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Abstract
Knowledge tracing is a sequence prediction problem where
the goal is to predict the outcomes of students over questions
as they are interacting with a learning platform. By tracking
the evolution of the knowledge of some student, one can op-
timize instruction. Existing methods are either based on tem-
poral latent variable models, or factor analysis with temporal
features. We here show that factorization machines (FMs), a
model for regression or classification, encompasses several
existing models in the educational literature as special cases,
notably additive factor model, performance factor model, and
multidimensional item response theory. We show, using sev-
eral real datasets of tens of thousands of users and items, that
FMs can estimate student knowledge accurately and fast even
when student data is sparsely observed, and handle side infor-
mation such as multiple knowledge components and number
of attempts at item or skill level. Our approach allows to fit
student models of higher dimension than existing models, and
provides a testbed to try new combinations of features in or-
der to improve existing models.

Modeling student learning is key to be able to detect stu-
dents that need further attention, or recommend automati-
cally relevant learning resources. Initially, models were de-
veloped for students sitting for standardized tests, where stu-
dents could read every problem statement, and missing an-
swers could be treated as incorrect. However, in online plat-
forms such as MOOCs, students attempt some exercises, but
do not even look at other ones. Also, they may learn be-
tween different attempts. How to measure knowledge when
students have attempted different questions?

We want to predict the performance of a set I of students,
say users, over a set J of questions, say items (we will inter-
changeably refer to questions as items, problems, or tasks).
Each student can attempt a question multiple times, and may
learn between successive attempts. We assume we observe
ordered triplets (i, j, o) ∈ I × J × {0, 1} which encode the
fact that student i attempted question j and got it either cor-
rect (o = 1) or incorrect (o = 0). Triplets are sorted chrono-
logically. Then, given a new pair (i′, j′), we need to predict
whether student i′ will get question j′ correct or incorrect.
We can also assume extra knowledge about users, or items.
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So far, various models have been designed for student
modeling, either based on prediction of sequences (Piech
et al. 2015), or factor analysis (Thai-Nghe et al. 2011;
Lavoué et al. 2018). Most of existing techniques model stu-
dents or questions with unidimensional parameters. In this
paper, we generalize these models to higher dimensions and
manage to train efficiently student models of dimension up
to 20. Our family of models is particularly convenient when
observations from students are sparse, e.g. when some stu-
dents attempted few questions, or some questions were an-
swered by few students, which is most of the data usually
encountered in online platforms such as MOOCs.

When fitting student models, it is better to rely on all the
information available at hand. In order to get information
about questions, one can identify the knowledge compo-
nents (KCs) involved in each question. This side information
is usually encoded under the form of a Q-matrix, that maps
items to knowledge components: qjk is 1 if item j involves
KC k, 0 otherwise. In this paper, we will also note KC(j)
the sets of skills involved by question j, i.e. KC(j) =
{k|qjk = 1}.

In order to model different attempts, one can keep track of
how many times a student has attempted a question, or how
many times a student has had the opportunity to acquire a
skill, while interacting with the learning material.

Our experiments show, in particular, that:
• It is better to estimate a bias for each item (not only skill),

which popular educational data mining (EDM) models do
not.

• Most existing models in EDM cannot handle side infor-
mation such as multiple skills for one item, but the pro-
posed approach does.

• Side information improves performance more than in-
creasing the latent dimension.
To the best of our knowledge, this is the most generic

framework that incorporates side information into a student
model. For the sake of reproducibility, our implementation
is available on GitHub1. The interested reader can check our
code and reuse it in order to try new combinations and devise
new models.

1https://github.com/jilljenn/ktm
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We first show related work. Then, we present a family of
models, knowledge tracing machines, and recover famous
models of the EDM literature as special cases. We subse-
quently detail our experiments and show our results. We
conclude with further work.

Related Work
In this section, we review several approaches proposed to
model student learning.

Knowledge Tracing
Knowledge tracing aims at predicting the sequence of out-
comes of a student over questions. It usually relies on mod-
eling the state of the learner throughout the process. After
several attempts, students may eventually evolve to a state
of mastery.

The most popular model is Bayesian knowledge tracing
(BKT), which is a hidden Markov model (Corbett and An-
derson 1994). However, BKT cannot model the fact that a
question might require several KCs. New models have been
proposed that do handle multiple subskills, such as feature-
aware student tracing (FAST) (González-Brenes, Huang,
and Brusilovsky 2014).

As deep learning models have proven successful at pre-
dicting sequences, they have been applied to student mod-
eling: deep knowledge tracing (DKT) is a long short-term
memory (LSTM) (Piech et al. 2015). Several researchers
have reproduced the experiment on several variations of the
Assistments dataset (Xiong et al. 2016; Wilson et al. 2016a;
Wilson et al. 2016b), and shown that some factor analysis
models could match the performance of DKT, as we will see
now.

Factor Analysis
Factor analysis tend to learn common factors in data in or-
der to generalize observations. They have been successfully
applied to matrix completion, where we assume that data is
recorded for (user, item) pairs, but many entries are missing.
The main difference with sequence prediction for our pur-
poses is that the order in which the data is observed does not
matter. If one wants to encode temporality though, it is pos-
sible to complement the data with temporal features such as
simple counters, as we will see later. In all that follows, logit
will denote the logit function: logit p = log p

1−p .

Item Response Theory The most simple model for factor
analysis does not assume learning between several attempts,
it is the 1-parameter logistic item response theory model,
also known as Rasch model:

logit pij = θi − dj

where θi measures the ability of student i (the student bias)
and dj measures the difficulty of question j (the question
bias). We will refer to the Rasch model as IRT in the rest of
the paper. More recently, Wilson et al. (2016b) have shown
that IRT could outperform DKT, even without temporal fea-
tures (González-Brenes, Huang, and Brusilovsky 2014). It

may be because DKT has many parameters to estimate, so it
is prone to overfitting.

The IRT model has been extended to multidimensional
abilities:

logit pij = ⟨θi,dj⟩+ δj

where θi is the multidimensional ability of student i, dj is
the multidimensional discrimination of item j and δj is the
easiness of item j (item bias). Multidimensional Item Re-
sponse Theory (MIRT) models have a reputation to be hard
to train (Desmarais and Baker 2012) thus they are not fre-
quently encountered in the EDM literature, and still, the di-
mensionality used in psychometrics papers is up to 4, but we
show in this paper how to train those models effectively, up
to 20 dimensions.

AFM and PFA The additive factor model (AFM) (Cen,
Koedinger, and Junker 2006; Cen, Koedinger, and Junker
2008) takes into account the number of attempts a learner
has made to an item:

logit pij =
∑

k∈KC(j)

βk + γkNik

where βk is the bias for skill k, and γk the bias for each
opportunity of learning skill k. Nik is the number of times
student i attempted a question that requires skill k.

The performance factor analysis model (PFA) (Pavlik,
Cen, and Koedinger 2009) counts separately positive and
negative attempts:

logit pij =
∑

k∈KC(j)

βk + γkWik + δkFik

where βk is the bias for skill k, γk (δk) the bias for each op-
portunity of learning skill k after a successful (unsuccessful)
attempt, Wik (Fik) is the number of successes (failures) of
student i over a question that requires skill k. In other words,
AFM can be seen as a particular case of PFA where γk = δk
for every skill k. Please note that AFM and PFA do not
consider item difficulty, presumably to avoid the item cold-
start problem. According to (González-Brenes, Huang, and
Brusilovsky 2014), PFA and FAST have comparable per-
formance. By reproducing experiments, (Xiong et al. 2016)
have managed to match the performance of DKT with PFA.

Factorization Machines
Numerous works have coined the similarity between student
modeling and collaborative filtering (CF) in recommender
systems (Bergner et al. 2012; Thai-Nghe et al. 2011). For
CF, factorization machines were designed to provide a way
to encode side information about items or users into the
model.

(Thai-Nghe et al. 2012) and (Sweeney et al. 2016) have
used factorization machines in their regression form for stu-
dent modeling, where they use root mean squared error as
metric, but to the best of our knowledge, it has not been used
in its classification form for student modeling. This is what
we present in this paper, in the next section.
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Knowledge Tracing Machines
We now introduce the family of models described in this
paper, knowledge tracing machines (KTM).

Let N be the number of features. Features can refer either
to students, exercises, knowledge components (KCs), oppor-
tunities for learning, or extra information about the learning
environment. For example, one might want to model the fact
that the student attempted an exercise on mobile, or on com-
puter, which might influence their outcome: it may be harder
to type a correct answer when using a mobile, so this data
should be taken into account in the predictions.

KTMs model the probability of observing binary out-
comes of events (right or wrong), based on a sparse set of
weights for all features involved in the event. Features in-
volved in an event are encoded by a sparse vector x of length
N such that xi > 0 iff feature 1 ≤ i ≤ N is involved in the
event. For each event involving x, the probability p(x) to
observe a positive outcome verifies:

ψ(p(x)) = µ+

N∑
k=1

wkxk  
logistic regression

+
∑

1≤k<l≤N

xkxl⟨vk,vl⟩  
pairwise interactions

(1)

where ψ is a link function such as logit, µ is a global bias,
each feature i is modeled by both a bias wi ∈ R and an
embedding vi ∈ Rd for some dimension d. In what follows,
w will refer to the vector of biases (w1, . . . , wN ) and V to
the matrix of embeddings vi, i = 1, . . . , N . For each event,
only the features that have xi > 0 will contribute to the
prediction, see Figure 1.

Data and Encoding of Side Information
We now describe how to encode the observed data in the
learning platform into the sparse vector x. First, we need to
choose which features will be represented in the modeling.

Users Let us assume there are n students. The first n fea-
tures will be for all n students. As an example, if student
1 ≤ i ≤ n is involved in the observation, its xi value will be
set to 1, while the ones for the other students will be set to
0. This is called a one-hot vector.

Items Let us assume there are m questions or items. One
can allocatemmore features for allm questions. If question

x

w
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wi

v i

1

wj ′

v j ′

1

wk ′

vk ′

Ui Ij Sk

Users Items Skills

Figure 1: Example of activation of a knowledge tracing ma-
chine.

1 ≤ j ≤ m is involved in the observation, its component in
x will be set to 1, while the ones for the other questions will
be set to 0.

Skills We now assume there are s skills. We can then allo-
cate s extra features for those s skills. The skills involved in
an observation of a student over a question j are the ones of
KC(j).

Attempts One can allocate s extra features as counters of
how many opportunities a student could have learned a skill
involved in the test.

Wins and Fails One can also distinguish between suc-
cesses and failures: allocate s features as opportunities to
have learned a skill if the attempt was correct, s more fea-
tures as opportunities to have learned a skill if the attempt
was incorrect.

Extra side information More side information can be
concatenated to the existing sparse features, such as the
school ID and teacher ID of the student, or also other in-
formation such as the type of test: low-stakes (practice) or
high-stakes (posttest), etc.

Full example See Table 1 for an example of encoding
of users + items + skills + wins + fails, for the set of ob-
served, chronologically ordered triplets (2, 2, 1) (student 2
attempted question 2 and got it correct), (2, 2, 0), (2, 2, 1),
(2, 3, 0), (2, 3, 1), (1, 2, 1), (1, 1, 0). Here, we assume that
there are n = 2 students, m = 3 questions, m = 3 skills
and question 1 does not involve any skill, question 2 in-
volves skills 1 and 2, question 3 involves skills 2 and 3. At
the beginning, user 2 had no opportunity to learn any skill,
so counters of wins and fails are all 0. After student 2 got
question 2 correct, as it involved skills 1 and 2, the counters
of wins for these two skills are incremented, and encoded for
the next observation. We thus managed to encode the triplets
with N = n+m+3s = 14 features, and at training time, a
bias and an embedding will be learned for each one of them.

Relation to Existing Models
When ψ = logit, KTMs include IRT, AFM and PFA. Let us
now recover some particular cases, especially when d = 0,
i.e., only biases are learned for features, no embeddings. We
will again assume there are n students, m questions and s
skills.

We will note 1i,n a one-hot vector of size n, which means
all its components are 0 except the ith one, which is 1.

Relation to IRT If d = 0, the second sum in Equation 1
disappears and all that is left is a weighted sum of biases.

If all features considered are students and questions (en-
coding users + items), and we encode the pair (student i,
question j) as a concatenation of one-hot vectors 1i,n and
1j,m, then N = n+m and xk = 1 iff k = i or k = n+ j.
The expression in Equation 1 becomes:

log
p(x)

1− p(x)
= µ+ wi + wn+j = θi − dj
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Table 1: An example of encoding for training a knowledge tracing machine.

Users Items Skills Wins Fails

1 2 Q1 Q2 Q3 KC1 KC2 KC3 KC1 KC2 KC3 KC1 KC2 KC3

0 1 0 1 0 1 1 0 0 0 0 0 0 0
0 1 0 1 0 1 1 0 1 1 0 0 0 0
0 1 0 1 0 1 1 0 1 1 0 1 1 0
0 1 0 0 1 0 1 1 0 2 0 0 1 0
0 1 0 0 1 0 1 1 0 2 0 0 2 1
1 0 0 1 0 1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0

Outcome

1
0
1
0
1
1
0

Table 2: Datasets used for the experiments
Name Users Items Skills Skills per item Entries Sparsity (user, item) Attempts per user

Fraction 536 20 8 2.800 10720 0.000 1.000
TIMSS 757 23 13 1.652 17411 0.000 1.000
ECPE 2922 28 3 1.321 81816 0.000 1.000
Assistments 4217 26688 123 0.796 346860 0.997 1.014
Berkeley 1730 234 29 1.000 562201 0.269 1.901
Castor 58939 17 2 1.471 1001963 0.000 1.000

if the first n features (students numbered iwhere 1 ≤ i ≤ n)
have bias wi = θi − µ and the next m features (ques-
tions numbered n + j where 1 ≤ j ≤ m) have bias
−dj . Therefore, KTM becomes after reparametrization w =
(θ1 − µ, . . . , θn − µ,−d1, . . . ,−dm) the 1-PL IRT model,
also referred to as Rasch model.

Relation to AFM and PFA Now we will again consider
the special case d = 0 and an encoding of skills, wins and
fails at skill level. For this, we will assume we know the Q-
matrix, that is, the binary mapping between questions and
skills (qjk)1≤j≤m,1≤k≤s as described in the introduction.

If we have w = (β1, . . . , βs, γ1, . . . , γs, δ1, . . . , δs) and
encoding of “student i attempted question j” is given by
x = (qj1, . . . , qjs, qj1Wi1, . . . , qjsWis, qj1Fi1, . . . , qjsFis)
where Wik and Fik are the counters of successful and un-
successful attempts at skill level, then KTM behaves like the
PFA model. Similarly, one can recover the AFM model.

Relation to MIRT If d > 0, KTM becomes a MIRT
model with user bias:

logit p(x) = θi − dj + ⟨θi,dj⟩.
if the encoding is the same as for IRT (users + items with
one-hot vectors). The reparametrization of weights is the
same as for IRT, and the embeddings are given by V =
(θ1, . . . ,θn,d1, . . . ,dm).

Training
Training of KTMs is made by minimizing the negative log-
likelihood NLL over all S observed samples:

NLL(p(X),y) =

S∑
i=1

yi log p(xi)+(1−yi) log(1−p(xi))

where we denote sample features by X = (xi)1≤i≤S and
outcomes by y = (yi)1≤i≤S ∈ {0, 1}S .

Like Rendle (2012), we assume some priors over the
model parameters in order to guide training and avoid over-
fitting.

Each bias wk follows wk ∼ N (µ, 1/λ) and each em-
bedding component vkf , f = 1, . . . , d also follows vkf ∼
N (µ, 1/λ) where µ and λ are regularization parameters that
follow hyperpriors µ ∼ N (0, 1) and λ ∼ Γ(1, 1).

Because of those hyperpriors, we do not need to tune reg-
ularization parameters by hand (Rendle 2012). As we use
ψ = probit, that is, the inverse of the CDF of the nor-
mal distribution, we can fit the model using Gibbs sampling.
Details of the computations can be found in (Freudenthaler,
Schmidt-Thieme, and Rendle 2011).

The model is learned using the MCMC Gibbs sampler im-
plementation of libFM2 in C++ (Rendle 2012), using the py-
wFM Python wrapper3.

Visualizing the Embeddings
Another advantage of KTMs is that we can visualize the
embeddings that they learn. On Figure 2, we show the 2-
dimensional embeddings of users, items, skills learned by
a knowledge tracing machine on the Fraction subtraction
dataset. The user WALL·E is positively correlated with most
of items, but not skills 2 (separate a whole number from a
fraction) and 7 (substract numerators), which may explain
why WALL·E couldn’t solve item 5 (4 3/5 − 3 4/10) that
requires these two skills. Therefore, we can provide a useful
feedback to WALL·E. To know more about the items and
skills of this dataset, see (DeCarlo 2010).

2http://libfm.org
3https://github.com/jfloff/pywFM
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Figure 2: Example of learned 2-dimensional embeddings for
the Fraction dataset.

Experiments
We used various datasets of different shapes and sizes in or-
der to push our method to its limits. In Table 2, we report
the main characteristics of the datasets: number of users,
number of items, number of skills, average number of skills
per item, total number of observed entries, sparsity of the
(user, item) pairs, average number of attempts per user at
item level.

Temporal Datasets
For the temporal datasets, students could attempt several
times a same question, and potentially learn between at-
tempts.

Assistments The 2009–2010 dataset of Assistments de-
scribed in (Feng, Heffernan, and Koedinger 2009). 4217 stu-
dents over 26688 questions, 123 KCs. 347k observations.
There are many items but they involve 0 to 4 KCs, and there
are only 146 combinations of KCs. For this dataset, we had
also access to more side information, referred to as “extra”
in the experiments:

• first action: attempt, or ask for a hint;
• school id where the problem was assigned;
• teacher id who assigned the problem;
• tutor mode: tutor, test mode, pretest, or posttest.

Berkeley 1730 students from Berkeley attempting 234
questions from an online CS course, 29 KCs, exactly 1 KC
per question, which is actually a category. 650k entries.

Non-Temporal Datasets
For all these datasets, the observations are fully specified: all
users attempted all questions. All datasets except Castor can
be found in the R package CDM (George et al. 2016).

Castor 58939 middle-school students over CS-related 17
tasks, 2 KCs, 1.47 KCs per task. 1M entries.

ECPE 2922 students over 28 language-related items, 3
KCs, 1.3 KCs per question in average. 81k entries.
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Figure 3: Results for the Assistments dataset.

Fraction 536 middle-school students over 20 fraction sub-
traction questions, 8 KCs, 2.8 KCs per question in average.
16k entries. A precise description of the items and skills is
in (DeCarlo 2010).

TIMSS 757 students over 23 math questions from the
TIMSS test in 2003, 13 KCs, 1.65 KCs per task. 17k entries.

Framework
From the triplets (user id, item id, outcome), we first
compute for the temporal datasets the number of successful
and unsuccessful attempts at skill level, according to the Q-
matrix.

For each dataset, we perform 5-fold cross validation. For
each fold, entries are separated into a train and test set, then
we train different encodings of KTMs using the train set, no-
tably the ones corresponding to existing models, and predict
the outcomes in the test set.

KTMs are trained during 1000 epochs for each non-
temporal dataset, 500 epochs for the Assistments dataset and
300 epochs for the Berkeley dataset, because it was enough
for convergence. At each epoch, we average the results over
all 5 folds, in terms of accuracy (ACC), area under the curve
(AUC) and negative log-likelihood (NLL).

As special cases, as shown earlier, we have, for the tem-
poral datasets:

• AFM is actually “skills, attempts d = 0”

• PFA is actually “skills, wins, fails d = 0”

And for every dataset:

• IRT is “users, items d = 0”

• MIRT plus a user bias (coined as MIRTb) is “users, items”
with any d > 0. Please note that for convenience, we used
probit instead of logit as link function for MIRTb.

Results and Discussion
Results are reported in Tables 3 to 7 and Figure 3. For con-
venience, we also reported a summary of the main results in
Table 5. Each existing model is matched or outperformed by
a KTM. For all non-temporal datasets, we did not consider
attempt count.
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Table 3: Results for the Assistments dataset.
model d ACC AUC NLL

items, skills, wins, fails, extra 20 0.774 0.819 0.465
items, skills, wins, fails, extra 5 0.775 0.819 0.465
items, skills, wins, fails, extra 10 0.775 0.818 0.465
items, skills, wins, fails, extra 0 0.774 0.815 0.463

items, skills, wins, fails 10 0.727 0.767 0.539
items, skills, wins, fails 0 0.725 0.759 0.542
items, skills, wins, fails 5 0.714 0.75 0.56
items, skills, wins, fails 20 0.714 0.75 0.564

IRT: users, items 0 0.675 0.691 0.599
MIRTb: users, items 20 0.674 0.691 0.602
MIRTb: users, items 10 0.673 0.687 0.604
MIRTb: users, items 5 0.67 0.685 0.605

PFA: skills, wins, fails 0 0.68 0.685 0.604
skills, wins, fails 20 0.649 0.684 0.603
skills, wins, fails 5 0.649 0.683 0.604
skills, wins, fails 10 0.649 0.683 0.604
skills, attempts 20 0.623 0.62 0.631
skills, attempts 5 0.626 0.619 0.63
skills, attempts 10 0.622 0.619 0.632

AFM: skills, attempts 0 0.653 0.616 0.631

Training Time
On the Assistments dataset, our model KTM(iswfe0) =
“items, skills, fails, extra d = 0” is logistic regression, so
it was faster to train (4 min 30 seconds on CPU for all 5
folds) than DKT (1 hour on CPU), while achieving higher
AUC (0.815 > 0.743). For models of higher dimensions on
this dataset, experiments took 17 min for d = 10 with the
same 31138 features, and 32 min for d = 20.

Effect of Side Information
Given its simplicity, IRT has a remarkable performance on
all datasets considered, even on the temporal ones, which
may be because the average number of attempts per stu-
dent is small. When considering all information at hand,
the top performing KTM model on the Assistments dataset
for d = 0 achieves higher performance than the known re-
sults of vanilla DKT. It makes sense, as we have access to
more side information, and logistic regression is less prone
to overfitting.

Wins and Fails For all temporal datasets, encoding wins
and fails (PFA model) instead of only the number of at-
tempts (AFM model) improves the performance a lot (+0.07
AUC for Assistments, +0.01 for Berkeley). This is concor-
dant with existing work (Pavlik, Cen, and Koedinger 2009).
There is an improvement of KTM models that consider num-
ber of wins and fails (KTM(iswf0) = “items, skills, wins,
fails d = 0”) over IRT (+0.07 in Assistments, +0.02 in
Berkeley).

Item Bias For all datasets, considering a bias per item im-
proves the predictions, which is what IRT does but PFA does
not. KTM(iswf0) = “items, skills, wins, fails d = 0” has

Table 4: Results for the Berkeley dataset.
model d ACC AUC NLL

items, skills, wins, fails 20 0.706 0.778 0.563
items, skills, wins, fails 10 0.706 0.778 0.563
items, skills, wins, fails 5 0.706 0.778 0.563
items, skills, wins, fails 0 0.705 0.775 0.566

IRT: users, items 0 0.688 0.753 0.586
MIRTb: users, items 5 0.685 0.753 0.589
MIRTb: users, items 10 0.685 0.752 0.59
MIRTb: users, items 20 0.683 0.752 0.591

PFA: skills, wins, fails 0 0.631 0.684 0.635
skills, wins, fails 10 0.631 0.684 0.635
skills, wins, fails 20 0.631 0.684 0.635
skills, wins, fails 5 0.631 0.684 0.635
skills, attempts 20 0.621 0.675 0.639

AFM: skills, attempts 0 0.621 0.675 0.639
skills, attempts 10 0.621 0.675 0.639
skills, attempts 5 0.621 0.675 0.639

+0.07 AUC improvement over KTM(swf0) = PFA in Assist-
ments, +0.09 in Berkeley. It may be because the number of
items is huge, and they do not have the same difficulty. So,
it is useful to learn this difficulty parameter using the per-
formance of previous students. This extra parameter enables
a big improvement on all datasets, except on the Fraction
dataset, which may be because the skills for fraction subtrac-
tion are easily known and clearly specified, so it is enough
to characterize the items uniquely.

Skills For Fraction (8 KCs), Assistments (123 KCs) and
TIMSS (13 KCs), the skills are easy to identify, because the
items are math problems. For the other datasets, either there
are few skills (ECPE: 3 language-learning KCs, Castor: 2
KCs for CS), or there is only one KC mapped to an item
(Berkeley: 29 KCs, categories of CS problems). This is why
considering a bias per skill barely increases the performance
of the predictions.

Effect of Dimension of Features
On the temporal datasets, there is only a slight improvement
of models with higher dimensions (less than +0.01 AUC),
which seems to indicate that when there are many features
considered (number of successful and unsuccessful attempts
at item or skill level), a KTM with d = 0 provides good
enough predictions. Still, on a similar task, (Vie 2018) man-
aged to get an improvement of +0.04 AUC for factoriza-
tion machines for d = 20 compared to logistic regression
(d = 0), presumably because the side information was con-
siderable for this task.

Further Work
In this work, we wanted to compare the expressiveness of
models typically used for student modeling. Our experi-
ments assess the strong generalization of student models, as
students are randomly shuffled into train and test set, and
the task of performance prediction is made for totally new
students.
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Table 5: Summary of AUC results for all datasets.
AFM PFA IRT MIRTb10 MIRTb20 KTM(iswf0) KTM(iswf20) KTM(iswfe5)

Assistments 0.6163 0.6849 0.6908 0.6874 0.6907 0.7589 0.7502 0.8186
Berkeley 0.675 0.6839 0.7532 0.7521 0.7519 0.7753 0.7780 –
ECPE – – 0.6811 0.6807 0.6810 – – –
Fraction – – 0.6662 0.6653 0.6672 – – –
TIMSS – – 0.6946 0.6939 0.6932 – – –
Castor – – 0.7603 0.7602 0.7599 – – –

Side Information in Deep Knowledge Tracing
The vanilla DKT model cannot handle multiple skills, so
instead, practictioners treat combinations of skills as new
skills, which prevents the transfer of information between
skills. The approach described in this paper can be used to
handle multiple skills with DKT. Also, more recent results
have successfully built upon the vanilla DKT (AUC 0.91 >
0.743), by incorporating dynamic cluster information (Minn
et al. 2018). We could indeed combine DKT with side infor-
mation.

Adaptive Testing
IRT and MIRT were initially designed to provide adaptive
testing: choose the best next question to present to a learner,
given their previous answers. KTMs could also be used to
these ends, as they extend the IRT and MIRT models with
extra information, under the form of KCs or several at-
tempts, and they maintain a measure of uncertainty though
Bayesian inference.

Response Time, Spaced Repetition, and Other Data
Modeling response time could provide better predictions of
outcomes, and it has also been used in the encoding of fac-
torization machines in previous works. Also, we could add
to the side information another counter representing how
many timesteps were elapsed since a certain item was asked
for the last time. It would learn how the user reacts to spaced
repetition. In some datasets such as Assistments, more data
is recorded about students that can be used to improve the
predictions. Still, we should be careful about encoding noisy
data such as the output of other machine-learning algorithms
as side information, because it may degrade performance
(Vie 2018).

Table 6: Results for the Fraction dataset.
model d ACC AUC NLL

MIRTb: users, items 20 0.619 0.667 0.651
items, skills 5 0.621 0.667 0.650
items, skills 20 0.621 0.666 0.649

MIRTb: users, items 5 0.621 0.666 0.650
IRT: users, items 0 0.623 0.666 0.656

users, items, skills 0 0.623 0.666 0.656
MIRTb: users, items 10 0.618 0.665 0.652

users, skills 5 0.62 0.664 0.649

Higher-Order Factorization Machines
In this paper, we were limited to pairwise interactions. But
in his original paper (2012), Rendle mentions higher-order
factorization machines, which generalize interactions to k-
way terms. It could be an interesting direction for future
research, as efficient methods have been developed to train
these higher-order models (Blondel et al. 2016).

Ordinal Regression
Instead of binary outcomes, one could consider graded out-
comes using multi-output FMs (Blondel et al. 2017) and
thresholds, just like the graded response model in item re-
sponse theory (Samejima 1997). We leave it to further work.

Conclusion
In this paper, we showed how knowledge tracing machines,
a family of models that encompasses existing models in the
EDM literature as special cases, could be used for the clas-
sification problem of knowledge tracing.

We showed, using many datasets of various sizes and
characteristics, that it could estimate user and item parame-
ters even when the observations are sparse, and provide bet-
ter predictions than existing models, including deep neural
networks. KTMs are a testbed to try new combinations of
data, such as response time, of number of attempts at item
level.

One can refine the encoding of features in a KTM accord-
ing to how the data was collected: Are the observations made
at skill level or problem level? Does it make sense to count
the number of attempts at item level or at skill level? What
are extra sources of information that may raise better under-
standing of the observations?

Furthermore, as we showed, KTMs are log-bilinear mod-
els, so the embeddings they learn are interpretable, and can
be used to provide useful feedback to students.

Table 7: Results for the TIMSS dataset.
model d ACC AUC NLL

items, skills 0 0.637 0.695 0.629
IRT: users, items 0 0.640 0.695 0.63

users, items, skills 0 0.639 0.694 0.63
MIRTb: users, items 10 0.638 0.694 0.628
MIRTb: users, items 20 0.636 0.693 0.629

users, skills 0 0.579 0.605 0.67
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