
An Exact Dynamic Programming Solution for a
Decentralized Two-Player Markov Decision Process

Jeff Wu and Sanjay Lall
Department of Electrical Engineering
350 Serra Mall, Stanford, CA 94305

Abstract

We present an exact dynamic programming solution for a
finite-horizon decentralized two-player Markov decision pro-
cess, where player 1 only has access to its own states, while
player 2 has access to both player’s states but cannot affect
player 1’s states. The solution is obtained by solving several
centralized partially-observable Markov decision processes.
We then conclude with several computational examples.

Introduction and Prior Work

Solving decentralized control problems, whether from the
framework of finite Markov decision processes (MDPs) or
linear-quadratic-Gaussian (LQG) problems, has proven to
be much more difficult than their centralized versions. For
MDP problems, Bernstein et al. (2002) has shown that solv-
ing general decentralized MDPs, even when only two play-
ers are involved, is NEXP-complete. On the linear system
side, Witsenhausen (1968) gave a famous counterexample
of a simple two-player decentralized LQG problem whose
optimal solution is nonlinear and still unknown to this day,
and Papadimitriou and Tsitsiklis (1986) have shown that a
discrete version of Witsenhausen’s counterexample is NP-
hard.

Much research has thus concentrated on finding useful
classes of decentralized problems that are more tractable.
Hsu and Marcus (1982) have shown that if all players share
their information with a one-step time delay, then the decen-
tralized MDPs can be solved tractably via dynamic program-
ming. Becker et al. (2004) have shown that if each player
has independent transitions and observations, then the com-
plexity can be dramatically reduced via their coverage set
algorithm, although the overall complexity is still very high.
Mahajan, Nayyar, and Tenenketzis (2008) have shown that
if each of the players has a common observation with perfect
recall, as well as a private message with finite memory, then
the problem can be viewed as several centralized partially-
observable Markov decision processes (POMDPs). Our pa-
per will show that even if player 2 has unlimited memory to
store his own states, he only needs finite memory to com-
pute the optimal controller, thus allowing the problem to be
solved with centralized POMDP methods.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

On the linear system side, there has been dramatic
progress. Radner (1962) has shown that LQG team de-
cision problems can be solved with a set of linear equa-
tions, with the optimal controllers being linear. Ho and
Chu (1972) show that if a discrete-time finite-horizon de-
centralized LQG problem has a partially nested informa-
tion structure (i.e. if player 1 affects player 2, then player
2 must have access to player 1’s information), then it is
reducible to an LQG team decision problem and readily
solved. Rotkowitz and Lall (2006) have shown that an
even more general constraint on the information structure,
called quadratic invariance, allows decentralized linear con-
trol problems to be cast as convex optimization problems.
Very recently, Swigart and Lall (2010) have used spectral
factorization techniques to derive an optimal state-space so-
lution to two-player finite-horizon linear quadratic regulator
with a partially nested information structure. Although it has
long been known that such a problem can be solved with a
set of linear equations, their work not only greatly reduces
the complexity of solving these equations (in the same way
that dynamic programming reduces the complexity of solv-
ing for the centralized linear quadratic regulator), but also
yields important insight on the structure of the optimal con-
trollers.

This paper can be viewed as an MDP generalization of
Swigart and Lall’s paper. It therefore serves as another
bridge between the simplifying assumptions that work for
both decentralized LQG and MDP problems. Moreover, our
solution yields important insight on the structure of the op-
timal controllers.

Problem Formulation

For each time t = 0, 1, . . . , N , let X1t, X2t, U1t, U2t be ran-
dom variables taking values in the finite sets X1,X2,U1,U2,
respectively. The variables Xit and Uit have the interpreta-
tions of being the state and the action taken by player i at
time t. For convenience, we shall use the notation Xt

i and
U t

i to denote the vectors (Xi0, . . . , Xit) and (Ui0, . . . , Uit),
respectively. Thus Xt

i and U t
i denote the history of the states

and actions of player i at time t.

The joint distribution for all these random variables is

112

specified by the product of the conditional distributions

P
{

X1t = x1t, X2t = x2t

U1t = u1t, U2t = u2t

∣

∣

∣

Xt−1
1 = xt−1

1 , Xt−1
2 = xt−1

2

U t−1
1 = ut−1

1 , U t−1
2 = ut−1

2

}

=
p1t(x1t|x1,t−1, u1,t−1)·
p2t(x2t|x1,t−1, x2,t−1, u1,t−1, u2,t−1)·
q1t(u1t|x

t
1, u

t−1
1) · q2t(u2t|x

t
1, x

t
2, u

t
1, u

t−1
2)

where

1. p1t(x1t|x1,t−1, u1,t−1) is the transition function for
player 1, represented by the conditional distribution of
player 1’s state give its past state and action. Note that
player 1’s state is not affected by player 2.

2. p2t(x2t|x1,t−1, x2,t−1, u1,t−1, u2,t−1) is the transition
function for player 2, represented by the conditional dis-
tribution of player 2’s state given both player 1 and player
2’s past state and action. Here, player 2’s state is affected
by player 1.

3. q1t(u1t|x
t
1, u

t−1
1) is the (randomized) controller for

player 1, represented by the conditional distribution of
player 1’s action given the history of player 1’s states and
actions. Again, note that player 1’s action is not affected
by player 2.

4. q2t(u2t|x
t
1, x

t
2, u

t
1, u

t−1
2) is the (randomized) controller

for player 2, represented by the conditional distribution of
player 2’s action given the history of both players’ states
and actions. Here, player 2’s action is obviously affected
by player 1.

For the t = 0 case, we can assume that X1,−1 = X2,−1 =
U1,−1 = U2,−1 = 0, so that we can drop x1,−1, x2,−1,
u1,−1, and u2,−1 arguments when convenient.

For each t, let ct(X1t, X2t, U1t, U2t) denote the cost at
time t, where ct : X1 ×X2 × U1 × U2 → R is a fixed func-
tion. The goal is to choose controllers q1 = (q10, . . . , q1N)
and q2 = (q20, . . . , q2N) to minimize the total expected cost
from time 0 to N , i.e.

J(q1, q2) =
N

∑

t=0

E[ct(X1t, X2t, U1t, U2t)]

=

N
∑

t=0

∑

xt
1,xt

2

ut
1,ut

2

t
∏

i=0

p1i(x1i|x1,i−1, u1,i−1)·
p2i(x2i|x1,i−1, x2,i−1, u1,i−1, u2,i−1)·
q1i(u1i|x

i
1, u

i−1
1)·

q2i(u2i|x
i
1, x

i
2, u

i
1, u

i−1
2)

ct(x1t, x2t, u1t, u2t)

Dynamic Programming Solution

To develop a practical dynamic programming solution to this
problem, we need to prove the following key result.

Theorem 1. There exists optimal controllers (q∗1 , q∗2) where
for each t, there are functions K1t : X t

1 → U1 and K2t :
X t

1 ×X2 → U2 where

q∗1t(u1t|x
t
1, u

t−1
1) =

{

1, u1t = K1t(x
t
1)

0, otherwise

q∗2t(u2t|x
t
1, x

t
2, u

t
1, u

t−1
2) =

{

1, u2t = K2t(x
t
1, x2t)

0, otherwise

In other words, there are optimal controllers such that U1t

is a deterministic function of Xt
1 and U2t is a deterministic

function of (Xt
1, X2t).

Proof. Note that J(q1, q2) is a continuous function of
(q1, q2). Moreover, the set of possible (q1, q2) is a finite
Cartesian product of probability simplexes, and is therefore
compact. Thus J(q1, q2) has a minimizer, which we will call
(q∗1 , q∗2).

We now show how to transform (q∗1 , q∗2) into the desired
form without affecting optimality. For any given t and
(xt

1, u
t−1
1), note that J(q∗1 , q∗2) is an affine function of the

variables q∗1t(·|x
t
1, u

t−1
1), provided the other variables are

fixed. Let K1t(x
t
1, u

t−1
1) ∈ U1 be the index of a variable

in q∗1t(·|x
t
1, u

t−1
1) whose corresponding linear coefficient

achieves the lowest value. Then if we replace q∗1t(·|x
t
1, u

t−1
1)

with

q∗1t(u1t|x
t
1, u

t−1
1) =

{

1, u1t = K1t(x
t
1, u

t−1
1)

0, otherwise

we can never increase J(q∗1 , q∗2). Thus without affecting op-
timality, we can transform the optimal controller for player
1 into a deterministic one, and by a similar argument, we can
also do so for player 2.

We have so far shown that U1t needs only to be a de-
terministic function of (Xt

1, U
t−1
1) and U2t a deterministic

function of (Xt
1, X

t
2, U

t
1, U

t−1
2). But it is easy to see that

U1t only needs to be a function of Xt
1, since U10 is a func-

tion of only X0
1 , and if U10, . . . , U1,t−1 are functions of

only X0
1 , . . . , Xt−1

1 , respectively, then U1t is a function of

(Xt
1, U

t−1
1), and therefore of just Xt

1. By a similar inductive
argument, U2t needs to be a function of only (Xt

1, X
t
2).

To complete the proof, we need to show that U2t actually
can be a function of only (Xt

1, X2t). In light of what we
have just proven, we can rewrite the cost function as

J(q1, q2) =

N
∑

t=0

∑

xt
1,xt

2

ut
1,ut

2

t
∏

i=0

p1i(x1i|x1,i−1, u1,i−1)·
p2i(x2i|x1,i−1, x2,i−1, u1,i−1, u2,i−1)·
q1i(u1i|x

i
1)q2i(u2i|x

i
1, x

i
2)

ct(x1t, x2t, u1t, u2t)

where the dependencies of q1i on ui−1
1 and q2i on (ui

1, u
i−1
2)

have been dropped. As before, let (q∗1 , q∗2) be a minimizer of
this cost function. Then given t and (xt

1, x
t
2), J(q∗1 , q∗2) can

be written as the following affine function of q∗2t(·|x
t
1, x

t
2)

(provided the other variables are fixed):

αt(x
t
1, x

t
2)

∑

u2t

βt(x
t
1, x

t
2, u2t)q

∗
2t(u2t|x

t
1, x

t
2) + γt(x

t
1, x

t
2)

113

where

αt(x
t
1, x

t
2) =

∑

u
t−1

1

u
t−1

2

t
∏

i=0

p1i(x1i|x1,i−1, u1,i−1)·
p2i(x2i|x1,i−1, x2,i−1, u1,i−1, u2,i−1)

∏t−1
i=0 q∗1i(u1i|x

i
1)q

∗
2i(u2i|x

i
1, x

i
2)

βt(x
t
1, x

t
2, u2t) =

∑

u1t

q∗1t(u1t|x
t
1)

[

ct(x1t, x2t, u1t, u2t)+

N
∑

τ=t+1

∑

x
t+1:τ
1

,x
t+1:τ
2

u
t+1:τ
1

,u
t+1:τ
2

τ
∏

i=t+1

p1i(x1i|x1,i−1, u1,i−1)·
p2i(x2i|x1,i−1, x2,i−1,

u1,i−1, u2,i−1)
q∗1i(u1i|x

i
1)q

∗
2i(u2i|x

i
1, x

i
2)

cτ (x1τ , x2τ , u1τ , u2τ)

]

γt(x
t
1, x

t
2) =

sum of terms in J(q∗1 , q∗2) not containing q2t(·|x
t
1, x

t
2)

and where xt+1:τ
i means the vector (xi,t+1, . . . , xiτ). Note

that for t = N , βN (xN
1 , xN

2 , u2N) is actually a function of
only (xN

1 , x2N , u2N). Thus let K2N (xN
1 , x2N) be a u2N

where βN(xN
1 , x2N , u2N) is minimized. Then by replacing

q∗2N (·|xN
1 , xN

2) with

q∗2N (u2N |xN
1 , xN

2) =

{

1, u2N = K2N (xN
1 , x2N)

0, otherwise

we cannot increase the cost function.

Now suppose for all τ > t and (xτ
1 , xτ

2), q∗2τ (·|xτ
1 , xτ

2)
is only a function of (xτ

1 , x2τ). Then it follows that
βt(x

t
1, x

t
2, u2t) is only a function of (xt

1, x2t, u2t), so we
can define K2t(x

t
1, x2t) to be a u2t where βt(x

t
1, x2t, u2t)

is minimized. Then by replacing q∗2t(·|x
t
1, x

t
2) with

q∗2t(u2t|x
t
1, x

t
2) =

{

1, u2t = K2t(x
t
1, x2t)

0, otherwise

we cannot increase the cost function, as before. The theorem
follows by induction.

In light of the previous theorem, we only need to consider
deterministic controllers K1 = (K10, . . . , K1N) and K2 =
(K20, . . . , K2N), where K1t and K2t are functions of the
form K1t : X t

1 → U1 and K2t : X t
1 ×X2 → U2. Moreover,

by rewriting the cost function J as a function (K1, K2), we
have

J(K1, K2) =

N
∑

t=0

∑

xt
1
,xt

2

t
∏

i=0

p1i(x1i|x1,i−1, K1,i−1(x
i−1
1))·

p2i(x2i|x1,i−1, x2,i−1,

K1,i−1(x
i−1
1), K2,i−1(x

i−1
1 , x2,i−1))

ct(x1t, x2t, K1t(x
t
1), K2t(x

t
1, x2t))

We assume that x1,−1 = x2,−1 = K1,−1(x
−1
1) =

K2,−1(x
−1
1 , x2,−1) = 0 in the above expression. As men-

tioned before, we will drop these arguments when conve-
nient.

To get the dynamic programming recursion, note that the
expression for the cost can be factored as

J(K1, K2) =

X

x10

p10(x10)·
"

X

x0
2

p20(x20)·
c0(x10, x20, K10(x

0
1), K20(x

0
1, x20))

+

X

x11

p11(x11|x10, K10(x
0
1))·

"

X

x1
2

p20(x20)p21(x21|x10, x20,

K10(x
0
1), K20(x

0
1, x20))·

c1(x11, x21, K11(x
1
1), K21(x

1
1, x21))

+

...

X

x1N

p1N(x1N |x1,N−1, K1,N−1(x
N−1
1))·

"

X

xN
2

N
Y

i=0

p2i(x2i|x1,i−1, x2,i−1, K1,i−1(x
i−1
1),

K2,i−1(x
i−1
1 , x2,i−1))

cN (x1N , x2N , K1N (xN
1), K2N (xN

1 , x2N))

#

. . .

##

and thus the minimum value of the cost function is

min
K1,K2

J(K1, K2) =

X

x10

p10(x10)·

min
K10(x0

1)

K20(x0
1,·)

"

X

x0
2

p20(x20)·
c0(x10, x20, K10(x

0
1), K20(x

0
1, x20))

+

X

x11

p11(x11|x10, K10(x
0
1))·

min
K11(x1

1)

K21(x1
1,·)

"

X

x1
2

p20(x20)p21(x21|x10, x20,

K10(x
0
1), K20(x

0
1, x20))·

c1(x11, x21, K11(x
1
1), K21(x

1
1, x21))

+

...

X

x1N

p1N(x1N |x1,N−1, K1,N−1(x
N−1
1))·

min
K1N (xN

1)

K2N (xN
1 ,·)

"

X

xN
2

N
Y

i=0

p2i(x2i|x1,i−1, x2,i−1, K1,i−1(x
i−1
1),

K2,i−1(x
i−1
1 , x2,i−1))

cN (x1N , x2N , K1N (xN
1), K2N (xN

1 , x2N))

#

. . .

##

(1)

with the optimizing K1, K2 on the right hand side being the
optimal controllers. This leads to the following theorem:

Theorem 2. Define the value functions Vt : X1×R
X2 → R

by the backward recursion

VN (x1N , p̂2N) =

min
u1N∈U1

∑

x2N

p̂2N (x2N)·
min

u2N (x2N)∈U2

cN (x1N , x2N , u1N , u2N(x2N))

Vt(x1t, p̂2t) = (2)

min
u1t∈U1

u2t∈U
X2
2

[

∑

x2t

p̂2t(x2t)·
ct(x1t, x2t, u1t, u2t(x2t))

+

∑

x1,t+1

p1,t+1(x1,t+1|x1t, u1t)·

Vt+1

(

x1,t+1,
∑

x2t

p̂2t(x2t)p2,t+1(·|x1t, x2t,
u1t, u2t(x2t))

)

]

114

Then an optimal controller (K1, K2) can be constructed in-
ductively as follows: For each fixed xN

1 ∈ XN
1 ,

1. Set t = 0 and p̂20(x20) = p20(x20) for all x20 ∈ X2.

2. Set K1t(x
t
1) and K2t(x

t
1, ·) to be an optimizing u1t ∈ U1

and u2t ∈ UX2

2 needed to compute the value function
Vt(x1t, p̂2t). If t = N , then we’re done.

3. Set

p̂2,t+1(·) =
∑

x2t

p̂2t(x2t)p2,t+1(·|x1t, x2t,
K1t(x

t
1), K2t(x

t
1, x2t))

(3)

4. Increment t and go back to step 2.

Proof. Suppose we fix t, xt
1, K1i(x

i
1), and K2i(x

i
1, x2i)

for all i < t. Then by a simple backward inductive argu-
ment, the (t+1)th outermost minimization in (1) is precisely
Vt(x1t, p̂2t), where

p̂2t(x2t) =
∑

x
t−1

2

t
∏

i=0

p2i(x2i|x1,i−1, x2,i−1, K1,i−1(x
i−1
1),

K2,i−1(x
i−1
1 , x2,i−1))

Thus if K1i(x
i
1) and K2i(x

i
1, ·) are chosen optimally for

all i < t, then choosing K1t(x
t
1) ∈ U1 and K2t(x

t
1, ·) ∈

UX2

2 to be the minimizers in evaluating the value function
Vt(x1t, p̂2t) will also be optimal. Moreover, from the for-
mulas of p̂2t, it follows immediately that

p̂20(x20) = p20(x20)

p̂2,t+1(x2,t+1) =
∑

x2t

p̂2t(x2t)p2,t+1(x2,t+1|x1t, x2t,
K1t(x

t
1), K2t(x

t
1, x2t))

so the theorem is proved.

Theorem 2 gives the algorithm that solves for the optimal
decentralized controllers K1 and K2. In an actual imple-
mentation of the algorithm, we precompute and store the
value functions with a piecewise-linear representation, but
we compute on-the-fly only the portions of the controller as
needed for the optimal actions. In particular, at time t, we
only need to compute K1t(X

t
1) and K2t(X

t
1, ·).

The value function Vt(x1t, p̂2t) defined by the theorem
has an important interpretation—it is the minimum cost
from time t to N , given that X1t = x1t and p̂2t is the con-
ditional distribution of X2t given Xt

1, i.e. p̂2t is player 1’s
knowledge of player 2’s state at time t. The value func-
tion recursion in (2) also has a insightful interpretation. It
expresses the current value function as optimal sum of the
expected cost at time t given the conditional distribution for
X2t, plus the expected cost of the next value function given
the conditional distribution for X2,t+1.

It is important to know that even though player 2 knows
both players’ states, the optimal strategy for him is not to
simply apply the optimal centralized policy for player 2. In-
deed, the value function recursion in (2) shows that player 2
must consider how his policy on this time step affects player
1’s knowledge of his state on the next time step.

Because of these extra considerations taken by player 2,
we in general need to simultaneously solve for the optimal

actions for player 2 at each possible state in X2. Thus this al-

gorithm is feasible only if |U2|
|X2| is not too large. The sim-

plest way to deal with this problem is to restrict our search

for u2t in (2) over a reasonably-sized subset S ⊂ UX2

2 . The

idea is that even if UX2

2 is large, there is often only a small

subset of UX2

2 make sense to apply, such as control-limit or
monotone policies. Even if we can’t prove that the optimal
choice for u2t always resides in S, the controller will still be
optimal in the following restricted sense—the cost function
is minimized for all controllers K1 and K2 subject to the
constraint that K2t(x

t
1, ·) ∈ S for all t < N and xt

1.

Computing the Value Functions

The value functions can be precomputed using well-known
methods for solving centralized POMDPs. Because the
value function recursion in (2) is slightly different from the
standard form for centralized POMDPs, we include a brief
primer on how to do this computation here.

The basic idea, due to Smallwood and Sondik (1973), is
to notice that for each fixed x1t, Vt(x1t, p̂2t) is a piecewise-
linear-concave (PWLC) function of the form mini(a

T
i p̂2t),

and thus can be stored as the vectors ai. This is clearly true
for t = N . Moreover, if Vt+1(x1,t+1, p̂2,t+1) is PWLC for
all x1,t+1, then it is clear by (2) that Vt(x1t, p2t) will be
PWLC, if we show the following trivial lemma:

Lemma 3. Suppose a1, . . . , am, b1, . . . , bn ∈ R
k, and Q ∈

R
k×k. Then

1. mini(a
T
i Qp) = mini((Q

T ai)
T p).

2. mini(a
T
i p) + minj(b

T
j p) = mini,j((ai + bj)

T p).

3. min{mini(a
T
i p), minj(b

T
j p)} =

min{aT
1 p, . . . , aT

mp, bT
1 p, . . . , bT

np}.

Note that the addition of PWLC functions can dramati-
cally increase the number of vectors representing the func-
tions. It is therefore important to keep the representations
as efficient as possible, pruning vectors that are unnecessary
for the representation. A simple procedure for pruning the
PWLC function minm

i=1(a
T
i p) is as follows:

1. Add vectors to the selected set, I: Start with I = {1}.
Then for each i = 2, . . . , m, solve the linear program

minimize aT
i p − t

subject to aT
j p ≥ t for all j ∈ I

p ≥ 0, 1T p = 1

If the optimal value is negative, then set I = I ∪ {i}.

2. Prune vectors from the selected set, I: For each i ∈ I −
{max I}, solve the linear program

minimize aT
i p − t

subject to aT
j p ≥ t for all j ∈ I − {i}

p ≥ 0, 1T p = 1

If the optimal value is nonnegative, then set I = I − {i}.

115

It is wise to run the pruning process afer each addition in (2),
as well as once after the minimization. More details can be
found in Cassandra, Littman, and Zhang (1997).

Even with the pruning process, it is still possible for the
representation of the value functions to get very large. In
fact, Papadimitriou and Tsitsiklis (1987) show that even with
stationary transition functions, solving finite-horizon cen-
tralized POMDPs is PSPACE-complete. In other words,
POMDPs are some of the hardest problems to solve in poly-
nomial space. The main problem lies with the number of
states (in our case, the number of states for player 2), since
this determines the dimension of the PWLC functions. Nev-
ertheless, exact algorithms for solving POMDPs are still
useful when number of states is small, and there are recent
algorithms that can approximately solve POMDPs with very
large number of states—see for example Kurniawati, Hsu,
and Lee (2008).

Examples

Machine Replacement

Consider the problem of designing a replacement policy for
two machines, where

1. X1t and X2t denote the damage states of machines 1
and 2 at time t, and are nonnegative integer random vari-
ables with maximum values of n1 and n2, repsectively. If
Xit = ni, this means that machine i has failed at time t.

2. At each time t, we have a choice of whether to replace a
machine or not. Let U1t and U2t indicate this choice for
machines 1 and 2, where a value of 1 indicates to replace
and 0 indicates to not replace.

3. p1(x1,t+1|x1t, u1t) and p2(x2,t+1|x2t, u2t) denote the
transition functions for machines 1 and 2, respectively.
Also, we assume that pi(·|xit, 1) = pi(·|0, 0), i.e. the
damage distribution one time step after replacement is the
same as the damage distribution after operating a fresh
machine for one time step.

4. c1(X1t, U1t) and c2(X2t, U2t) denote the individual costs
for machines 1 and 2 during time period [t, t + 1). In par-
ticular, ci(xit, 0) indicates the operating cost given ma-
chine i has damage state xit, while ci(xit, 1) indicates the
expected cost of replacing the machine with a fresh one
and operating it for one time period, minus any rewards
for recovering the old machine at a damage state xit.

5. The machines are linked serially, so that if either one of
the machines is being replaced or has failed, then the en-
tire system incurs a fixed downtime cost of D. This pro-
vides an incentive for the machines to work together to
replace at the same time. Moreover, the total cost for the
system at time t is

c(X1t, X2t, U1t, U2t)

= c1(X1t, U1t) + c2(X2t, U2t)

+ D1{Xit=ni or Uit=1 for any i}

6. At time t, machine 1 has access to (Xt
1, U

t−1
1), while ma-

chine 2 has access to (Xt
1, X

t
2, U

t
1, U

t−1
2). By Theorem 1,

we can restrict ourselves to deterministic controllers of
the form

U1t = K1t(X
t
1)

U2t = K2t(X
t
1, X2t)

for some functions K1t and K2t.

7. To reduce the burden of computing the value functions,
we will constrain the controller for player 2 to be a
control-limit policy, so that for each fixed xt

1, there is a
threshold x∗

2t(x
t
1) such that

K2t(x
t
1, x2t) =

{

0, x2t < x∗
2t(x

t
1)

1, x2t ≥ x∗
2t(x

t
1)

This reduces the set of possible K2t(x
t
1, ·) from 2|X2|

members to |X2| + 1 members.

The goal is to choose controllers K1 = (K10, . . . , K1N)
and K2 = (K20, . . . , K2N) to minimize the expected cost
in the time interval [0, N + 1), i.e.

J(K1, K2) =
N

∑

t=0

E[c(X1t, X2t, U1t, U2t)]

As a numerical example, suppose that the transition func-
tions are

p1(·|·, 0) =





















0.4 0 0 0 0 0 0 0
0.2 0.4 0 0 0 0 0 0
0.2 0.2 0.4 0 0 0 0 0
0.1 0.2 0.2 0.4 0 0 0 0
0.1 0.1 0.2 0.2 0.4 0 0 0
0 0.1 0.1 0.2 0.2 0.4 0 0
0 0 0.1 0.1 0.2 0.2 0.4 0
0 0 0 0.1 0.2 0.4 0.6 1





















p2(·|·, 0) =















0.5 0 0 0 0 0
0.3 0.5 0 0 0 0
0.2 0.3 0.5 0 0 0
0 0.2 0.3 0.5 0 0
0 0 0.2 0.3 0.5 0
0 0 0 0.2 0.5 1















Thus the machines have maximum damages of n1 = 7 and
n2 = 5, respectively, and the incremental damage suffered
between time steps is i.i.d. The individual costs of the ma-
chines are

c1 =





















0 5
0 5
0 5
0 5
0 5
0 5
0 5
15 20





















, c2 =















0 5
0 5
0 5
0 5
0 5
15 20















Thus there is no operating cost for an unbroken machine, a
fixed cost of 5 for replacing a machine, and large penalty of
15 if a machine breaks. We assume a system downtime cost
of D = 5. The time horizon is N + 1 = 17.

116

0 2 4 6 8
0

2

4

6

X
10

 + 1

X
20

 +
 1

Replacement policy for machine 1

0 2 4 6 8
0

2

4

6

X
10

 + 1

X
20

 +
 1

Replacement policy for machine 2

Figure 1: Centralized replacement policy at t = 0.

0 1 2 3 4 5 6 7

0

1

2

3

4

5
3.5

4

4.5

5

5.5

6

6.5

X
10

X
20

P
er

−
pe

rio
d

co
st

Figure 2: Performance gap between centralized and decen-
tralized replacement policies.

Figure 1 shows the optimal centralized replacement poli-
cies at time t = 0 for players 1 and 2, where the dots indi-
cate when to replace. These policies clearly show that there
is some benefit for both players to have observe each other’s
states. In the decentralized case, however, player 1 cannot
observe player 2’s states, so there will be some degradation
in the performance over the centralized case.

Figure 2 shows the performance gap between the central-
ized and decentralized policies. To provide a fair compari-
son, we assume that in the decentralized case, player 1 has
perfect knowledge of player 2’s state only at time t = 0.
The lower and upper black dots show the per-period cost of
the centralized and decentralized policies, respectively. It is
clear that at least for these problem parameters, the perfor-
mance gap is small. For example, when X10 = X20 = 0,
the per-period cost is 3.714 for the centralized policy and
3.812 for the decentralized policy.

We mentioned earlier that even though player 2 knows
both states, the optimal decentralized policy for player 2 is
not the same as the centralized policy. This problem is no
exception. For example, if

X10 = 3, p̂20 = [0.01 0.02 0.05 0.1 0.6 0.22]
T

W1t
K1t

U1t
Queue 1 K2t Queue 2

X1t X2t

U2t

W2t

Figure 3: Admission control for two queues in series

then the optimal actions at time t = 0 are to replace ma-
chine 1, and to replace machine 2 if X20 ≥ 2. This clearly
differs from the optimal centralized policy displayed on Fig-
ure 1, which is to replace machine 2 if X20 ≥ 4. In fact,
applying the first actions yields a total cost of 83.012, while
applying the second ones yields a total cost of 83.644. In
hindsight, it makes sense to use the lower threshold because
player 1’s belief about player 2 (however incorrect) compels
him to replace machine 1, so player 2 has an incentive to
take advantage of the downtime to replace machine 2. Thus
simply using a centralized policy for player 2 fails to take
into account player 1’s limited knowledge of player 2.

Two Queues in Series

Figure 3 shows an admission control system for two queues
connected in series, where

1. X1t and X2t denote the number of jobs in queues 1 and
2 at time t. Queues 1 and 2 are finite and can hold a
maximum of n1 and n2 jobs, respectively.

2. W1t and W2t denote the number of new jobs arriving at
queues 1 and 2 at time t. W1t is an i.i.d. process where
the probability mass function of W1t is pW1.

3. U1t and U2t denote the number of new jobs acutally
admitted into queues 1 and 2 right after time t. Thus
the number of jobs in the queues right after time t are
X1t + U1t and X2t + U2t. Arrivals that are not admitted
are discarded.

4. Y1t and Y2t denote the potential number of jobs serviced
in queues 1 and 2 during the time slot (t, t + 1]. The
actual number of jobs serviced are min{Y1t, X1t + U1t}
and min{Y2t, X2t + U2t}, respectively, so that jobs ser-
viced are limited by the number of jobs in the queue. Y1t

and Y2t have probability mass functions of pY 1 and pY 2,
respectively, and are i.i.d. processes independent of each
other and of the arrival process W1t.

5. The completed jobs from queue 1 become the new arrivals
for queue 2, so that

W2,t+1 = min{Y1t, X1t + U1t}

6. At time t + 1, the number of jobs remaining in queue i is

Xi,t+1 = (Xit + Uit − Yit)
+

117

and so the transition function for queue i is

pi(xi,t+1|xit + uit)

=







∑

yit≥xit+uit

pY i(yit), xi,t+1 = 0

pY i(xit + uit − xi,t+1), xi,t+1 ≥ 1

7. There is a constant reward R > 0 for each job that gets
serviced by both queues. Moreover, for each time period
(t, t+1], there is a holding cost of h1(z1)+h2(z2), where
z1 and z2 are the number of jobs in queues 1 and 2 right
after time t. Thus given X1t +U1t = z1 and X2t +U2t =
z2, the expected reward obtained in time period (t, t + 1]
is

RE[min{Y2t, z2}] − h1(z1) − h2(z2)

= r2(z2) − h1(z1)

where we define r2(z2) = RE[min{Y2t, z2}] − h2(z2).
r2(z2) denotes the expected reward earned by queue 2
during the period (t, t + 1] given that the number of jobs
in the queue right after time t is z2.

8. At time t, queue 1 has access to (Xt
1, W

t
1 , W t

2 , U t−1
1),

while queue 2 has access to (Xt
1, W

t
1 , W t

2 , Xt
2, U

t
1, U

t−1
2).

By Theorem 1, we can restrict ourselves to deterministic
controllers of the form

U1t = K1t(X
t
1, W

t
1 , W t

2)

U2t = K2t(X
t
1, W

t
1 , W t

2 , X2t)

for some functions K1t and K2t.

9. To save computation, we only consider control-limit poli-
cies for player 2, so that for each (xt

1, w
t
1, w

t
2), there is

some threshold x∗
2t(x

t
1, w

t
1, w

t
2) such that

K2t(x
t
1, w

t
1, w

t
2, x2t) =

min{(x∗
2t(x

t
1, w

t
1, w

t
2) − x2t)

+, w2t}

In other words, admit jobs into queue 2 until we reach the
threshold x∗

2t(x
t
1, w

t
1, w

t
2). Let S(w2t) denote the set of

allowable K2t(x
t
1, w

t
1, w

t
2, ·).

The goal is to choose K1 = (K10, . . . , K1N) and K2 =
(K20, . . . , K2N) to maximize the expected (N + 1)-period
reward

J(K1, K2) =

N
∑

t=0

(E[r2(X2t + U2t)] − E[h1(X1t + U1t)])

Using (2), the value function recursion for this problem is

VN (x1N , w1N , w2N , p̂2N) = (4)
∑

x2N

p̂2N(x2N) max
u2N (x2N)≤w2N

u2N (x2N)≤n2−x2N

r2(x2N + u2N(x2N))

− min
u1N≤w1N

u1N≤n1−x1N

h1(x1N + u1N)

Vt(x1t, w1t, w2t, p̂2t) = (5)

max
u1t≤w1t

u1t≤n1−x1t

u2t∈S(w2t)

[

∑

x2t

p̂2t(x2t)r2(x2t + u2t(x2t))

−h1(x1t + u1t)

+
∑

x1,t+1
w1,t+1

p1(x1,t+1|x1t + u1t)pW1(w1,t+1)·
Vt+1(x1,t+1, w1,t+1, x1t + u1t − x1,t+1,

∑

x2t
p̂2t(x2t)p2(·|x2t + u2t(x2t)))

]

We can simplify the computation of the value functions if
we note that (5) takes the form

Vt(x1t, w1t, w2t, p̂2t) =

max
u1t≤w1t

u1t≤n1−x1t

u2t∈S(w2t)

Qt(x1t + u1t, u2t, p̂2t)

where Qt(x1t + u1t, u2t, p̂2t) is just the quantity inside the
brackets in (5). We can thus compute the value function
recursion as follows:

1. Using the PWLC representation of Vt+1, compute the
PWLC representations of Qt(z1, u2t, p̂2t) for all z1 ≤
{0, . . . , n1} and allowable u2t.

2. Set Vt(x1t, 0, 0, p̂2t) = Qt(x1t, 0, p̂2t) for all x1t ≤ n1.

3. For each fixed x1t, compute the PWLC representations of
Vt(x1t, 0, w2t, p̂2t) using the recursion

Vt(x1t, 0, w2t, p̂2t) =

max

{ Vt(x1t, 0, w2t − 1, p̂2t),
max

‖u2t‖∞=w2t

u2t∈S(w2t)

Qt(x1t, u2t, p̂2t)

}

Since Vt(x1t, 0, w2t, p̂2t) = Vt(x1t, 0, n2, p̂2t) for all
w2t ≥ n2, the computation can stop when w2t = n2.

4. For each fixed x1t and w2t, compute the PWLC represen-
tations of Vt(x1t, w1t, w2t, p̂2t) using the recursion

Vt(x1t, w1t, w2t, p̂2t) = max{Vt(x1t, w1t − 1, w2t, p̂2t),

Vt(x1t + w1t, 0, w2t, p̂2t)}

Since Vt(x1t, w1t, w2t, p̂2t) = Vt(x1t, n2 − x1t, n2, p̂2t)
for all w1t ≥ n1 − x1t, the computation can stop when
w1t = n1 − x1t.

This method allows one to compute Vt(x1t, w1t, w2t, p̂2t)
for all (x1t, w1t, w2t) with essentially the same complexity
as computing Vt(0, n1, n2, p̂2t).

118

As a numerical example, consider the case both queues
have a capacity of n1 = n2 = 5 jobs, and when

pW1 = [0.36 0.36 0.18 0.1]

pY 1 = [0.2 0.6 0.2]

pY 2 = [0.3 0.4 0.3]

h1 = h2 = [0 1 2 3 4 5]

R = 12

The time horizon is N + 1 = 7. The optimal per-period
rewards for the centralized and decentralized cases assuming
X10 = X20 = W20 = 0 are given in the following table:

W10 Centralized Decentralized
0 3.2535 3.2466
1 4.3270 4.3170
2 4.6809 4.6654
3 4.6809 4.6654

Conclusions and Further Work

To summarize, we considered a general two-player finite-
horizon decentralized MDP where player 1 has access to
only its own states, and player 2 has access to the both states
but cannot affect player 1. We found a dynamic program-
ming recursion which allows us to solve the problem using
centralized POMDP methods. The key result that enables
the practicality of the method is Theorem 1, which states
that the optimal controller for player 2 only needs to be a
deterministic function of player 1’s history and player 2’s
current state. Without this simplification, solving the prob-
lem would be hopelessly complex.

As shown by dynamic programming recursion in Theo-
rem 2, the optimal controller takes player 1’s current state
as well as its belief of player 2’s current state and solves for
two things simultaneously: player 1’s optimal action, and
the set of player 2’s optimal actions for each his possible
states. The crucial insight gained by the recursion is that
even though player 2’s knows the entire state of the system,
his optimal strategy is not to simply apply the optimal cen-
tralized policy. The reason is that he still needs to take into
account how his policy (known by both players) will affect
player 1’s belief of his state on the next time step.

We then applied this dynamic programming solution to
decentralized versions of replacement and queueing prob-
lems. In order to solve the problems practically, we con-
strained the controllers for player 2 to be control-limit poli-
cies. For at least the problem instances we considered, the
optimal decentralized policies performed within 1-2 percent
of the optimal centralized policies.

Future work includes showing under what conditions
control-limit or monotone policies for player 2 are optimal,
and extensions to more general network topologies.

References

Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V.
2004. Solving transition independent decentralized Markov
decision processes. Journal of Artificial Intelligence Re-
search 22:423–455.

Bernstein, D.; Givan, R.; Immerman, N.; and Zilberstein, S.
2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research
27(4):819–840.

Cassandra, A. R.; Littman, M. L.; and Zhang, N. L. 1997.
Incremental pruning: A simple, fast, exact method for par-
tially observable Markov decision processes. Proceedings
of the 13th Conference on Uncertainty in Artificial Intelli-
gence.

Ho, Y. C., and Chu, K. C. 1972. Team decision theory and
information structures in optimal control problems – Part I.
IEEE Transactions on Automatic Control 17:15–22.

Hsu, K., and Marcus, S. I. 1982. Decentralized control of
finite state Markov processes. IEEE Transactions on Auto-
matic Control 27(2):426–431.

Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP: Ef-
ficient point-based POMDP planning by approximating op-
timally reachable belief spaces. Proceedings of the Fourth
Conference for Robotics: Science and Systems.

Mahajan, A.; Nayyar, A.; and Tenenketzis, D. 2008. Iden-
tifying tractable decentralized control problems on the basis
of information structure. Proceedings of the 46th Allerton
Conference 1440–1449.

Papadimitriou, C. H., and Tsitsiklis, J. N. 1986. Intractable
problems in control theory. SIAM Journal of Control and
Optimization 24(4):639–654.

Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of Markov decision processes. Mathematics of Op-
erations Research 12(3):441–450.

Radner, R. 1962. Team decision problems. Annals of Math-
ematical Statistics 33(3):857–881.

Rotkowitz, M., and Lall, S. 2006. A characterization of con-
vex problems in decentralized control. IEEE Transactions
on Automatic Control 51(2):274–286.

Smallwood, R. D., and Sondik, E. J. 1973. The optimal
control of partially observable Markov processes over a fi-
nite horizon. Operations Research 21(5):1071–1088.

Swigart, J., and Lall, S. 2010. An explicit state-space solu-
tion for a decentralized two-player linear-quadratic regula-
tor. 2010 American Control Conference.

Witsenhausen, H. S. 1968. A counterexample in stochastic
optimal control. SIAM Journal of Control 6(1):131–147.

119

