability. The second term the in RHS of
Theorem 5, which can be written as 4

√
n2β2

u log(1/δ)/2n

resembles our second term 4
√
nβ2

2(n− 1) log(1/δ) albeit
without the additional term of C1 log(1/δ). Indeed, for a
learning rule that satisfies the strong notion of uniform sta-
bility, this term will make the final bound tighter than our
second term. However, relaxing the requirements of uniform
stability by adopting the notion of Lq stability instead, the
additional terms

√
C1 log(1/δ) and C2 log(1/δ) kick in our

final bound. These terms are due to the higher order mo-
ments of the RV R̂DEL(A,Sn) which translate to the higher
order moments of the RV |` (A(Sn), X) − `

(
A(S−1n ), X

)
|;

i.e. the Lq stability coefficients. In some sense, these addi-
tional terms due to the higher order moments of stability,
seem to compensate for the gap between uniform stabil-
ity and Lq stability to ensure the proper concentration of
the estimated risk around its expectation. Last, the terms
M
√

log(1/δ)/2n in Theorem 5 and 4
3a log(1/δ) in Theo-

rem 4, which cannot be avoided even for very stable learning
rules, somehow correspond to the bias of the estimator but
under two different notions of stability.

6 Conclusion
Our work here considers the gap between two regimes of
stability-based generalization results; (i) exponential gen-
eralization bounds based on strong notions of stability
which are distribution independent and computationally in-
tractable, such as uniform stability, and (ii) polynomial gen-
eralization bounds based on weaker notions of stability but
are distribution dependent and computationally tractable
such as hypothesis stability and Lq stability. Using the ex-
ponential Efron-Stein inequality we were able to bridge this
gap by deriving an exponential concentration bound for Lq
stable learning rules, where the loss of the learning rules is
expressed in terms of the deleted estimate. We believe that
our result is one step forward on two fronts; (i) computing
empirical tight confidence intervals for the expected loss of
a learning rule where the confidence interval holds with high
probability; and (ii) understanding the role of stability in the
concentration of different empirical loss estimates around
their expectations.
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