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Abstract

Currently, detecting and isolating faults in hybrid systems is
often done manually with the help of human operators. In this
paper we present a novel model-based diagnosis approach
for automatically diagnosing hybrid systems. The approach
has two parts: First, modelling dynamic system behaviour
is done through well-known state space models using dif-
ferential equations. Second, from the state space models we
calculate Boolean residuals through an observer-pattern. The
novelty lies in implementing the observer pattern through the
use of a symbolic system description specified in satisfiability
theory modulo linear arithmetic. With this, we create a static
situation for the diagnosis algorithm and decouple modelling
and diagnosis. Evaluating the system description generates
one Boolean residual for each component. These residuals
constitute the fault symptoms. To find the minimum cardinal-
ity diagnosis from these symptoms we employ Reiter’s diag-
nosis lattice.

For the experimental evaluation we use a simulation of the
Tennessee Eastman process and a simulation of a four-tank
model. We show that the presented approach is able to iden-
tify all injected faults.

Introduction

Diagnosing modern production systems is a key element of
research agendas such as Cyber-Physical Production Sys-
tems (CPPSs) (Lee 2008; Rajkumar et al. 2010) or its Ger-
man pendant Industry 4.0. In these agendas, a major fo-
cus is on the self-diagnosis capabilities for complex and
distributed CPPSs. Typical goals of such self-diagnosis ap-
proaches are the detection of anomalies, suboptimal energy
consumptions, error causes in large plants, or wear (Iser-
mann 2004; Niggemann and Lohweg 2015).

Very roughly, we can differentiate between two types of
diagnosis approaches—which come in several flavors:

Heuristic or Phenomenological Approach: Here, the sys-
tem observations are directly classified as correct or anoma-
lous (Ferracuti et al. 2011). Le. the diagnosis software uses
models which deduce from anomalies, here called symp-
toms, to faults, here called root causes. Traditionally, the
classification know-how is often modeled manually, e.g. in
form of rules (expert systems). For fast-changing CPPSs, the
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classifier is trained using supervised machine learning algo-
rithms (Matias et al. 2013).

Model-based Approach: Model-based diagnosis (MBD)
approaches (Struss and Ertl 2009; Niggemann et al. 2012)
are better suited to identify root causes in large distributed
systems. With MBD, a model is used to simulate the normal
behavior of a plant or normal product features, i.e. unlike
heuristic diagnosis models, the model infers from causes to
symptoms. Such models come in different flavors: Statistical
(Ferracuti et al. 2011) and state-based models (Windmann
et al. 2013) or physical first principle models (de Kleer et al.
2013). So model-based approaches capture the normal situa-
tion while phenomenological approaches capture the differ-
ences between normal and anomalous situations. The main
challenge for MBD is high engineering efforts for the cre-
ation of such models.

While heuristic approaches are often more straight-
forward and do not require a system model, they have one
major inherent drawback: They must deduce against the di-
rection of causality since they deduce from observations to
anomalies. For complex distributed systems with their high
number of interdependencies between components and their
complex causalities, this is a hard task because a high num-
ber of classification rules is needed to discriminate between
all possible combinations of symptoms. Model-based ap-
proaches do not have this problem since system models take
all inputs and compute the outputs, i.e. they work in the di-
rection of the physical causality. So in general, phenomeno-
logical approaches are chosen for local compact devices
while model-based approaches are chosen for complex, dis-
tributed plants.

While MBD has proven to be well suited for complex sys-
tems, it has for several reasons proven difficult to apply it to
CPPS:

Timed and State-Based Behavior: CPPSs are distributed
physical systems with complex timing behavior. So any di-
agnosis must take dynamic behavior characteristics into con-
sideration. Furthermore, often the behavior depends on state
variables, i.e. the system has memories influencing the be-
havior. But MBD so-far mainly deals with static systems.

Hybrid Behavior: CPPSs are hybrid systems which com-
prise discrete signals, time- and value-continuous signals,
and structured data. Often, discrete signals such as opening
a valve or turning off a robot trigger mode changes (Buede



MBD based Static
on SMT Logic Models
States| Residuals Derivatives

Dynamic, State-Based
Model

Production Plant

g7 2 e

| Controller |

Dynamic
Models

}

[ Controller |
I Network I

Figure 1: The general solution idea. Process data from the
production plant is abstracted through a dynamic, state-
based model. Observers attached to the model calculate nu-
merical abstractions such as residuals. SMT translates these
abstractions into symbols to perform MBD.

2009), i.e. they abruptly change the system behavior. MBD
so-far mainly deals with binary values.

Of course, several authors have developed solutions to
these two challenges (Struss 1997; Grastien 2013; Daigle
et al. 2010; Frianzle, Hermanns, and Teige 2008; Khorasgani
and Biswas 2017), but they in general replace the dynamic
and hybrid model by a static and discrete model—often by
means of value- and time discretization. This leads to prob-
lems concerning the synchronization between system and
model, often require a full observability of the system and
lead to rather complex model formalisms.

Here, a different approach is presented: As can be seen in
Figure 1, we first use arbitrary dynamic behavior models to
predict all significant system behaviors, e.g. using differen-
tial equations or state machines.

The behavior models especially compute, via standard-
ized interfaces, variables such as residuals, system states,
and derivatives. These variables form the basis for a generic
extension of MBD by means of Satisfiability Modulo Theo-
ries (SMT). With SMT, the semantics of functions and predi-
cates are determined by an underlying theory—here this the-
ory is fed by the interfaces of the behavior model.

So our contribution in this paper is threefold:

(i) A generic extension of MBD is developed which allows
for the integration of arbitrary dynamic behavior models.
For each diagnosis run, all relevant information is communi-
cated via pre-defined variables such as states or derivatives,
i.e. from the point-of-view of the MBD algorithm, a static
situation exists and no discretization of the timing is neces-
sary. L.e. we leverage on significant experience concerning
of MBD for static system but integrate dynamic aspects via
the underlying theory.

(ii) By integrating only residuals into the underlying theory,
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no discretization of signal values is necessary. Real valued
residuals are easily discretized.

(iii) We show that the necessary system knowledge for
the MBD model can be easily derived from engineering
artifacts, e.g. modeled in AutomationML.

State of the Art

Struss (1997) published a paper on the fundamentals of
MBD of dynamic systems. In this he described how hybrid
systems can be modelled without resorting to a complete
simulation of the system under investigation. He proposed to
capture the temporal and dynamic behaviour of a hybrid sys-
tem in a set of modes which model the system. Each mode
has distinct state and temporal constraints in addition to so
called Continuity, Integration, and Derivatives (CID) con-
straints that affect all modes.

Daigle et al. (2010) have adapted a discrete event approach
to diagnose continuous systems. They state that each fault
that occurs in a continuous system has a unique fault sig-
nature. A fault signature denotes a qualitative effect that a
fault occurs in an observation. Under the assumption that all
fault signatures and measurement orderings are known, they
employ a diagnoser that traces the states through a temporal
causal graph based on measurements.

Roychoudhury et al. (2011) have shown how to use hybrid
bond graphs (HBG) to diagnose hybrid systems. HBGs ab-
stractly model the system by describing causal, continuous
relationships between components. In Daigle et al. (2010)
have employed the developed HBGs to diagnose a space-
craft power distribution system. Prakash et al. (2017) have
used an extended framework with HBGs to make improve-
ments in diagnosing two-tank systems.

Grastien (2013) used SMT for the diagnosis of hybrid sys-
tems. He discretizes values in a hybrid system into a set of
distinct states. Each observation < 7, A > is understood as
a behaviour A at time 7, where A is a partial assignment of
the variables in a state. Each variable is augmented with an
indicator stating at which time-step the variable expression
is valid.

Frinzle et al. (2008) have augmented SMT with probabilis-
tic approaches in order to analyse stochastic hybrid systems.
By using bounded-model checking together with probabilis-
tic hybrid automata, piecewise deterministic Markov pro-
cesses, and stochastic differential equations they are able to
create a fault analysis system without the need to formulate
intermediate finite-state abstractions as the methods men-
tioned above do.

In another work, Khorasgani (2017) describe a hybrid sys-
tem model through hybrid minimal structurally overdeter-
mined sets (HMSOs). These are sets of differential equations
and (in-) equations which model the behaviour of a hybrid
system.

In contrast to Struss (1997) and Provan (2009) we do not
use automatons and mode estimation to partition the sys-
tem into different states. Instead, we only sample the sys-
tem at some suitable interval and use the obtained infor-
mation directly to model the states in the state-space rep-
resentation. Unlike in space-craft, which where analyzed by



Daigle (2007), fault signatures and measurement orderings
are unknown in industrial systems. This requires us to pur-
sue a more uninformed approach. Our approach is an alter-
native to hybrid bond graphs used by Roychoudhury (2011),
while they are at the same time an extension to the work of
Grastien (2013) and Khorasgani (2017). In comparison to
Grastien we do not singly use satisfiability modulo theory,
but instead capture system behaviour in a state-space rep-
resentation. We expect this to reduce the required computa-
tional effort. We also make use of (in-) equations and dif-
ferential equations as were used by Khorasgani and Biswas,
but augment these with the diagnostic reasoning of tradi-
tional model-based diagnosis. Compared to Frinzle, we do
not make use of stochastic SMT at this point to keep the
system more explainable for users.

Demonstration Use Case

For this work we will use the four tank system depicted in
Figure 2 as a running example. The system consists of four

Vs

Figure 2: The demonstration use case showing a four-tanks
model

water tanks ¢, seven electric valves p with integrated flow
sensors, an unlimited water source and an unlimited water
sink (not shown). Valve pg controls water from the unlim-
ited water source, for example the public water mains, into
tank ¢o. From there, three pipes with an equal diameter di-
vide the water flow. Finally, valve pg drains tank ¢3 into the
unlimited water sink, for example a river or a processing fa-
cility.

Each tank has two binary sensors which indicate overflow
and underflow, respectively. There are no provisions to di-
rectly measure the water level. Each valve has a switch
which indicates whether or not the valve is open. In addi-
tion, each valve has an associated flow sensor.

Solution Approach
Integration of Residuals

For this work we use a state-space representation to model
the dynamic behaviour of the hybrid system over time. This
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section shows how the state-space representation is realised
and how we can calculate Boolean residuals. We assume that
the data fed into the state-space equations is sampled in a
suitable interval.

The state is propagated through the explicit Euler method

x(t+1) = f(x(t), u(t))
y(t) = g(x(t), u(t),7)

where x(t + 1) is a vector of the state in the next time step,
x(t) is the current state vector, u(t) is the observable input
vector, y () is the observable output vector, and 7 is a vector
of expert-defined threshold values.

Usually, the state of a system cannot be measured directly
as in the case of biological reactors, for example. In these
reactors only a subset of all possible inputs and states can be
measured. Industrial processes in general are instrumented
only to the extend that is necessary to safely control them
(Lee and Weekman Jr 1976). This often makes diagnosis
information unavailable. The unavailable information must
be calculated through the state-space model.

Therefore, we assume in the four-tank model that each tank’s
water level needs to be calculated through its inflow and out-
flow and cannot be observed directly. The inflow and outflow
can be measured at the associated valves in each inflow and
outflow pipe. Assuming that each tank has some sensors to
indicate under- and overflow, these are used for the target
(output). As an example, for the state, input, and output vec-
tors we thus have

(D

[ overflow,
ho flowyg :
h1 flow, overflows
X = u = y =
ho : underflow,
hs £lowg :
lunderflows

The function f(x, u) models the current state and its current
input and from this computes the next state. Therefore, we
can write

fx(@),u(t)) = AA(x,u,t) + Bu(t)

with A being a matrix and

2

1 -1 -1 -1 0 0 0
B_001 0 0 -1 0 o0
“lo o 1 0 0 -1 0

o0 o0 1 1 1 -1

being the incidence matrix of connected components, and
A being a vector of functions. B;; = 1 denotes an input,
B;; = —1 an output, and B;; = 0 indicates no connection.
In the real world it is infeasible to observe all values for each
component. Instead, unobserved values need to be inferred
from the rest of the system. For example, the behaviour of a
passive component such as a filter, which does not have any
associated sensors, needs to be inferred or estimated.

In this approach we create for each time-step ¢ a procedure
which can infer values for all components that are not ob-
servable. For the four-tank model we inferred the values by



calculating them through difference equations in SMT logic.
Difference equation are a common tool to propagate values
in the process industry and are supported in SMT. The unob-
servable values are denoted as (). Thus, the input vector
u(t) of observable and non-observable values is constructed
a(t) = [a(t) u(t)]”. In the following we will use 0 (t) for
all occurences of u(t).

Matrix A states which current state influences the next state
of the same component. Matrix B shows the connections
between the system’s components, which in this case are the
pipes between the tanks.

To model the water level in each tank it is possible to use
difference equations

- %(Qi(t) — Cuar/2gu(t)) 3)

with the tank diameter D, the discharge coefficient Cy, the
size of the orifice a, and the gravitational constant g. Q;(¢)
is the sum of all inputs to the current tank Q; = > gca d-
A vector describing the current output of a state-based com-
ponent (such as a tank) A(x,u,t) can be created, given its
new state.

x(t+1)

Alx,u,t) = |Ui(t+1) = 5 (Cajaj/2g2;(t + 1))

With this model it is possible to propagate the state of the
system as it evolves through time by calculating each com-
ponent’s output value. However, given this information, a
control system cannot yet determine the full behaviour of the
system. For this, the output vector y(t) = g(x(t),u(t), )
needs to be calculated by

r(zo,70)

g9(x(t),a(t),7) =C O]

(T, Tn)

The vector 7 are threshold parameters based on meta-
information or expert knowledge. The thresholds determine
when a given parameter exceeds the range of normal be-
haviour. r(-) are partial functions

P, 75) = {(1)

that relate the thresholds to the current state . The matrix C
maps the results of the functions o(h, 7) and I(h, T) into the
output vector y. Applying this to the four-tank model results
in

lf €T; S Tis
else

&)

_O(ho, ’TOO)

o(hgi, 79)

(o, 7)) ©

! (h'?) ’ Tié)
For ease of notation we use 77 to denote the threshold for the
upper limit of tank i and 7! to denote the lower limit of tank
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1. The function o(h, 7) indicates when the water level within
the tank has approached the upper limit. This is calculated

by
o JO

Likewise, the lower limit of the water level can be calculated
with function I(h;, 7}).

In the following, we will create an observer pattern which
uses SMT expressions of these residuals to construct hy-
potheses for fault diagnosis.

if hy <72,

hiv
o else

)

Extension of MBD using SMT Logic

To diagnose faults within the described state-space system it
is necessary to obtain health information about single com-
ponents. For this we can use the output of functions r(-). We
will first introduce classical MBD and then show how we
extend the theory with expressions from SMT to diagnose
faults.

Classical consistency-based MBD uses observations (OBS),
a system description (SD), and a component description
(COMPS) for describing a system, so that

SDUCOMPSUOBS T (8)

is satisfiable.

Traditional MBD was executed on Boolean expressions,
for example, in case of the electronic repairman (Brown
1974). Here we need a more general approach that covers
real valued functions. We treat Boolean functions only as a
special case. The theoretical foundations are mostly based
on work by Reiter (Reiter 1987) and de Kleer (De Kleer
and Williams 1987), or more recently, Feldman (Feldman,
Provan, and Van Gemund 2010).

Definition 1 (Basis) Basis B is a set of single-output func-
tions {B1, Ba,...,B,}.

Usually, a basis in MBD is the set of Boolean circuits
within the system. For a standard full-adder, for example, B
contains two AND-gates, two XOR-gates, and one OR-gate.
For hybrid systems we permit each function to have real
valued input and output parameters B; : R — R.

Definition 2 (System) Given a basis B, a hybrid system
M(B) = (VU{I*,O*}, E) is a directed graph in which
each edge e € E is a variable, each node v € V is a func-
tion drawn from B, I* is a primary input source, and O* is
a primary output sink.

M(B) represents a connectivity graph between all compo-
nents. For each component an approximation function is de-
fined to approximate its behaviour.

Definition 3 (Fault-Augmented Model) Given B, a sys-
tem M(B) and a second basis B*, a fault-augmented
model SD(B,B*) is defined as the ordered triple
(COMPS,V, E, F) where COMPS {fi,fay ooy fn}
with f; € {1, T}, n = |V|, and F is a mapping F : B —
B*.




When a system is modeled through M () only the correct
behaviour of the model is specified. In this case, there are
no provisions to inject a fault into the system. It is necessary
to create a model which supports the injection of faults into
the system. For Definition 3 the model M(B) is the correctly
functioning system, and 3* is a basis with variables that can
induce components to fail.

Based on these traditional MBD definitions, we augment
these with satisfiability theory modulo linear arithmetic
(SMT-LRA). SMT-LRA generalises to the satisfiability
(SAT) problem. Given a complex term in predicate logic,
satisfiability theory (SAT) seeks an assignment of all
free variables of this term to achieve satisfiability. For
example, provided a formula ¢(zg,...,z,), an interpre-
tation I, a variable assignment « is computed so that
[[¢(x07 v 7$n)]]l,a =T.

Definition 4 (Satisfiability Modulo Linear Arithmetic)
The SMT syntax consists of the symbols COMPS, a rela-
tional signature Y%, and a functional signature XF with
oc:R—{L,Tand o € XF,

Contrary to predicate logic in SMT-LR.A each term ¢ can
be an (in-)equation or some other algebraic formula.

We use weak fault models (WFMs) to model the normal be-
haviour of the system. The health of each component H. ; is
implied by the conjunction

o; /\ (’LALZ < ’Ti) — Hc,i
[a(t)]

over all (in-)equations which are relevant for component
¢; € COMPS. For unobservable components missing val-
ues 0(¢) are calculated through the SMT expression

©))

(10)

where d(+) is some suitable approximation function. For the
linear case d(-) can be computed within the SMT frame-
work. For non-linearities d(-) is calculated using an external
toolbox and only the result is inserted as a predicate into an
SMT expression.

Formulating WFMs with SMT-LR.A for the valves in the
four tank model results in

ovi: (flowﬁ < flow;) A (flow;* > flow;) — Hp,.
(1)

When the valve is healthy its actual flow will be between
two thresholds (flow! and flow?).

Definition 5 (Observation) An observation « is an assign-
ment to some or all inputs and outputs of a circuit SD.

With an observation the state of the system at one specific
point in time (a variable assignment «) is measured. The set
of observations « is called OBS.

Definition 6 (Fault-Injection) Given SD with fault vari-

ables COMPS, a fault-injection ¢ is an assignment to all
fault variables in COMPS.

With a fault injection it becomes possible to model faulty
behaviour. Injecting a fault is done by forcing one term to be
1.
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Definition 7 (Diagnostic System) A diagnostic system is de-
fined as the triple (SD, COMPS, OBS), with SD being the
system description, COMPS being the set of components,
and OBS being the set of observations.

A diagnostic system contains all the information that a di-
agnosis algorithm needs to identify and locate faults within
a system. With SD the causal relationships are known.
COMPS shows which components are contained within the
system and whether or not those components are healthy.
OBS are the observations at one specific point in time.

Definition 8 (Diagnosis) Given a fault-augmented model
SD with fault variables COMPS and an observation «, a
diagnosis w is defined as an assignment to all fault variables
in COMPS such that w |= SD A a.

Each diagnosis specifies that, given a fault-augmented
model and some observation, one can obtain an assignment
w which states, which components exhibit faulty behaviour.
Usually diagnosed systems contain hundreds or thousands
of components (such as the larger systems in the ISCAS-85
benchmark). Usually, no intermediate values can be mea-
sured in these systems and the faults of some components
can be masked by other components. Those components ¢;
that are not observable due to some dominating component
¢; are said to be in the cone of ¢;.

In many cases the size of individual diagnoses can be quite
large and contain sometimes hundreds of components. Con-
fronting an operator with such a large set of possible com-
ponents to be checked and repaired is infeasible. Instead, the
size of a diagnosis needs to be limited. To this end, minimal-
cardinality diagnoses are introduced. A minimum cardinal-
ity diagnosis is a diagnosis that contains the smallest possi-
ble number of components.

Definition 9 (Minimal-Cardinality Diagnosis) A Minimal
Cardinality Diagnosis is a diagnosis ', so that |w'| < |w|
For diagnosis we start by describing the triple (SD,
COMPS, OBS). SD is given by the set of SMT expression
SD = A, oi A\, 9;- OBS are given by the input vector u(t).
The component mode COMPS is described by the partial
functions r(x;, 7;). The Boolean output of these functions is
interpreted within the vector
Z(|oi(t) — au(t)| <e)
= ; (12)
Z(loj(t) —a;(t)] <)

where vector C’ is the comparison between the observation
o;(t) and the model prediction &;(t). If this comparison is
smaller than some error bound e the corresponding compo-
nent is healthy. If the elements of C’ are semantically in-
terpreted through an SMT solver, we obtain the diagnosis
vector
C' = oo I

with ¢; € {T,_L}. This vector shows for each component
whether it is faulty or not, given the current observations
from the sensors.

The numerical information for the statements o; is obtained
through the observer-pattern from the state space model. By

Cn



interpreting the statements it is possible to translate the nu-
merical data within the state-space model into symbolic in-
formation used for diagnosis through the vector C’. For each
new time step the SMT expressions are reevaluated, thus
generating new hypotheses. Reevaluation is necessary since
we do not specify a sampling rate for the underlying data.
Therefore, we start the diagnosis as soon as sufficient data is
available. This increases computation, but will lead to faster
diagnosis in the real world.

Given the vector C' as COMPS and the system description
SD it is possible to employ any diagnosis algorithm such
as CDA* (Williams and Ragno 2007), GDE (Reiter 1987),
or SATbD (Metodi et al. 2014) to find minimum cardinality
diagnoses. Here we have used Reiter’s diagnosis lattice.

Automatic Derivation of the MBD Knowledge

Creating state space models manually is costly and error-
prone. Instead, we take the required knowledge for SD and
COMPS from the available engineering tools automatically.
The structure of a process plant, the material flow, and the
built-in components are available in a piping and instru-
mentation diagram (P&ID). It also contains the informa-
tion about causal relationships between components. This
information can be represented in a digraph, which makes
up M(B). Additional information can be extracted automat-
ically e.g. by using OCR technology (Arroyo et al. 2016). In
(Barth et al. 2009) the authors present an approach to create
object-oriented simulation models out of the derived data.
In our approach, we automatically construct directed graphs
by parsing and interpreting a proprietary format from P&ID
diagrams.

Information such as component models is stored, for ex-
ample, in AutomationML (AutomationML 2009). This in-
cludes data about geometry and kinematics, the plant topol-
ogy (CAEX, (IEC 62424 2008)) and the control logic
(PLCopen XML). For components using more complex
models such as differential equations for tanks, Automa-
tionML is extended with MathML.

Similar information is available for other types of systems.
In electric circuits schematic diagrams are available to spec-
ify the connectivity and component models can be extracted
from available truth tables.

This shows that, given a self-descriptive industrial process
(Bunte, Diedrich, and Niggemann 2016) and the informa-
tion from state-of-the-art engineering tools it is possible to
realise our approach in a self-autonomous manner. Fully au-
tomating the generation of numerical and causal models re-
mains a research challenge.

Evaluation
Empirical Evaluation

Table 1 shows the experiments of the simulated four-tank
model for constant input stream, the injected faults and
whether or not the fault was detected. An x in the column
Detected denotes that the injected fault was among the
result set of the diagnosis algorithm. This means the
algorithm is complete. An x* denotes that exclusively the
injected fault was detected, which corresponds to soundness

1457

of the algorithm. It must be noted here, that finding only
the injected faults depends heavily on the granularity of
the underlying data source. For example, if valve 5 stops
working its flow would immediately go to 0. The sampling
frequency is high enough to detect this decrease in the
flow rate early enough that the water level in the tanks is
not yet significantly affected. However, in large industrial
plants sampling rates are often far lower. A faulty compo-
nent might then only be recognised once its effects have
propagated into other observations from other components.
Further, in the semi- and non-observable cases not every
status of every component is known. In this case, too, the
set of possible faulty components will grow in size.

The algorithm was executed for 300 time-steps. As the
criterion in Table 1 we evaluated the output of the diagnosis
algorithm in the time step 101, which was directly after the
fault had been injected. It is evident that due to the SMT
logic constraints such as equation (9) every unexpected
change in the behaviour of the components would be
immediately detected.

The numbers in brackets in Table 1 show the results when
the output of the diagnosis algorithm was evaluated directly
before removing a fault at time-step 199. The number
denotes the size of the minimum-cardinality set. Since in
this time step the abnormal behaviour caused by the fault
has reached many other components the result set also
contains components apart from the injected faults.

Table 1: Recognized faults for experiments with constant in-
put stream. Results with sinusoidal input stream are similar.

Index | # Faults | Detected
0 Do x* (11)

2 D3 x* (3)

3 D5 x*(3)

4 D6 x*(3)

5 D1,D3 x* (5)

6 D4, Ps x* (6)

Beside the simulation of the four-tank model we used a
quantitative simulation of the Tennessee Eastman process.
The implementation of Downs et al. (Downs and Vogel
1993) was used which contains 20 different injected faults
(process disturbances). However, the instrumentation of the
simulated process is such that not all faults will be identi-
fied exactly. Table 2 shows the results for six experiments.
The injected faults for IDV 16 through 20 have an insuffi-
cient description for validating results. The other faults not
described contain fault modes that are not associated with
single components and thus cannot be evaluated. This leaves
us with the experiments shown in Table 2.

An x indicates that the faulty component was found as
part of the minimal cardinality diagnosis and a - shows that
the faulty component was not found. We were able to find all
faults that had an identifiable component fault as the cause of
the process disturbance. The change of input ratios can only
be detected indirectly, since no observations are available at
the inputs.



Table 2: Experimental results with the Tennessee Eastman

process.
IDV | Fault isolated Injected Fault

1 - Feed ratio changed
6 X Pipe A feed loss
8 X Feed ratio changed
13 - Reactor kinetics fault
14 X Reactor cooling fault
15 X Condenser cooling fault

Theoretical Evaluation

To model industrial processes with state-space models it
is necessary to solve ordinary differential equations (ODE)
such as equation (3). Finding solutions for ODEs was proven
to be NP-hard (Ko 1983).

For diagnosis we make use of the SMT solver z3 and cal-
culate Reiter’s diagnosis lattice. For the purposes presented
here the z3 solver converts the SMT expressions into a
MAXSAT problem. The computationally hardest problem is
solving the MAXSAT formulation which is known NP-hard
(Impagliazzo and Paturi 1999).

Conclusion

In this paper we presented a novel approach to diagnose
faults in industrial systems. Through an example four-tank
system it was shown how to model a typical industrial use-
case with state-space models. The first contribution of this
paper is to show how an observer-pattern can be created
which translates the numeric state-space model into Boolean
residuals. The second contribution is our presented generic
extension of MBD using satisfiability theory modulo linear
arithmetic building on these residuals. This provides an ab-
straction from many kinds of numeric models into the sym-
bolic reasoning of MBD. Thus, a standard MBD algorithm
can be used to diagnose faults in many kinds of industrial
systems. We successfully evaluated the presented approach
through a common four-tank model and by using a simula-
tion of the Tennessee Eastman process.

Future work includes making the state-space model more
expressive by including a model of set-points. It is also nec-
essary to evaluate the approach on an industrial system from
areas such as process industry.
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