AAAI Publications, Workshops at the Thirtieth AAAI Conference on Artificial Intelligence

Font Size: 
Learning to REDUCE: A Reduced Electricity Consumption Prediction Ensemble
Saima Aman, Charalampos Chelmis, Viktor Prasanna

Last modified: 2016-03-29


Utilities use Demand Response (DR) to balance supply and demand in the electric grid by involving customers in efforts to reduce electricity consumption during peak periods. To implement and adapt DR under dynamically changing conditions of the grid, reliable prediction of reduced consumption is critical. However, despite the wealth of research on electricity consumption prediction and DR being long in practice, the problem of reduced consumption prediction remains largely un-addressed. In this paper, we identify unique computational challenges associated with the prediction of reduced consumption and contrast this to that of normal consumption and DR baseline prediction. We propose a novel ensemble model that leverages different sequences of daily electricity consumption on DR event days as well as contextual attributes for reduced consumption prediction. We demonstrate the success of our model on a large, real-world, high resolution dataset from a university microgrid comprising of over 950 DR events across a diverse set of 32 buildings. Our model achieves an average error of 13.5%, an 8.8% improvement over the baseline. Our work is particularly relevant for buildings where electricity consumption is not tied to strict schedules. Our results and insights should prove useful to the researchers and practitioners working in the sustainable energy domain.


Sustainability; smart grid; consumption prediction

Full Text: PDF