The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Molecular Property Prediction: A Multilevel Quantum Interactions
Modeling Perspective

Chenggiang Lu," Qi Liu,’* Chao Wang," Zhenya Huang,' Peize Lin,' Lixin He!
 Anhui Province Key Lab. of Big Data Analysis and Application, University of S&T of China
Key Laboratory of Quantum Information, University of S&T of China
{qiliugl, helx } @ustc.edu.cn, {lunar, wdyx2012, huangzhy, linpz} @mail.ustc.edu.cn

Abstract

Predicting molecular properties (e.g., atomization energy)
is an essential issue in quantum chemistry, which could
speed up much research progress, such as drug designing
and substance discovery. Traditional studies based on den-
sity functional theory (DFT) in physics are proved to be
time-consuming for predicting large number of molecules.
Recently, the machine learning methods, which consider
much rule-based information, have also shown potentials for
this issue. However, the complex inherent quantum interac-
tions of molecules are still largely underexplored by exist-
ing solutions. In this paper, we propose a generalizable and
transferable Multilevel Graph Convolutional neural Network
(MGCN) for molecular property prediction. Specifically, we
represent each molecule as a graph to preserve its inter-
nal structure. Moreover, the well-designed hierarchical graph
neural network directly extracts features from the conforma-
tion and spatial information followed by the multilevel inter-
actions. As a consequence, the multilevel overall representa-
tions can be utilized to make the prediction. Extensive exper-
iments on both datasets of equilibrium and off-equilibrium
molecules demonstrate the effectiveness of our model. Fur-
thermore, the detailed results also prove that MGCN is gen-
eralizable and transferable for the prediction.

Introduction

Predicting molecular properties, such as atomization energy,
is one of the fundamental issues in quantum chemical sci-
ence. Indeed, it has attracted much attention in relevant fields
of physics, chemistry and computer science, since it speeds
up the societal and technological progress in the application
of discovering substances with desired characteristics, such
as drug design with specific target and new material manu-
facture (Becke 2007; Oglic, Garnett, and Gértner 2017).

In the literature, density functional theory (DFT) plays
an important role in physics for molecular property pre-
diction. It holds a common statement that the quantum in-
teractions between particles (e.g., atom) create the correla-
tion and entanglement of molecules which are closely re-
lated to their inherent properties (Thouless 2014). Along
this line, many quantum mechanical methods based on DFT
have been developed to model the quantum interactions of
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Figure 1: Illustration of the process of a molecule (CH,0,)
via our method.

molecules for the prediction (Hohenberg and Kohn 1964;
Kohn and Sham 1965). However, DFTs are computationally
costly since they usually use specific functions to determine
the interactions of particles, which proves to be extraordi-
narily time consuming. For example, experimental results
indicated that it took nearly an hour to predict the properties
of merely one molecule with 20 atoms (Gilmer et al. 2017).
Obviously, it is unacceptable to make prediction on large
number of molecules in chemical compound space. There-
fore, it is necessary to find more effective solutions.

Recently, inspired by the remarkable success of machine
learning in many tasks including computer vision, natural
language processing, natural and social science (Karpathy et
al. 2014; He et al. 2016; Huang et al. 2017; Zhu et al. 2018;
Liu et al. 2018), researchers have shown the potentials of
these data-driven techniques for molecular property predic-
tion (Faber et al. 2017; Schiitt et al. 2017a). Generally, these
studies mainly rely on rule-based feature engineering (e.g.,
bag of atom bonds) or treat molecules as grid-like structures
(e.g., 2D images or text). However, few of them directly take
the inherent quantum interactions of molecules into consid-
eration, causing severe information loss, which makes the
molecular property prediction problem pretty much open.

Unfortunately, there are many technical and domain chal-
lenges along this line. First, there are highly complex quan-
tum interactions, such as distracted attraction, exchange re-
pulsion and electrostatic interaction in molecules, especially
in the large molecules (Kollman 1985). It is hard to model
them with analytical methods. Second, compared with tra-
ditional tasks including computer vision, the amount of la-
beled molecule data is significantly limited, which requires a
generalizable approach for the prediction. Last but not least,
in practice, we are often provided with labeled data of small



and medium molecules except large molecules since the cal-
culation of them are expensive. Thus, it is necessary to no-
tice this unbalancedness to propose a transferable solution
for property prediction of large molecules using the model
trained on smaller ones.

To address these challenges, in this paper, we propose a
well-designed Multilevel Graph Convolutional Neural Net-
work (MGCN) for predicting properties of molecules by di-
rectly incorporating their quantum interactions. Figure 1
demonstrates the process of our approach. Specifically, we
first represent each molecule as an interaction graph, which
could preserve its internal structure without information
loss. Then we propose a hierarchical graph convolutional
neural network to model the multilevel quantum interac-
tions based on the graph-like molecular structures. Here, we
follow the DFT theory that the quantum interactions could
be transformed at different levels, i.e., atom-wise refers to
the inherent influence of each atom (e.g., oxygen), atom-
pair refers to the interaction between two atoms, atom-triple
means the correlation among three atoms, and so on. Thus,
our proposed graph network incorporates hierarchical layers
of point-wise, pair-wise, triple-wise, etc to extract represen-
tations of the multilevel interactions, respectively. Finally,
the overall interaction representation from all levels could be
utilized to make the property (e.g., atomization energy) pre-
diction. We conduct extensive experiments on both datasets
of equilibrium and off-equilibrium molecules, where the ex-
perimental results shows the effectiveness of our proposed
approach. Moreover, as MGCN could naturally pass the in-
teraction information of molecules level by level, which also
proves the superior ability of generalizability and transfer-
ability.

Related Work

Generally, the related work of our research could be classi-
fied into the following three categories.

Density Functional Theory. Molecular property predic-
tion problem has been studied for a long time in physics,
chemistry and material science (Wang and Hou 2011). In the
literature, density functional theory (DFT) is the most popu-
lar method, which plays a vital role in making the prediction,
and could date back to 1960s (Hohenberg and Kohn 1964;
Kohn and Sham 1965; Lawless and Chandrasekara 2002).
Generally, it states that the quantum interactions between
particles (e.g., atoms) create the correlation and entangle-
ment of molecules which are closely related to their inher-
ent properties (Thouless 2014). Following this theory, many
DFT based methods, such as B3LYP, were proposed, which
mapped the quantum interactions of molecules onto every
single particles, for predicting the properties (Yanai, Tew,
and Handy 2004). However, the complexity of DFT could
be approximated as O(N?3), where N denotes the number
of particles. Therefore, it is time-consuming in the experi-
ments and unacceptable for the prediction when facing large
number of molecules (Gilmer et al. 2017).

Traditional Machine Learning Methods. To find more
efficient solutions for molecular property prediction, re-
searchers have attempted to leverage various machine learn-
ing models, such as kernel ridge regression, random for-
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est and FElastic Net (Faber et al. 2017; Zou and Hastie
2005; McDonagh et al. 2017). Generally, they rely on rule-
based hand crafted features using the domain knowledge
of physics and chemistry, including bag of bonds, coulomb
matrix, and histogram of distances, angles and dihedral an-
gles (Huang and von Lilienfeld 2016; Hansen et al. 2015;
Montavon et al. 2012). Although some superior experimen-
tal results have been achieved, these traditional machine
learning methods take manual feature engineering, which
requires much domain expertise. Thus, they are often re-
stricted in practice.

Deep Neural Networks. Compared to traditional ma-
chine learning models, deep neural networks hold a supe-
riority of automatic feature learning, which have achieved
great success in many applications, such as speech recog-
nition (Zhu et al. 2016), computer vision (LeCun, Bengio,
and others 1995) and natural language processing (Collobert
and Weston 2008). With this ability, researchers have no-
ticed the potentials of these deep methods for molecular
property prediction. Along this line, convolutional neural
network based models were proposed, where they repre-
sented each molecule as grid-like structures, such as im-
age (Goh et al. 2017), string (Goémez-Bombarelli et al.
2018), and sphere (Boomsma and Frellsen 2017). For ex-
ample, Goh et al. (2017) converted molecular diagrams
into 2D RGB images and proposed the ChemNet for the
prediction. However, this grid-like transformation usually
caused information loss of the molecules which lied in non-
Euclidean space, where the internal spatial and distance in-
formation of atoms were not fully considered (Bronstein
et al. 2017). Therefore, some works operated the molecule
as a atom graph and developed graph convolutional neural
networks for the property prediction (Schiitt et al. 2017b;
Gilmer et al. 2017). For instance, Schutt et al. (2017b)
proposed the deep tensor neural network that captured the
representation of each atom node in molecules. Shang et
al. (2018) further introduced attention mechanism for char-
acterizing the edge information to improve the prediction.

Our work improves the previous studies as follows. First,
we propose the multilevel graph network to directly model
the multilevel quantum interactions of molecules from hi-
erarchical perspectives (i.e., atom-wise, pair-wise, triple-
wise, etc), which developed the graph modeling for molec-
ular property prediction. Second, our work could pass the
interaction information level-by-level, which benefits more
practical scenarios, i.e., generalizability of limited data and
transferability of unbalanced data.

Multilevel Graph Convolutional Network

In this section, we first formally introduce the molecular
property prediction problem. Then we describe our Multi-
level Graph Convolutional Network in detail.

Problem Statement

Given a molecule, it is natural to represent it as graphs with-
out the loss of information, where vertices represent atoms
and edges represent chemical bonds. Thus, a molecule is de-
noted by G(V, £), and in the setting of molecular structure,



V is a set of atoms with |V| = N. We regard the graph as
a complete undirected graph following the assumption that
every atom has the interactions with others so that the set of
edges satisfies that || = N(N — 1)/2. Here each £ con-
tains two kinds of information, namely edge type and spatial
information, respectively. Our target is to construct a regres-
sor to predict the properties of molecules. Formally, we can
define the problem as:

g(f(9)) =y, 1)

where y is the target property to predict and the middle func-
tion f : G — RNMXD s used to learn representations of
atoms. Then g converts the obtained features to final result.

The multilevel interactions widely exist in the graph struc-
tures. In the field of molecule, physical experts design the
different symmetry functions to describe the atomic environ-
ment by considering the interactions at varied levels (Behler
2014). Inspired by this idea, we model quantum interactions
in molecules by representing the interactions between two,
three, and more atoms level by level to demystify the com-
plexity of molecular interactions. In the next subsection, we
will introduce our Multilevel Graph Convolutional Network
(MGCN) in detail.

Network Architecture

Overview. The entire architecture could be split into three
parts in a high-level discussion except for thse input. The
initial input is a graph which consists of a list of atoms
and a Euclidean distance matrix of the molecules. The pre-
processing part includes embedding layer and Radial Basis
Function (RBF) layer. The embedding layer generates atom
and edge embeddings while Radial Basis Function (RBF)
layer converts the distance matrix to a distance tensor. The
next part of MGCN are several interaction layers that aim to
learn different node representations in different levels. The
last phase is the readout layer that outputs the final result.
Embedding Layer. Atoms and bonds are the basic ele-
ments in a molecule. Thus, to model interactions with as less
information loss as possible, we present an embedding layer
to directly embed vertices and edges of a graph into vectors.
Each atom in a molecule is represented as a vector a’cR”
initially. Therefore, the vertices in the entire molecular are
denoted as a matrix A°€RV*P and a? indicates the atom
embedding of ¢-th atom in a molecule. The atoms that have
the same number of protons in their atomic nuclei share the
same initial representation which is called the atom embed-
ding here. Taking CH, O, as an example, there are five atoms
and different kinds of atoms are labeled with different colors
in the input part of Figure 2. After the process of embedding
layer, we get a 5D matrix and the rows that are related
to the atoms of the same type share the same value. The
atom embeddings of all chemical elements are generated
randomly before training. The initialization of pair-wise em-
beddings e€RR is similar to atom embeddings (see the pre-
process part of Figure 2). Thus we get FERN VXD and the
edges connecting the same set of atoms have the same ini-
tial edge embedding. Specifically, e;; indicates the edge em-
bedding of the bond between i-th atom and j-th atom. The
representations generated by the embedding layer are only
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related to the inherent property of isolated atoms and bonds.
The interaction terms are modeled in later subnetwork.

Radial Basis Function Layer. The spatial information in-
fluences the degree of interactions between nodes and we
use the RBF Layer to convert these information to robust
distance tensors for further utilization. First of all, we reform
the raw coordinates of atoms to distance matrix to remove
the disturbance of selection of coordinate frame. Secondly,
Radial Basis Functions are applied to convert the distance
matrix to a distance tensor.

RBF is a widespread kernel method which originally was
invented to generate function interpolation (Broomhead and
Lowe 1988). Its variant was proved to be advantageous to
create fingerprint-like descriptor of molecules (Li, Han, and
Wu 2018). Here we use RBF to spread the 2D inter-atomic
distance matrix to a 3D representation. Given a set of K
central points {1, . .., pi }, the single data point x, namely
one pair-wise distance in the molecule, will be processed as:

RBF (x) = = (e — ). 2)

Here the notation — means concatenation, and we take Eu-
clidean distance as the norm. As for radial basis function h,
we take Gaussian exp(— 3|z — u;||?) following the sugges-
tion in (Schiitt et al. 2017a) to avoid the long plateau on the
initial phases of the training procedure. k central points are
picked evenly in the range from the shortest to the longest
edge among the entire dataset. Therefore all distances in the
dataset will be covered.

Through the non-linear transformation, the representa-
tions of distances between nodes become more robust. Fur-
thermore, more additional interpretation is introduced by ra-
dial basis function layer than simple multi-layer perceptron.
After the RBF layer, we create the pair-wise distance tensors
DeRN*NXK and d;; denotes the distance tensor between
i-th atom and j-th atom.

Interaction Layer. To model the multilevel molecular
structure with all the conformation and spatial information
embedded through previous layers, we construct the interac-
tion layer which is a crucial component of our model. Con-
sidering that the quantum interactions in molecules could be
transformed at different levels (i.e., atom-wise, atom-pair,
atom-triple, etc), our interaction layer is designed by the hi-
erarchical architecture level by level. Specifically, in the [-th

interaction layer, we define the edge representation eéjl and
atom representation aé“ as:

I+1 _ Ul

e;; = he(a;,aj,€;;), 3)
N

I+1 _ 2 : Ul

a, - h’u(a’j7eij7dij)> (4)
j=1,j#i

where h. is used to update edge representation and h,, is the
function that collects the message from the neighbours of
the i-th atom to generate aé“.

With this hierarchical modeling, MGCN could effectively
preserve the structure of each molecules and describe its
quantum interactions. Specifically, in the first layer, a{ de-
notes the atom embedding that show the inherent proper-
ties of certain chemical elements. As the forward inference
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Figure 2: The architecture of the entire MGCN.

steps, a} involves the first-order neighbour node and spa-
tial information with the message passed by a’, e and d. In
a similar way, a? represents the triple-wise interactions, a?
indicates the interactions between four nodes and so on. As
shown in Figure.2, after each interaction layer, we obtain the
representations of atoms that reflect the higher-order interac-
tions thanks to decomposition of molecule.

The update function h,. is calculated as:

h, = neéj @ (1 —n)W4*al o aév. )
where 7) is the hyper-parameter that controls the influence
of former pair-wise information (default value is 0.8). Here
® and & denote the element-wise dot and plus respectively.
In this way, The edge embedding is corrected by the related
atomic representations of former interaction layer.

The function h,, applies the message passing operation to
create the atom representation at a higher order. The dis-
tance tensor d;; here controls the magnitude of impact in
each pair of atoms and the edge embedding e;; provides the
extra bond information. Thus, it combines the information
of nodes, edges, and space, more formally:

b, = o(W* (M (al) © MT(di;) & M (ey;), (©)
where o is a tanh activation function, W*" is a weight ma-
trix. The notation M () refers to a dense layer that M(z) =
Wa + b with the input z for simplicity. M7 M/4 M7¢ are
dense layers here.

Readout Layer. After the interaction layers, we get atom
representations at different levels. In the last phase, we con-
struct a readout layer to make the final prediction utilizing
these features more clearly.

First of all, we aggregate the various atom representations
to obtain the final vertex feature map as following:

(N
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where 7' indicates the number of interaction layers and —~
means concatenation.

Secondly, we need to predict the property of molecule
with the multilevel representations of each atoms. Fortu-
nately, the molecular properties satisfy additivity and local-
ity. For example, to predict the energetic property, we can
model potential energy surfaces as follows (Behler 2014;
Cubuk et al. 2017):

N N
E=2.> By ®)
i g

where E is the total energy and E;; indicates the part of
energy related to the bond between i-th and j-th atom (i #
7). Besides, F;; could be regarded as the partial energy that
mapped to i-th atom. Along this line, we can process the
representations separately and then sum them up:

N N N
§=Y Wia(M(a:)+> > Wia(Mi(ey)), 9)
i=1 i=1 j=1
i£]

where o is the activation function, more specifically, the
softplus function. The former term refers to the contribution
of quantum interactions that mapped to each atom. Addition-
ally, the latter term denotes the edge-related contribution that
can not be mapped to single particle. Since the atom-related
interactions account for vast majority of molecular interac-
tions, the latter term is nuanced. Therefore, when the amount
of data is small, we tend to ignore the latter term.

To train this model, we use the Root-Mean-Square Error
(RMSE) as our loss function:

U9,y) =19 —yl* (10

where 3 denotes the predictive value and y is the true value.



Discussion on MGCN

Generalizability. In the field of chemistry, the set of all
possible molecules in unexplored regions is called chemi-
cal space. One of the famous chemical space project (Rud-
digkeit et al. 2012) collected 166.4 billion molecules while
merely 134k samples of them were labeled (Ramakrishnan
and von Lilienfeld 2015). Therefore, the generalization abil-
ity of enabling accurate prediction with the limited dataset
is indeed essential in our task.

In the design of our model, we decide to use the dis-
tance tensors D as the form of spatial information instead
of coordinates of atom. Accordingly, MGCN enforces rota-
tion and translation invariance. Henceforth, the representa-
tion learned by MGCN is more general and would not be
confused with the same molecule in different orientations.

Moreover, we perform element-wise operations in inter-
action layers (equation(5) and (6)) to generate representa-
tions and process the representations of each atom respec-
tively. Under those circumstances, the prediction made by
our model is irrelevant to sequence of atoms. The index in-
variance enhances the generalization ability of MGCN.

Additionally, we utilize some normalization techniques
such as dropout to prevent overfitting, which also benefits
generalizability of our model.

In brief, our model is generalizable which is particular im-
portant for molecular property prediction where the amount
of training data is limited.

Transferability. Since the expensive computational cost
is a critical bottleneck which limits capabilities to calculate
the properties of large molecules, most open data are small
and medium molecules and the amount of large molecules
is small. Therefore, the ability of transferring the knowledge
learned from small molecules to larges ones could help us
deal with the data-hungry of big molecules.

The atom/edge embeddings generated by embedding
layer are only in regard to the type of atoms and edges
and irrelevant to the specific molecular structure and spatial
information. As a result, the chemical-domain knowledge
learned in the embeddings is universal in the molecular sys-
tem no matter small or large molecules. Then, in our muli-
tilevel phase, we use the embeddings to generate the repre-
sentation in deeper level, e.g., pair-wise and triple-wise. Al-
though small and large molecules are different in the distri-
bution of atoms and bonds, their interactions in different lev-
els are similar. Consequently, with the general embeddings
and similar interaction mechanism, MGCN could infer the
higher-level representations to predict property and main-
tain a certain accuracy. Therefore, our model that trained on
the small molecules could obtain competitive performance
in the prediction of larger molecules.

Rather than applying the model trained on small
molecules to big molecules directly, another way to trans-
fer the knowledge is using pre-trained embeddings. To train
a model in large molecules, we could initialize this model
with the atom and edge embeddings of another model that
was trained on small molecules. The pre-trained embeddings
could speed up the convergence and improve the accuracy,
because the domain knowledge in embeddings learned from
small molecules is still meaning suitable to big molecules.
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Along this line, this model is capable of transferring the
knowledge of small molecules to large molecules and tackle
the structural shortage of data.

Time Complexity. The time complexity of our MGCN
model is O(N2) since the calculation of h. and h,, (equa-
tion (5) and (6)) are independent of molecular size. Here N,
indicates the number of atoms in a molecule.

Experiments

We conduct experiments to demonstrate the effectiveness of
MGCN from various aspects: 1) predictive performance; 2)
the effectiveness of multilevel structure; 3) the validation of
generalizability; 4) the verification of transferability; 5) the
influence of varied number of interaction layers.

Datasets

QM0Y. The QM9' dataset (Ramakrishnan et al. 2014) is per-
haps the most well-known benchmark dataset which con-
tains 134k equilibrium molecules with their 13 different
properties. All of the relaxed geometries and properties for
all the 134k molecules are calculated by DFT. The DFT er-
ror is the empirical inaccuracy estimation of DFT based ap-
proaches (Faber et al. 2017). The QM9 dataset also provides
the chemical accuracy which is generally accepted by the
chemistry community as a relatively ideal accuracy.

ANI-1. The ANI-1? dataset provides access to the total en-
ergies of 20 million off-equilibrium molecules which is 100
times larger than QM0.

Experimental Setup

We use mini-batch stochastic gradient descent (mini-batch
SGD) with the Adam optimizer (Kingma and Ba 2014) to
train our MGCN. The batch size is set to 64 and the ini-
tial learning rate is 1e . For all 13 properties of QM9, we
pick 110k out of 130k molecules randomly as our training
set that accounts for about 84.7% of the entire dataset. With
the rest of the data, we choose half of them as the valida-
tion set and the other half as the testing set. As for the much
larger ANI-1, we randomly choose 90% samples for train-
ing, 5% samples for validation and 5% for testing. We select
Mean Absolute Error (MAE) as our evaluation metrics for
the convenience of comparison with baselines (Faber et al.
2017).

Baselines

We compare our model with the 7 baseline methods that
could be categorized into two groups.

The first group consist of 3 traditional ML models using
hand-engineered features derived from the molecular liter-
ature (Faber et al. 2017; Huang and von Lilienfeld 2016;
Hansen et al. 2015). These ML models include Random
Forest (RF) and Kernel Ridge Regression (KRR). The
hand-craft features include Bag of Bonds (BOB), Bond-
Angle Machine Learning (BAML) and “Projected His-
tograms” (HDAD). We imply the combination of X regres-
sor and Y representation with the notation X+Y. Thus, these

Uhttp://www.quantum-machine.org/datasets/#qm9
“https://www.nature.com/articles/sdata2017193



Table 1:

Predictive accuracy of different models in QM9

G

Properties Uy U H Cy EHOMO ELUMO Ae w1 ZPVE <Rz> I «

Unit eV eV eV eV cal/molK eV eV eV cm~! eV Bohr? Debye Bohr®
DFT Error 0.1 0.1 0.1 0.1 0.34 - - - 28 0.0097 - 0.1 04
Chemical Acc.  0.043  0.043  0.043  0.043 0.05 0.043 0.043 0.043 10 0.00122 1.2 0.1 0.1
RF+BAML 0.2000 - - - 0451 0.1070 0.1180 0.1410 2.71 0.01320 51.10 0.434 0.638
KRR+BOB 0.0667 - - - 0.092 0.0948 0.1220 0.1480 13.20 0.00364 098 0423 0.298
KRR+HDAD  0.0251 - - - 0.044 0.0662 0.0842 0.1070 23.10 0.00191 1.62 0334 0.175
GG 0.0421 - - - 0.084 0.0567 0.0628 0.0877  6.22 0.00431 630 0.247 0.161
enn-s2s 0.0194 0.0194 0.0168 0.0189 0.040 0.0426 0.0374 0.0688 1.90 0.00152 0.18  0.030 0.092
DTNN 0.0364 0.0377 0.0385 0.0357 0.089 0.0982 0.1053 0.1502 423 0.00312 030 0.257 0.131
SchNet 0.0134 0.0189 0.0196 0.0182 0.067 0.0507 0.0372 0.0795  3.83 0.00172 027 0.071 0.073
MGCN 0.0129 0.0144 0.0146 0.0162 0.038 0.0421 0.0574 0.0642 1.67 0.00112 0.11  0.056 0.030

Table 2: Predictive accuracy of different models in ANI-1

Methods
MAE

DTNN  SchNet
0.113 0.108

MGCN
0.078

three baselines are denoted by RF+BAML, KRR+BOB,
KRR+HDAD. These models achieve the best performance
in the prediction of one or more properties among all 30
combinations of regressors and features (Faber et al. 2017).

The second group contain 4 deep neural networks. They
are gated graph network (GG, Kearnes et al. 2016), edge
neural network with set-to-set (enn-s2s, Gilmer et al. 2017),
deep tensor neural network (DTNN, Schiitt et al. 2017b) and
SchNet (Schiitt et al. 2017a). These models are proved to
be competitive in the molecular property prediction. Not-
ing that DTNN and SchNet only provide their experimental
results in the prediction of property Uy for the molecules in
QM9, thus we complete the rest of the experiments. Besides,
all of other numerical results of the baselines are extracted
from their works directly.

Experimental Results

Predictive performance. We compare our model with the
baseline models mentioned above in two datasets. In Table 1,
we provide the MAE of baselines and our approach as well
as DFT error and chemical accuracy for all 13 properties.
Table 2 shows the performance comparison in ANI-1.

As illustrated in Table 1, MGCN gets the best perfor-
mance in 11 out of 13 properties, and 11 of them exceed
the chemical accuracy. Our model is able to improve the
performance upon state-of-the-art. Another observation is
that the deep neural networks (GG, enn-s2s, DTNN, SchNet
and MGCN) outperform the models that using hand-craft
features comprehensively. In the experiment in ANI-1, we
choose the state-of-the-art models (DTNN and SchNet) as
comparison. As shown in Table 2, the accuracies in ANI-1
is lower than in QM9, and there are possible two reasons.
First, the force in equilibrium molecules of QM9 is negligi-
ble, while in off-equilibrium molecules of ANI-1, this factor
increases the complexity of quantum interactions. Second,
the 100 times larger size of ANI-1 than QM9 makes it more
difficult to fit. Even though, our model still achieves satis-
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factory accuracy and outperform other methods.

In brief, our model attains the best performance benefit-
ing from the mulitilevel interaction modeling, and the results
prove that our model could handle both equilibrium and off-
equilibrium molecules and is capable to fit the large dataset.
Considering that most previous work have no experiment in
the ANI-1 dataset, we chose QM9 as our default dataset in
the rest of our experiments.

Effectiveness of multilevel interactions. In the molecu-
lar system, with the increase of the number of atoms in a
molecule, the complexity of quantum interactions will grow
exponentially. In consequence, it is much harder to model
the interactions of molecules if the size of them is larger.

Figure 3 shows the MAE of predictions as the function
of the number of atoms. We select the state-of-the-art work
SchNet as a comparison for better illustration. Four repre-
sentative and prevalent properties (1, egomo, U, Cv) are
picked in this experiment. The dotted horizontal line in each
subplot is the chemical accuracy of each property. Figure 3
shows that MGCN assesses more accurate and stable perfor-
mance than SchNet. Furthermore, as the number of atoms
increases, the advantage of MGCN becomes more apparent
due to the multilevel modeling. Our model simplifies the in-
teractions by dividing them into different levels and repre-
sent them respectively using the mulitilevel structure and
decomposition of molecular quantum interactions. Along
this line, our model performs better comparatively when the
number of atoms increases. In addition, the significant fluc-
tuations appearing in the front and end of the curves derive
from the lack of molecules that contain less than 10 atoms
or more than 24 atoms in dataset.

To investigate this further, we construct a control model
that blends all levels of interactions in a single embedding
rather than construct representation level by level. Taking
the prediction of U property for example, the result of this
model is not as well as our MGCN with an MAE of 0.03683
on average. It implies the molecular representations mod-
eled by multilevel interaction layers are more robust, which
validates the effectiveness of our multilevel modeling.

Generalizability. The potential molecules in chemical
space is numerous extra, but the amount of labeled data is
quite small (Schiitt et al. 2017b). Due to the limitation of
the magnitude of existing datasets, the ideal model should
be able to perform well even trained with a small amount of
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Figure 3: MAE of prediction in different size molecules.

Table 3: Performance comparison in varied size training set

N SchNet DTNN enn-s2s MGCN

50,000 0.0256 0.0408 0.0249  0.0229
100,000 0.0147 0.0364 - 0.0142
110,462 0.0134 - 0.0194 0.0129

data. Thus, the generalizability is another essential aspect to
evaluate these models.

We train our model in three training sets with the dif-
ferent size that consist of 50k, 100k and 110k samples re-
spectively and test them in the same test set that contains
10k molecules. In addition to the three baselines mentioned
above (DTNN, SchNet, enn-s2s), the ensemble model of five
enn-s2s models is also listed in the comparison. In Table 3,
the MGCN gets the lowest MAE in three training sets. Re-
garding that the readout phase of MGCN and SchNet are
similar, the representation of molecular learned by MGCN
is more generalizable when the accessible data is smaller
thanks to the modeling of multilevel interactions.

Transferability. As mentioned before, the data in ex-
isting datasets are unbalanced. For instance, relative large
molecules that contain more than 20 atoms account for
merely 20.7% of total amount in QM9 and only occupy
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Figure 4: a(left). Performance comparison in the training set
with different size. b(right). Predictive performance of mod-
els with different number of interaction layers.

8.5% in ANI-1. Therefore, the transferability is quite im-
portant to an approach.

We conduct experiments to validate the transferability of
MGCN. Specifically, we sample 50k small and 50k large
molecules from QM9 respectively. As shown in Figure 4.a,
there are four experimental settings. The first two models are
trained and tested on the small and large molecules respec-
tively (noted by "Small” and “Large”). The latter two ap-
proaches are different ways to transfer the knowledge. The
“Develop” denotes the develop model which is trained on
the small molecules and applied to the large ones directly.
The last model (labeled with ”Pre-train’) utilizes the embed-
dings learned on the small molecules as initialization, and
then refine itself during the training on the large molecules.

Figure 4.a illustrates the performance of MGCN in four
settings. In the first place, The MAE of small molecules
is lower relatively due to the higher complexity of large
molecules. Secondly, we observe that as we feed in more
small data, the MAE of develop model keeps decreas-
ing. The performance is fairly decent because we did not
feed any large molecules to this model. The numerical re-
sults show that our model is capable to learn knowledge
from small data and then transfer them to larger molecules.
Thirdly, the pre-trained model outperforms all of other mod-
els when the size of training set is small with the universal
domain knowledge learned before. This technique helps ad-
dress the structural shortage of data.

Influence of interaction layers. In DFT, physicists usu-
ally use 4 to 5 different empirical symmetry functions for
molecular property prediction. Each symmetry could be
mapped to the interaction layer in each level. Figure 4.0
shows the relationship between the number of interaction
layers and the MAE of property Uy. We randomly pick 50k
molecules as our training set and test on remaining data.
As Figure 4.b illustrates, too many or few interaction lay-
ers could cause higher MAE. The network with less than
4 interaction layers does not have enough capacity to learn



the representations of molecules and using the deeper model
that contain more than 5 interaction layers will widen the
generalization gap. The empirical results indicate that four
is the best number of interaction layers which conform to
the number of symmetry functions mentioned previously.

Summary. Through the experiments, MGCN shows the
superiority of incorporating multilevel modeling of molec-
ular interactions. Moreover, the experimental results prove
that our model is generalizable and transferable. Besides,
in theory, the time complexity of MGCN is O(N?) com-
pared with O(N?) of DFT. Experimentally, with the same
setting (a single core of a Xeon E5-2660), our model spends
2.4x1072 second predicting the property of one molecule,
which is nearly 1.5x10° times faster than DFT.

Conclusion

In this paper, we introduced a Multilevel Graph Convolu-
tional Network (MGCN) for molecular property prediction.
The well-designed model utilized the multilevel structure in
molecular system to learn the representations of the quan-
tum interactions level by level, and then made prediction
with overall interaction representation. The experimental re-
sults on two prevalent datasets demonstrated the competency
of our approach. Furthermore, our model was proved to be
generalizable and transferable.

We believe future research should concentrate efforts on
enhancing the generalization of the atom representation be-
cause the predictive accuracy is quite high in small sam-
ples and it is tough to obtain the dataset of sufficient large
molecules.
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