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Abstract

Large, labeled datasets have driven deep learning methods
to achieve expert-level performance on a variety of medical
imaging tasks. We present CheXpert, a large dataset that con-
tains 224,316 chest radiographs of 65,240 patients. We de-
sign a labeler to automatically detect the presence of 14 ob-
servations in radiology reports, capturing uncertainties inher-
ent in radiograph interpretation. We investigate different ap-
proaches to using the uncertainty labels for training convolu-
tional neural networks that output the probability of these ob-
servations given the available frontal and lateral radiographs.
On a validation set of 200 chest radiographic studies which
were manually annotated by 3 board-certified radiologists, we
find that different uncertainty approaches are useful for differ-
ent pathologies. We then evaluate our best model on a test set
composed of 500 chest radiographic studies annotated by a
consensus of 5 board-certified radiologists, and compare the
performance of our model to that of 3 additional radiologists
in the detection of 5 selected pathologies. On Cardiomegaly,
Edema, and Pleural Effusion, the model ROC and PR curves
lie above all 3 radiologist operating points. We release the
dataset to the public as a standard benchmark to evaluate per-
formance of chest radiograph interpretation models.1

Introduction
Chest radiography is the most common imaging examina-
tion globally, critical for screening, diagnosis, and manage-
ment of many life threatening diseases. Automated chest ra-
diograph interpretation at the level of practicing radiologists
could provide substantial benefit in many medical settings,
from improved workflow prioritization and clinical decision
support to large-scale screening and global population health
initiatives. For progress, there is a need for labeled datasets
that (1) are large, (2) have strong reference standards, and (3)
provide expert human performance metrics for comparison.

Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://stanfordmlgroup.github.io/competitions/chexpert
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Figure 1: The CheXpert task is to predict the probability of
different observations from multi-view chest radiographs.

In this work, we present CheXpert (Chest eXpert), a large
dataset for chest radiograph interpretation. The dataset con-
sists of 224,316 chest radiographs of 65,240 patients labeled
for the presence of 14 common chest radiographic observa-
tions. We design a labeler that can extract observations from
free-text radiology reports and capture uncertainties present
in the reports by using an uncertainty label.

The CheXpert task is to predict the probability of 14 dif-
ferent observations from multi-view chest radiographs (see
Figure 1). We pay particular attention to uncertainty labels
in the dataset, and investigate different approaches towards
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Pathology Positive (%) Uncertain (%) Negative (%)

No Finding 16627 (8.86) 0 (0.0) 171014 (91.14)
Enlarged Cardiom. 9020 (4.81) 10148 (5.41) 168473 (89.78)
Cardiomegaly 23002 (12.26) 6597 (3.52) 158042 (84.23)
Lung Lesion 6856 (3.65) 1071 (0.57) 179714 (95.78)
Lung Opacity 92669 (49.39) 4341 (2.31) 90631 (48.3)
Edema 48905 (26.06) 11571 (6.17) 127165 (67.77)
Consolidation 12730 (6.78) 23976 (12.78) 150935 (80.44)
Pneumonia 4576 (2.44) 15658 (8.34) 167407 (89.22)
Atelectasis 29333 (15.63) 29377 (15.66) 128931 (68.71)
Pneumothorax 17313 (9.23) 2663 (1.42) 167665 (89.35)
Pleural Effusion 75696 (40.34) 9419 (5.02) 102526 (54.64)
Pleural Other 2441 (1.3) 1771 (0.94) 183429 (97.76)
Fracture 7270 (3.87) 484 (0.26) 179887 (95.87)
Support Devices 105831 (56.4) 898 (0.48) 80912 (43.12)

Table 1: The CheXpert dataset consists of 14 labeled obser-
vations. We report the number of studies which contain these
observations in the training set.

incorporating those labels into the training process. We as-
sess the performance of these uncertainty approaches on a
validation set of 200 labeled studies, where ground truth is
set by a consensus of 3 radiologists who annotated the set
using the radiographs. We evaluate the approaches on 5 ob-
servations selected based on their clinical significance and
prevalence in the dataset, and find that different uncertainty
approaches are useful for different observations.

We compare the performance of our final model to 3 addi-
tional board certified radiologists on a test set of 500 studies
on which the consensus of 5 separate board-certified radi-
ologists serves as ground truth. We find that on 4 out of 5
pathologies, the model ROC and PR curves lie above at least
2 of 3 radiologist operating points. We make our dataset pub-
licly available to encourage further development of models.

Dataset
CheXpert is a large public dataset for chest radiograph inter-
pretation, consisting of 224,316 chest radiographs of 65,240
patients labeled for the presence of 14 observations as posi-
tive, negative, or uncertain. We report the prevalences of the
labels for the different obsevations in Table 1.

Data Collection and Label Selection

We retrospectively collected chest radiographic studies from
Stanford Hospital, performed between October 2002 and
July 2017 in both inpatient and outpatient centers, along
with their associated radiology reports. From these, we sam-
pled a set of 1000 reports for manual review by a board-
certified radiologist to determine feasibility for extraction of
observations. We decided on 14 observations based on the
prevalence in the reports and clinical relevance, conforming
to the Fleischner Society’s recommended glossary (Hansell
et al. 2008) whenever applicable. “Pneumonia”, despite be-
ing a clinical diagnosis, was included as a label in order to
represent the images that suggested primary infection as the
diagnosis. The “No Finding” observation was intended to
capture the absence of all pathologies.

1. unremarkable cardiomediastinal silhouette
 
2. diffuse reticular pattern, which can be 
seen with an atypical infection or chronic 
fibrotic change.  no focal consolidation.
 
3. no pleural effusion or pneumothorax
 
4. mild degenerative changes in the lumbar 
spine and old right rib  fractures. 

Observation Labeler
Output

No Finding
Enlarged Cardiom. 0

Cardiomegaly

Lung Opacity 1
Lung Lesion
Edema
Consolidation 0
Pneumonia u
Atelectasis
Pneumothorax 0
Pleural Effusion 0
Pleural Other

Fracture 1

Support Devices

Figure 2: Output of the labeler when run on a report sampled
from our dataset. In this case, the labeler correctly extracts
all of the mentions in the report (underline) and classifies the
uncertainties (bolded) and negations (italicized).

Label Extraction from Radiology Reports
We developed an automated rule-based labeler to extract ob-
servations from the free text radiology reports to be used
as structured labels for the images. Our labeler is set up in
three distinct stages: mention extraction, mention classifica-
tion, and mention aggregation.

Mention Extraction The labeler extracts mentions from
a list of observations from the Impression section of radiol-
ogy reports, which summarizes the key findings in the ra-
diographic study. A large list of phrases was manually cu-
rated by multiple board-certified radiologists to match vari-
ous ways observations are mentioned in the reports.

Mention Classification After extracting mentions of ob-
servations, we aim to classify them as negative (“no evi-
dence of pulmonary edema, pleural effusions or pneumoth-
orax”), uncertain (“diffuse reticular pattern may represent
mild interstitial pulmonary edema”), or positive (“moder-
ate bilateral effusions and bibasilar opacities”). The ‘uncer-
tain’ label can capture both the uncertainty of a radiologist
in the diagnosis as well as ambiguity inherent in the report
(“heart size is stable”). The mention classification stage is
a 3-phase pipeline consisting of pre-negation uncertainty,
negation, and post-negation uncertainty. Each phase consists
of rules which are matched against the mention; if a match is
found, then the mention is classified accordingly (as uncer-
tain in the first or third phase, and as negative in the second
phase). If a mention is not matched in any of the phases, it
is classified as positive.

Rules for mention classification are designed on the uni-
versal dependency parse of the report. To obtain the uni-
versal dependency parse, we follow a procedure similar to
Peng et al. (2018): first, the report is split and tokenized
into sentences using NLTK (Bird, Klein, and Loper 2009);
then, each sentence is parsed using the Bllip parser trained
using David McClosky’s biomedical model (Charniak and
Johnson 2005; McClosky 2010); finally, the universal de-
pendency graph of each sentence is computed using Stan-
ford CoreNLP (De Marneffe et al. 2014).
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Mention F1 Negation F1 Uncertain F1
Category NIH Ours NIH Ours NIH Ours

Atelectasis 0.976 0.998 0.526 0.833 0.661 0.936
Cardiomegaly 0.647 0.973 0.000 0.909 0.211 0.727
Consolidation 0.996 0.999 0.879 0.981 0.438 0.924
Edema 0.978 0.993 0.873 0.962 0.535 0.796
Pleural Effusion 0.985 0.996 0.951 0.971 0.553 0.707
Pneumonia 0.660 0.992 0.703 0.750 0.250 0.817
Pneumothorax 0.993 1.000 0.971 0.977 0.167 0.762
Enlarged Cardiom. N/A 0.935 N/A 0.959 N/A 0.854
Lung Lesion N/A 0.896 N/A 0.900 N/A 0.857
Lung Opacity N/A 0.966 N/A 0.914 N/A 0.286
Pleural Other N/A 0.850 N/A 1.000 N/A 0.769
Fracture N/A 0.975 N/A 0.807 N/A 0.800
Support Devices N/A 0.933 N/A 0.720 N/A N/A
No Finding N/A 0.769 N/A N/A N/A N/A

Macro-average N/A 0.948 N/A 0.899 N/A 0.770
Micro-average N/A 0.969 N/A 0.952 N/A 0.848

Table 2: Performance of the labeler of NIH and our la-
beler on the report evaluation set on tasks of mention ex-
traction, uncertainty detection, and negation detection, as
measured by the F1 score. The Macro-average and Micro-
average rows are computed over all 14 observations.

Mention Aggregation We use the classification for each
mention of observations to arrive at a final label for 14 ob-
servations that consist of 12 pathologies as well as the “Sup-
port Devices” and “No Finding” observations. Observations
with at least one mention that is positively classified in the
report is assigned a positive (1) label. An observation is as-
signed an uncertain (u) label if it has no positively classified
mentions and at least one uncertain mention, and a negative
label if there is at least one negatively classified mention. We
assign (blank) if there is no mention of an observation. The
“No Finding” observation is assigned a positive label (1) if
there is no pathology classified as positive or uncertain. An
example of the labeling system run on a report is shown in
Figure 2.

Labeler Results
We evaluate the performance of the labeler and compare it
to the performance of another automated radiology report
labeler on a report evaluation set.

Report Evaluation Set

The report evaluation set consists of 1000 radiology reports
from 1000 distinct randomly sampled patients that do not
overlap with the patients whose studies were used to develop
the labeler. Two board-certified radiologists without access
to additional patient information annotated the reports to la-
bel whether each observation was mentioned as confidently
present (1), confidently absent (0), uncertainly present (u),
or not mentioned (blank), after curating a list of labeling
conventions to adhere to. After both radiologists indepen-
dently labeled each of the 1000 reports, disagreements were
resolved by consensus discussion. The resulting annotations
serve as ground truth on the report evaluation set.

Comparison to NIH labeler
On the radiology report evaluation set, we compare our la-
beler against the method employed in Peng et al. (2018)
which was used to annotate another large dataset of chest
radiographs using radiology reports (Wang et al. 2017). We
evaluate labeler performance on three tasks: mention extrac-
tion, negation detection, and uncertainty detection. For the
mention extraction task, we consider any assigned label (1,
0, or u) as positive and blank as negative. On the negation
detection task, we consider 0 labels as positive and all other
labels as negative. On the uncertainty detection task, we con-
sider u labels as positive and all other labels as negative. We
report the F1 scores of the labeling algorithms for each of
these tasks.

Table 2 shows the performance of the labeling methods.
Across all observations and on all tasks, our labeling algo-
rithm achieves a higher F1 score. On negation detection, our
labeling algorithm significantly outperforms the NIH labeler
on Atelectasis and Cardiomegaly, and achieves notably bet-
ter performance on Consolidation and Pneumonia. On un-
certainty detection, our labeler shows large gains over the
NIH labeler, particularly on Cardiomegaly, Pneumonia, and
Pneumothorax.

We note three key differences between our method and
the method of Wang et al. (2017). First, we do not the
use automatic mention extractors like MetaMap or DNorm,
which we found produced weak extractions when applied
to our collection of reports. Second, we incorporate sev-
eral additional rules in order to capture the large variation in
the ways negation and uncertainty are conveyed. Third, we
split uncertainty classification of mentions into pre-negation
and post-negation, which allowed us to resolve cases of
uncertainty rules double matching with negation rules in
the reports. For example, the following phrase “cannot ex-
clude pneumothorax.” conveys uncertainty in the presence
of pneumothorax. Without the pre-negation stage, the ‘pneu-
mothorax’ match is classified as negative due to the ‘exclude
XXX’ rule. However, by applying the ‘cannot exclude’ rule
in the pre-negation stage, this observation can be correctly
classified as uncertain.

Model
We train models that take as input a single-view chest ra-
diograph and output the probability of each of the 14 obser-
vations. When more than one view is available, the models
output the maximum probability of the observations across
the views.

Uncertainty Approaches
The training labels in the dataset for each observation are
either 0 (negative), 1 (positive), or u (uncertain). We explore
different approaches to using the uncertainty labels during
the model training.

Ignoring A simple approach to handling uncertainty is to
ignore the u labels during training, which serves as a base-
line to compare approaches which explicitly incorporate the
uncertainty labels. In this approach (called U-Ignore), we
optimize the sum of the masked binary cross-entropy losses
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Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion

U-Ignore 0.818 (0.759,0.877) 0.828 (0.769,0.888) 0.938 (0.905,0.970) 0.934 (0.893,0.975) 0.928 (0.894,0.962)
U-Zeros 0.811 (0.751,0.872) 0.840 (0.783,0.897) 0.932 (0.898,0.966) 0.929 (0.888,0.970) 0.931 (0.897,0.965)
U-Ones 0.858 (0.806,0.910) 0.832 (0.773,0.890) 0.899 (0.854,0.944) 0.941 (0.903,0.980) 0.934 (0.901,0.967)

U-SelfTrained 0.833 (0.776,0.890) 0.831 (0.770,0.891) 0.939 (0.908,0.971) 0.935 (0.896,0.974) 0.932 (0.899,0.966)
U-MultiClass 0.821 (0.763,0.879) 0.854 (0.800,0.909) 0.937 (0.905,0.969) 0.928 (0.887,0.968) 0.936 (0.904,0.967)

Table 3: AUROC scores on the validation set of the models trained using different approaches to using uncertainty labels. For
each of the uncertainty approaches, we choose the best 10 checkpoints per run using the average ROC across the competition
tasks. We run each model three times, and take the ensemble of the 30 generated checkpoints on the validation set.

over the observations, masking the loss for the observations
which are marked as uncertain for the study. Formally, the
loss for an example X is given by

L(X, y) = −
∑
o

1{yo ̸= u}[yo log p(Yo = 1|X)

+ (1− yo) log p(Yo = 0|X)],

where X is the input image, y is the vector of labels of length
14 for the study, and the sum is taken over all 14 observa-
tions. Ignoring the uncertainty label is analogous to the list-
wise (complete case) deletion method for imputation (Gra-
ham 2009), which is when all cases with a missing value
are deleted. Such methods can produce biased models if the
cases are not missing completely at random. In this dataset,
uncertainty labels are quite prevalent for some observations:
for Consolidation, the uncertainty label is almost twice as as
prevalent (12.78%) as the positive label (6.78%), and thus
this approach ignores a large proportion of labels, reducing
the effective size of the dataset.

Binary Mapping We investigate whether the uncertain la-
bels for any of the observations can be replaced by the 0 la-
bel or the 1 label. In this approach, we map all instances of
u to 0 (U-Zeroes model), or all to 1 (U-Ones model).

These approaches are similar to zero imputation strategies
in statistics, and mimic approaches in multi-label classifica-
tion methods where missing examples are used as negative
labels (Kolesov et al. 2014). If the uncertainty label does
convey semantically useful information to the classifier, then
we expect that this approach can distort the decision making
of classifiers and degrade their performance.

Self-Training One framework for approaching uncer-
tainty labels is to consider them as unlabeled examples,
lending its way to semi-supervised learning (Zhu 2006).
Most closely tied to our setting is multi-label learning with
missing labels (MLML) (Wu et al. 2015), which aims to
handle multi-label classification given training instances that
have a partial annotation of their labels.

We investigate a self-training approach (U-SelfTrained)
for using the uncertainty label. In this approach, we first train
a model using the U-Ignore approach (that ignores the u la-
bels during training) to convergence, and then use the model
to make predictions that re-label each of the uncertainty la-
bels with the probability prediction outputted by the model.
We do not replace any instances of 1 or 0s. On these rela-

beled examples, we set up loss as the mean of the binary
cross-entropy losses over the observations.

Our work follows the approach of (Yarowsky 1995), who
train a classifier on labeled examples and then predict on
unlabeled examples labeling them when the prediction is
above a certain threshold, and repeating until convergence.
(Radosavovic et al. 2017) build upon the self-training tech-
nique and remove the need for iteratively training models,
predicting on transformed versions of the inputs instead of
training multiple models, and output a target label for each
unlabeled example; soft labels, which are continuous prob-
ability outputs rather than binary, have also been used (Hin-
ton, Vinyals, and Dean 2015; Li et al. 2017a).

3-Class Classification We finally investigate treating the
u label as its own class, rather than mapping it to a binary
label, for each of the 14 observations. We hypothesize that
with this approach, we can better incorporate information
from the image by supervising uncertainty, allowing the net-
work to find its own representation of uncertainty on differ-
ent pathologies. In this approach (U-MultiClass model), for
each observation, we output the probability of each of the 3
possible classes {p0, p1, pu} ∈ [0, 1], p0 + p1 + pu = 1. We
set up the loss as the mean of the multi-class cross-entropy
losses over the observations. At test time, for the probabil-
ity of a particular observation, we output the probability of
the positive label after applying a softmax restricted to the
positive and negative classes.

Training Procedure
We follow the same architecture and training process for
each of the uncertainty approaches. We experimented with
several convolutional neural network architectures, specif-
ically ResNet152, DenseNet121, Inception-v4, and SE-
ResNeXt101, and found that the DenseNet121 architecture
produced the best results. Thus we used DenseNet121 for
all our experiments. Images are fed into the network with
size 320× 320 pixels. We use the Adam optimizer with de-
fault β-parameters of β1 = 0.9, β2 = 0.999 and learning
rate 1× 10−4 which is fixed for the duration of the training.
Batches are sampled using a fixed batch size of 16 images.
We train for 3 epochs, saving checkpoints every 4800 itera-
tions.

Validation Results
We compare the performance of the different uncertainty ap-
proaches on a validation set on which the consensus of radi-

593



0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Atelectasis (>0 rads)

LabelL  (0.20,0.22)
LabelU  (0.10,0.51)
Model (AUC = 0.85)
Rad1  (0.21,0.80)
Rad2  (0.18,0.71)
Rad3  (0.31,0.92)
RadMaj  (0.22,0.89)

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Cardiomegaly (>3 rads)

LabelL  (0.16,0.24)
LabelU  (0.04,0.42)
Model (AUC = 0.90)
Rad1  (0.05,0.48)
Rad2  (0.23,0.85)
Rad3  (0.11,0.70)
RadMaj  (0.08,0.75)

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Consolidation (>2 rads)

LabelL  (0.18,0.31)
LabelU  (0.05,0.41)
Model (AUC = 0.90)
Rad1  (0.11,0.66)
Rad2  (0.09,0.48)
Rad3  (0.03,0.45)
RadMaj  (0.05,0.52)

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Edema (>3 rads)

LabelL  (0.15,0.49)
LabelU  (0.12,0.65)
Model (AUC = 0.92)
Rad1  (0.09,0.63)
Rad2  (0.19,0.79)
Rad3  (0.07,0.58)
RadMaj  (0.08,0.68)

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Pleural Effusion (>3 rads)

LabelL  (0.21,0.78)
LabelU  (0.16,0.88)
Model (AUC = 0.97)
Rad1  (0.05,0.82)
Rad2  (0.17,0.83)
Rad3  (0.14,0.89)
RadMaj  (0.10,0.89)

0.00 0.25 0.50 0.75 1.00
Sensitivity

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Atelectasis (>0 rads)

LabelL  (0.22,0.32)
LabelU  (0.51,0.70)
Model (AUC = 0.69)
Rad1  (0.80,0.62)
Rad2  (0.71,0.64)
Rad3  (0.92,0.56)
RadMaj  (0.89,0.64)

0.00 0.25 0.50 0.75 1.00
Sensitivity

Cardiomegaly (>3 rads)

LabelL  (0.24,0.39)
LabelU  (0.42,0.82)
Model (AUC = 0.81)
Rad1  (0.48,0.82)
Rad2  (0.85,0.61)
Rad3  (0.70,0.74)
RadMaj  (0.75,0.80)

0.00 0.25 0.50 0.75 1.00
Sensitivity

Consolidation (>2 rads)
LabelL  (0.31,0.10)
LabelU  (0.41,0.34)
Model (AUC = 0.44)
Rad1  (0.66,0.27)
Rad2  (0.48,0.25)
Rad3  (0.45,0.45)
RadMaj  (0.52,0.38)

0.00 0.25 0.50 0.75 1.00
Sensitivity

Edema (>3 rads)

LabelL  (0.49,0.38)
LabelU  (0.65,0.50)
Model (AUC = 0.66)
Rad1  (0.63,0.58)
Rad2  (0.79,0.44)
Rad3  (0.58,0.59)
RadMaj  (0.68,0.62)

0.00 0.25 0.50 0.75 1.00
Sensitivity

Pleural Effusion (>3 rads)

LabelL  (0.78,0.49)
LabelU  (0.88,0.59)
Model (AUC = 0.91)
Rad1  (0.82,0.80)
Rad2  (0.83,0.55)
Rad3  (0.89,0.63)
RadMaj  (0.89,0.71)

Figure 3: We compare the performance of 3 radiologists to the model against the test set ground truth in both the ROC and the
PR space. We examine whether the radiologist operating points lie below the curves to determine if the model is superior to
the radiologists. We also compute the lower (LabelL) and upper bounds (LabelU) of the performance of the labels extracted
automatically from the radiology report using our labeling system against the test set ground truth.

ologist annotations serves as ground truth.

Validation Set
The validation set contains 200 studies from 200 patients
randomly sampled from the full dataset with no patient over-
lap with the report evaluation set. Three board-certified radi-
ologists individually annotated each of the studies in the val-
idation set, classifying each observation into one of present,
uncertain likely, uncertain unlikely, and absent. Their anno-
tations were binarized such that all present and uncertain
likely cases are treated as positive and all absent and un-
certain unlikely cases are treated as negative. The majority
vote of these binarized annotations is used to define a strong
ground truth (Gulshan et al. 2016).

Comparison of Uncertainty Approaches
Procedure We evaluate the approaches using the area un-
der the receiver operating characteristic curve (AUC) met-
ric. We focus on the evaluation of 5 observations which we
call the competition tasks, selected based of clinical im-
portance and prevalence in the validation set: (a) Atelec-
tasis, (b) Cardiomegaly, (c) Consolidation, (d) Edema, and
(e) Pleural Effusion. We report the 95% two-sided confi-
dence intervals of the AUC using the non-parametric method
by DeLong (DeLong, DeLong, and Clarke-Pearson 1988;
Sun and Xu 2014). For each pathology, we also test whether
the AUC of the best-performing approach is significantly
greater than the AUC of the worst-performing approach us-
ing the one-sided DeLong’s test for two correlated ROC
curves (DeLong, DeLong, and Clarke-Pearson 1988). We
control for multiple hypothesis testing using the Benjamini-
Hochberg procedure (Benjamini and Hochberg 1995); an

adjusted p-value < 0.05 indicates statistical significance.

Model Selection For each of the uncertainty approaches,
we choose the best 10 checkpoints per run using the average
AUC across the competition tasks. We run each model three
times, and take the ensemble of the 30 generated check-
points on the validation set by computing the mean of the
output probabilities over the 30 models.

Results The validation AUCs achieved by the different ap-
proaches to using the uncertainty labels are shown in Ta-
ble 3. There are a few significant differences between the
performance of the uncertainty approaches. On Atelecta-
sis, the U-Ones model (AUC=0.858) significantly outper-
forms (p = 0.03) the U-Zeros model (AUC=0.811). On
Cardiomegaly, we observe that the U-MultiClass model
(AUC=0.854) performs significantly better (p < 0.01)
than the U-Ignore model (AUC=0.828). On Consolidation,
Edema and Pleural Effusion, we do not find the best models
to be significantly better than the worst.

Analysis We find that ignoring the uncertainty label is not
an effective approach to handling uncertainty in the dataset,
and is particularly ineffective on Cardiomegaly. Most of the
uncertain Cardiomegaly cases are borderline cases such as
“minimal cardiac enlargement”, which if ignored, would
likely cause the model to perform poorly on cases which are
difficult to distinguish. However, explicitly supervising the
model to distinguish between borderline and non-borderline
cases (as in the U-MultiClass approach) could enable the
model to better disambiguate the borderline cases. More-
over, assignment of the Cardiomegaly label when the heart
is mentioned in the impression are difficult to categorize in
many cases, particularly for common mentions such as “un-
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(a) Frontal and lateral radiographs of the chest in a patient
with bilateral pleural effusions; the model localizes the ef-
fusions on both the frontal (top) and lateral (bottom) views,
with predicted probabilities p = 0.936 and p = 0.939 on
the frontal and lateral views respectively.

(b) Single frontal radiograph of the chest demonstrates bilateral
mid and lower lung interstitial predominant opacities and car-
diomegaly most consistent with cardiogenic pulmonary edema.
The model accurately classifies the edema by assigning a prob-
ability of p = 0.824 and correctly localizes the pulmonary
edema. Two independent radiologist readers misclassified this
examination as negative or uncertain unlikely for edema.

Figure 4: The final model localizes findings in radiographs using Gradient-weighted Class Activation Mappings. The interpre-
tation of the radiographs in the subcaptions is provided by a board-certified radiologist.

changed appearance of the heart” or “stable cardiac con-
tours” either of which could be used in both enlarged and
non-enlarged cases. These cases were classified as uncer-
tain by the labeler, and therefore the binary assignment of 0s
and 1s in this setting fails to achieve optimal performance as
there is insufficient information conveyed by these modifi-
cations.

In the detection of Atelectasis, the U-Ones approach per-
forms the best, hinting that the uncertainty label for this ob-
servation is effectively utilized when treated as positive. We
expect that phrases such as “possible atelectasis” or “may
be atelectasis,” were meant to describe the most likely find-
ings in the image, rather than convey uncertainty, which sup-
ports the good performance of U-Ones on this pathology.
We suspect a similar explanation for the high performance
of U-Ones on Edema, where uncertain phrases like “possi-
ble mild pulmonary edema” in fact convey likely findings. In
contrast, the U-Ones approach performs worst on the Con-
solidation label, whereas the U-Zeros approach performs the
best. We also note that Atelectasis and Consolidation are of-
ten mentioned together in radiology reports. For example,
the phrase “findings may represent atelectasis versus con-
solidation” is very common. In these cases, our labeler as-
signs uncertain for both observations, but we find that in the
ground truth panel review that many of these sorts of uncer-
tainty cases are often instead resolved as Atelectasis-positive
and Consolidation-negative.

Test Results
We compare the performance of our final model to radiol-
ogists on a test set. We selected the final model based on
the best performing ensemble on each competition task on
the validation set: U-Ones for Atelectasis and Edema, U-
MultiClass for Cardiomegaly and Pleural Effusion, and U-
SelfTrained for Consolidation.

Test Set
The test set consists of 500 studies from 500 patients ran-
domly sampled from the 1000 studies in the report test
set. Eight board-certified radiologists individually annotated
each of the studies in the test set following the same proce-
dure and post-processing as described for the validation set.
The majority vote of 5 radiologist annotations serves as a
strong ground truth: 3 of these radiologists were the same as
those who annotated the validation set and the other 2 were
randomly sampled. The remaining 3 radiologist annotations
were used to benchmark radiologist performance.

Comparison to Radiologists
Procedure For each of the 3 individual radiologists and
for their majority vote, we compute sensitivity (recall),
specificity, and precision against the test set ground truth.
To compare the model to radiologists, we plot the radiolo-
gist operating points with the model on both the ROC and
Precision-Recall (PR) space. We examine whether the radi-
ologist operating points lie below the curves to determine
if the model is superior to the radiologists. We also com-
pute the performance of the labels extracted automatically
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from the radiology report using our labeling system against
the test set ground truth. We convert the uncertainty labels
to binary labels by computing the upper bound of the la-
bels performance (by assigning the uncertain labels to the
ground truth values) and the lower bound of the labels (by
assigning the uncertain labels to the opposite of the ground
truth values), and plot the two operating points on the curves,
denoted LabelU and LabelL respectively. We also measure
calibration of the model before and after applying post-
processing calibration techniques, namely isotonic regres-
sion (Zadrozny and Elkan 2002) and Platt scaling (Platt and
others 1999), using the scaled Brier score (Steyerberg 2008).

Results Figure 3 illustrates these plots on all competition
tasks. The model achieves the best AUC on Pleural Effusion
(0.97), and the worst on Atelectasis (0.85). The AUC of all
other observations are at least 0.9. The model achieves the
best AUPRC on Pleural Effusion (0.91) and the worst on
Consolidation (0.44). On Cardiomegaly, Edema, and Pleu-
ral Effusion, the model achieves higher performance than
all 3 radiologists but not their majority vote. On Consoli-
dation, model performance exceeds 2 of the 3 radiologists,
and on Atelectasis, all 3 radiologists perform better than the
model. On all competition tasks, the lower bound of the re-
port labels lies below the model curves. On all tasks besides
Atelectasis, the upper bound of the report label lies on or
below the model operating curves. On most of the tasks, the
upper bound of the labeler performs comparably to the ra-
diologists. The average scaled Brier score of the model be-
fore post-processing calibration is 0.110, after isotonic re-
gression is 0.107, and after platt scaling is 0.101.

Limitations We acknowledge two limitations to perform-
ing this comparison. First, neither the radiologists nor the
model had access to patient history or previous examina-
tions, which has been shown to decrease diagnostic per-
formance in chest radiograph interpretation (Potchen et al.
1979; Berbaum, Franken, and Smith 1985). Second, no sta-
tistical test was performed to assess whether the difference
between the performance of the model and the radiologists
is statistically significant.

Visualization
We visualize the areas of the radiograph which the model
predicts to be most indicative of each observation us-
ing Gradient-weighted Class Activation Mappings (Grad-
CAMs) (Selvaraju et al. 2016). Grad-CAMs use the gradi-
ent of an output class into the final convolutional layer to
produce a low resolution map which highlights portions of
the image which are important in the detection of the output
class. Specifically, we construct the map by using the gradi-
ent of the final linear layer as the weights and performing a
weighted sum of the final feature maps using those weights.
We upscale the resulting map to the dimensions of the origi-
nal image and overlay the map on the image. Some examples
of the Grad-CAMs are illustrated in Figure 4.

Existing Chest Radiograph Datasets
One of the main obstacles in the development of chest ra-
diograph interpretation models has been the lack of datasets

with strong radiologist-annotated groundtruth and expert
scores against which researchers can compare their mod-
els. There are few chest radiographic imaging datasets that
are publicly available, but none of them have test sets with
strong ground truth or radiologist performances. The Indiana
Network for Patient Care hosts the OpenI dataset (Demner-
Fushman et al. 2015) consisting of 7,470 frontal-view radio-
graphs and radiology reports which have been labeled with
key findings by human annotators . The National Cancer In-
stitute hosts the PLCO Lung dataset (Gohagan et al. 2000)
of chest radiographs obtained during a study on lung cancer
screening . The dataset contains 185,421 full resolution im-
ages, but due to the nature of the collection process, it is has
a low prevalence of clinically important pathologies such as
Pneumothorax, Consolidation, Effusion, and Cardiomegaly.
The MIMIC-CXR dataset (Rubin et al. 2018) has been re-
cently announced but is not yet publicly available.

The most commonly used benchmark for developing
chest radiograph interpretation models has been the ChestX-
ray14 dataset (Wang et al. 2017). Due to the introduc-
tion of this large dataset, substantial progress has been
made towards developing automated chest radiograph in-
terpretation models (Yao et al. 2017; Rajpurkar et al. 2017;
Li et al. 2017b; Kumar, Grewal, and Srivastava 2018; Wang
et al. 2018; Guan et al. 2018; Yao et al. 2018). However, us-
ing the NIH dataset as a benchmark on which to compare
models is problematic as the labels in the test set are ex-
tracted from reports using an automatic labeler. The CheX-
pert dataset that we introduce features radiologist-labeled
validation and test sets which serve as strong reference stan-
dards, as well as expert scores to allow for robust evaluation
of different algorithms.

Conclusion
We present a large dataset of chest radiographs called
CheXpert, which features uncertainty labels and radiologist-
labeled reference standard evaluation sets. We investigate a
few different approaches to handling uncertainty and vali-
date them on the evaluation sets. On a test set with a strong
ground truth, we find that our best model outperforms at
least 2 of the 3 radiologists in the detection of 4 clinically
relevant pathologies. We hope that the dataset will help de-
velopment and validation of chest radiograph interpretation
models towards improving healthcare access and delivery
worldwide.
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