Robust Multi-Agent Path Finding

Dor Atzmon
Roni Stern
Ariel Felner
Ben-Gurion University
Israel

Glenn Wagner
Carnegie Mellon University
USA

Roman Barták
Charles University
Czech Republic

Neng-Fa Zhou
CUNY Brooklyn College
USA

Abstract
In the multi-agent path-finding (MAPF) problem, the task is to find a plan for moving a set of agents from their initial locations to their goals without collisions. Following this plan, however, may not be possible due to unexpected events that delay some of the agents. We explore the notion of k-robust MAPF, where the task is to find a plan that can be followed even if a limited number of such delays occur. k-robust MAPF is especially suitable for agents with a control mechanism that guarantees that each agent is within a limited number of steps away from its pre-defined plan. We propose sufficient and required conditions for finding a k-robust plan, and show how to convert several MAPF solvers to find such plans. Then, we show the benefit of using a k-robust plan during execution, and for finding plans that are likely to succeed.

1 Introduction and Overview
The Multi-Agent Path Finding (MAPF) problem is defined by a graph, $G = (V,E)$ and a set of n agents labeled $a_1 \ldots a_n$, where each agent a_i has a start position $s_i \in V$ and a goal position $g_i \in V$. At each time step, an agent can either move to an adjacent location or wait in its current location. The task is to find a sequence of move/wait actions for each agent a_i that moves it from s_i to g_i such that agents do not conflict, i.e., occupy the same location at the same time. MAPF has practical applications in video games, traffic control, and robotics (see (Felner et al. 2017) for a survey). In many cases, there is also a requirement to minimize some cumulative cost function such as the sum of costs incurred by all agents before reaching their goals. Solving MAPF optimally is NP-Hard (Yu and LaValle 2013b; Surynek 2010). Nonetheless, efficient optimal algorithms exist, some are even capable of finding optimal plans for more than a hundred agents (Wagner and Choset 2015; Boyarski et al. 2015; Surynek 2012; Yu and LaValle 2013a).

In practice, unexpected events may delay some of the agents, preventing them from following their pre-determined sequence of move/wait actions. When such an event occurs, one may need to adjust the plan of one or more agents to avoid collisions. Such re-planning can be very costly or even impossible, as it may require computing and communication capabilities as well as time that the agents may not have.

This is especially common in safety-critical settings such as air traffic control. Thus, it is often desirable to generate a plan that can withstand unexpected delays, without replanning if they occur.

In this work, we explore a novel form of robustness for MAPF problems called k-robust MAPF (kR-MAPF) which is designed to produce MAPF plans that can be followed even if unpredictable delays occur. In kR-MAPF we seek a plan that is robust to k delays per agent during plan execution, i.e., each agent may be delayed up to k times during plan execution and the plan would still be safe (no collisions). Standard MAPF is a special case of kR-MAPF with $k = 0$. k-robustness is useful in various settings, including cases where agents’ localization is not perfect, and cases where synchronization between the agents is imperfect, e.g., when an agent may not be able to track its path exactly, but each agent can guarantee remaining within k steps of its nominal trajectory. We describe sufficient and required conditions for a k-robust MAPF solution and show that a natural adaptation of a A*-based MAPF solver to kR-MAPF results in a state space that grows exponentially with k. We then present two algorithms for solving kR-MAPF more efficiently. The first is based on the Conflict-Based Search (CBS) framework (Sharon et al. 2015). The second is based on expressing the problem in Picat (Zhou, Kjellerstrand, and Fruhman 2015), a declarative constraint programming language, and solving it using a suitable general-purpose solver.

We evaluate experimentally the proposed algorithms on 8x8 and 32x32 grids, as well as on larger grids from a commercial video game. Our results show that finding a k-robust solution indeed results in fewer re-plans during execution, and the overall increase in plan cost is small. The Picat-based solver performed well for small grids, while the CBS-based solver performed better for large grids, being able to find k-robust solutions for some problems with more than 90 agents.

Another form of robustness is probabilistic robust, where the desire is to be able to perform the plan (without replanning) within a given probability p. We briefly discuss this variant in the end of the paper but a deeper handling of probabilistic robust is left for future work.
2 k-Robust MAPF

A solution to a MAPF problem is a plan \(\pi = \{\pi_1, \ldots, \pi_n\} \) such that \(\forall i \in [1, n], \pi_i \) is a sequence of move/wait actions that move agent \(a_i \) from \(s_i \) to \(g_i \). The location of \(a_i \) after executing the first \(t \) move/wait actions in \(\pi \) without experiencing any delay is denoted by \(\pi_i(t) \). Thus, \(\pi_i(0) = s_i \) and \(\pi_i(t) = g_i \).

Definition 2.1 (Conflict). A conflict \(\langle a_i, a_j, t \rangle \) in a plan \(\pi \) occurs if agents \(a_i \) and \(a_j \) are located in the same location at time step \(t \), i.e., when \(\pi_i(t) = \pi_j(t) \), or when they traverse the same edge when moving from time \(t-1 \) to \(t \), i.e., \(\pi_i(t-1) = \pi_j(t) \land \pi_i(t) = \pi_j(t-1) \). A conflict due to a shared location is called a vertex conflict and a conflict due to a shared edge is called an edge conflict.

We say that \(\pi \) is a valid plan if it is conflict-free. A MAPF solver is sound if it outputs a valid plan. A delay in a plan \(\pi \) is defined by a tuple \((\pi, i, t) \), representing that agent \(a_i \) did not perform the move action defined for it in \(\pi_i \) and instead stayed at time \(t \) in location \(\pi_i(t-1) \). A plan is robust to a delay if the delayed agent can continue to follow its plan after the delay without causing a collision. Formally, for a plan \(\pi \) and a delay \(D = (\pi, i, t_D) \), let \(D(\pi) \) be the plan that is equivalent to \(\pi \), except for replacing \(\pi_i \) with

\[
\pi'_i(t) = \begin{cases}
 s_i & t = 0 \\
 \pi_i(t) & t < t_D \\
 \pi_i(t-1) & \text{otherwise}
\end{cases}
\]

A plan \(\pi \) is robust to a delay \(D \) if \(D(\pi) \) is valid. \(\pi \) is robust to a set of delays \(D \) if applying any subset of \(D \) to \(\pi \) will yield a valid plan, i.e., for every set of delays \(\{D_1, \ldots, D_T\} \subseteq D \), the plan \(D_T(D_{T-1}(\ldots(D_1(\pi)\ldots))) \) is valid.

Definition 2.2 (k-robust plan). A plan is k-robust iff it is valid and it is robust to any set of delays that contains at most \(k \) delays for each agent.

Having a k-robust plan is desirable in many cases, especially when agents’ localization is not perfect, and control mechanisms are used to verify that it is k-steps from the given plan.

Note that there cannot be edge conflicts in a k-robust plan for any \(k > 0 \).

Definition 2.3 (k-delay Conflict). A k-delay conflict \(\langle a_i, a_j, t \rangle \) in a plan \(\pi \) occurs if there exists \(\Delta \in [0, k] \) such that agents \(a_i \) and \(a_j \) are located in the same location in time steps \(t \) and \(t + \Delta \), respectively, i.e., \(\pi_i(t) = \pi_j(t + \Delta) \).

Observation 1. A plan is k-robust iff it does not contain any k-delay conflicts.

There can be more than one k-robust plan for a given MAPF problem instance, and plans with lower costs are usually preferred. We focus on a common MAPF cost function called the sum of costs, which is the summation of the number of time steps required by each agent to reach its goal (Standley 2010; Standley and Korf 2011; Sharon et al.

\[\text{Also, } k > 0 \text{ disallows agents to move to a location that was occupied by another agent in the previous time step. Such a train-like motion is not allowed in some MAPF formulation.}\]

Figure 1: A MAPF problem (a) its search tree (b), and its k-robust search tree (c). The red lines show k-delay conflicts.

2013; 2015). A k-robust plan is optimal if there is no other k-robust plan with a lower cost. Next, we explore several algorithms for finding optimal k-robust plans.

3 A*-based Solutions

Many MAPF algorithms (Silver 2005; Standley 2010; Goldberg et al. 2012; Wagner and Choset 2015) are based on the well-known A* algorithm (Hart, Nilsson, and Raphael 1968). These algorithms search in a n-agent state space, which includes all the possible ways to place \(n \) agents into \(|V| \) vertices, one agent per vertex. The start and goal states are \((s_1, \ldots, s_n) \) and \((g_1, \ldots, g_n) \), respectively. An action in this state space represents \(n \) single-agent move/wait actions, one single-agent action per agent. An action is applicable if its constituent single-agent actions do not create conflicts. Hence, a path in this n-agent state space from the start state \((s_1, \ldots, s_n) \) to the goal state \((g_1, \ldots, g_n) \) corresponds to a valid plan.

One way to adapt A* solvers to return k-robust plans is to modify state generation to prevent combinations of single-agent actions that lead to k-delay conflicts. However, this may lead to the solver returning non-optimal plans. For example, consider finding a 2-robust plan for the problem in Figure 1(a). The optimal 2-robust solution is \(\pi_1 = (s_1, A, B, C, g_1) \) and \(\pi_2 = (s_2, D, g_2) \), with a cost of 6. Consider running A* on this problem. First, A* expands state \((s_1, s_2) \), generating two children \((A, C) \) and \((A, D) \). Assume that \((A, C) \) was expanded first, generating state \((B, g_2) \) with cost 4 (2 per agent). Next, \((B, g_2) \) is expanded. Since \(a_2 \) was in \(C \) at \(t = 1 \), state \((C, g_2) \) will not be generated due to the 2-robustness constraint. Next, state \((A, D) \) is expanded. It will not generate \((B, g_2) \), as this state was already reached via state \((A, C) \) with the same cost (see Figure 1(b)). Thus, while there is a path in which state \((B, g_2) \) generates state \((C, g_2) \), this specific run of A* will not find it. This results in finding a suboptimal plan of cost 7.

To remedy this, the n-agent state space needs to be modified to keep track of the last \(k \) steps of each agent in each state. Thus, in this state space a state represents a possible way to place \(n \) agents into \(|V| \) vertices, one agent per vertex, over \(k-1 \) consecutive time steps. Figure 1(c) shows the search tree of this extended state space. An A* based MAPF solver over this state space can find an optimal k-robust plan, but the size of this state space is much larger than the classic n-agent state space, since its size grows exponentially with
In the next section, we describe \(k \)-robust algorithms that mitigate this problem.

4 Conflict-Based Search Solutions

Conflict-based search (CBS) (Sharon et al. 2015) is a commonly used MAPF solver (Ma, Kumar, and Koenig 2017; Boyarski et al. 2015) that does not explicitly search the \(n \)-agent state space. CBS finds a plan by searching for a path for each agent separately. Conflicts are avoided by imposing a set of constraints of the form \(\langle a_i, v, t \rangle \), representing that agent \(a_i \) is prohibited from occupying vertex \(v \) at time step \(t \). A plan \(\pi = \{ \pi_1, \ldots, \pi_n \} \) is called consistent with a set of constraints if its constituent sequence of move/wait actions satisfy this set of constraints, i.e., for every constraint \(\langle a_i, v, t \rangle \) in this set it holds that \(\pi_i(t) \neq v \).

CBS works by searching a constraint tree (CT) for a set of constraints such that a plan consistent w.r.t. this set of constraints is valid and optimal. The CT is a binary tree, in which each node \(N \) contains: (1) a set of constraints imposed on the agents \((N.\text{constraints})\), (2) a single plan \((N.\pi)\) consistent with these constraints, and (3) the cost of \(N.\pi \) \((N.\text{cost})\). The root of the CT contains an empty set of constraints (thus, every plan is consistent with the root). A successor of a node in the CT inherits the constraints of the parent node and adds a single new constraint for one agent. Generating a successor node \(N \) means finding a plan consistent with \(N.\text{constraints} \) and identifying the conflicts in this plan, if they exist. Since \(N \) was generated by adding a single new constraint, only one agent needs to replan, which can be done with any optimal single-agent path-finding algorithm such as \(A^* \). The algorithm used for this purpose is referred to as the CBS low-level solver. A CT node \(N \) is a goal node when \(N.\pi \) is valid. To search the CT for a goal node CBS runs a best-first search where nodes are ordered by their costs \((N.\text{cost})\).

Next, we describe two key components of CBS: how it identifies conflicts in \(N \), and how to choose which constraint to add when expanding \(N \) and generating its successors.

Identifying conflicts in a consistent plan.

Once a consistent plan has been found by the low-level solver, it is validated by simulating the movement of the agents along their planned paths \((N.\pi)\). If all agents reach their goals without any conflict, \(N \) is declared as the goal node, and \(N.\pi \) is returned. Otherwise, a conflict is found the node is declared a non-goal.

Resolving a conflict: When a non-goal CT node \(N \) is chosen in the best-first search of the CT, CBS generates its successor CT nodes. This is done by attempting to resolve a conflict in \(N.\pi \). Let \(\langle a_i, a_j, t \rangle \) be a conflict in \(N.\pi \), and let \(v \) be the location of this conflict, i.e., \(v = N.\pi_i(t) = N.\pi_j(t) \).

CBS splits \(N \) and generates two new CT nodes as children of \(N \), adding the constraint \(\langle a_i, v, t \rangle \) to one child and the constraint \(\langle a_j, v, t \rangle \) to the other child.

Note that for each (non-root) CT node the low-level search is activated only for one agent – the agent for which the new constraint was added.

4.1 \(k \)-Robust CBS

Next, we introduce \(k \)-robust CBS (k-R-CBS), an adaptation of CBS designed to return optimal \(k \)-robust plans. k-R-CBS differs from CBS in how it identifies and resolves conflicts.

Identifying \(k \)-delay conflicts. After the low-level solver returned a consistent plan for a CT node \(N \), k-R-CBS scans \(N.\pi \) for \(k \)-delay conflicts by simulating the paths and checking for conflicts with the \(k \)-last locations of all other agents.

Thus, finding a \(k \)-delay conflict \((a_i, a_j, t)\) means that \(N.\pi_i(t) = N.\pi_j(t + \Delta) \) for \(\Delta \in [0, k] \). Node \(N \) is a goal CT node iff it has no \(k \)-delay conflicts. This process of checking conflicts and identifying a goal is easy to implement, but its runtime is larger by a factor of \(k \) than the equivalent plan validation step in CBS.

Resolving conflicts (splitting CT nodes). Let \(N \) be a non-goal node in the CT selected to be expanded next by k-R-CBS, and let \(\langle a_i, a_j, t \rangle \) be a \(k \)-delay conflict in \(N \). This means that there is a vertex \(v \) and a value \(\Delta \in [0, k] \) such that \(v = N.\pi_i(t) = N.\pi_j(t + \Delta) \). Note that there is no \(k \)-robust plan in which \(a_i \) is at \(v \) at time \(t \) while \(a_j \) is at \(v \) at time \(t + \Delta \). Therefore, at least one of the constraints, \((a_i, v, t)\) or \((a_j, v, t + \Delta)\), must be added to the CT and must be satisfied by the low-level solvers. Consequently, k-R-CBS generates two children to \(N \), each having one of these constraints.

k-R-CBS is sound, because it only halts when generating a CT node that has no \(k \)-delay conflicts. It is complete in the sense that if a solution exists then it will find it, because splitting a CT node never loses any valid plans. Similarly, k-R-CBS returns optimal plans, as it searches the CT in a best-first order according to the nodes’ costs, and the cost of a node \(N \) is a lower bound on the cost of any valid plan consistent with \(N.\text{constraints} \).

Example. Consider a 2-robust MAPF problem on the graph in Figure 2(a), with two agents whose start-goal pairs are \(s_1-g_1 \) and \(s_2-g_2 \), respectively. Figure 2(b) shows the first two levels of the CT generated by k-R-CBS, where every node \(N \) shows \(N.\text{constraints} \) (labeled Con), \(N.\pi_1 \), \(N.\pi_2 \), and \(N.\text{cost} \).

The plan in the root is valid, but it is not 2-robust since it has a 2-delay conflict \((a_2, a_1, 1)\) at location \(B \) for \(\Delta = 1 \) (since \(\pi_2(1) = \pi_1(1) = B \)). To try to resolve this conflict, k-R-CBS adds the constraint \((a_2, B, 1)\) to the left child and the constraint \((a_1, B, 2)\) to the right child. Both children of the root node are also not goal nodes. In fact, in this example we will need to generate a total of 7 CT nodes before finding an optimal plan. As we show next, it is possible to improve k-R-CBS such that it will find the goal sooner.

4.2 Improved \(k \)-Robust CBS

In Figure 2(b), the 2-delay conflict \((a_2, a_1, 1)\) in the root CT node is resolved by adding constraints such that either \(a_2 \) is not in \(B \) at time 1 (left child), or \(a_1 \) is not in \(B \) at time 2 (right child). Imposing these constraints is correct because in every 2-robust plan either \(a_1 \) is not at \(B \) at time 1 or \(a_2 \) is not in \(B \) at time 2. This argument can be extended: in every 2-robust plan either \(a_2 \) is not in \(B \) at times 1 and 2 or \(a_1 \) is not in \(B \) at times 2 and 3. Thus, we can impose a stricter constraint on the left subtree by adding the constraint \((a_2, B, 2)\), and add
Figure 2: (a) The graph (b) The CT using the original time/location constraints (c) CT using the range constraints

the constraint \((a_1, B, 3)\) to the right subtree. Imposing more constraints per CT node can reduce the size of the CT tree, and consequently the overall runtime.

To exploit this understanding, we introduce the Improved k-R-CBS (I\(k\)-R-CBS) that resolves conflicts in a CT node \(N\) by imposing range constraints on its successors. A range constraint is defined by the tuple \((a_i, v, [t_1, t_2])\) and represents the constraint that agent \(a_i\) must avoid vertex \(v\) from time step \(t_1\) to time step \(t_2\).

Ideally, we would like to construct range constraints as large as possible, to minimize the size of the CT tree. However, over-constraining CT nodes may result in losing completeness and optimality. The key question is thus which pairs of range constraints to use to resolve conflicts without losing completeness and optimality.

Definition 4.1 (Sound Range Constraints). A pair of range constraints for a given \(k\)-delay conflict is called sound if all optimal \(k\)-robust plans satisfy at least one of the constraints.

Proposition 4.1. A \(k\)-R-CBS variant that resolves conflicts with sound pairs of range constraints is sound, and is guaranteed to return an optimal \(k\)-robust plan if such exists.

Proof: For a CT node \(N\), let \(N_1\) and \(N_2\) be its children, generated by the sound pair of range constraints \(R_1\) and \(R_2\), respectively. Now, \(\pi(N)\) denotes all the \(k\)-robust plans that do not violate \(N\).constraints. Observe that \(\pi(N_1)\) contains all the plans in \(\pi(N)\) that satisfy \(R_1\), and similarly \(\pi(N_2)\) contains all the plans in \(\pi(N)\) that satisfy \(R_2\). Since \(R_1\) and \(R_2\) are a sound pair of constraints, it holds that \(\pi(N) = \pi(N_1) \cup \pi(N_2)\). Thus, splitting CT nodes by resolving conflicts with a sound pair of constraints does not lose any plans and thus preserves the soundness and optimality, and is guaranteed to return a \(k\)-robust plan if exists.\(\square\)

We call a pair of range constraints symmetric if they constrain the same vertex and the same time range.

Corollary 4.2 (Symmetric range constraints). For any time step \(t\), vertex \(v\), and agents \(a_i\) and \(a_j\), the range constraints \((a_i, v, [t, t+k])\), \((a_j, v, [t, t+k])\) are sound for solving a \(k\)-robust MAPF problem.

Proving Corollary 4.2 is straightforward. Note that setting a symmetric range constraint on a range larger than \(k\) is in general not sound. Thus, Corollary 4.2 gives an upper bound on the size of the largest pair of symmetric range constraints that is sound. Nevertheless, there are more than one \(k\)-sized symmetric pairs of range constraints for a given \(k\)-delay conflict \((a_i, a_j, t)\) over vertex \(v\). In our implementation, we used the time range \([t, t+k]\), but the pair of range constraints \([t-k, t]\) is also sound.

A pair of sound range constraints can also be asymmetric, i.e., constrain one agent to a longer time range than the other agent. For example, consider a conflict \((a_i, a_j, t)\) over vertex \(v\) and pair of range constraints \(R_1 = (a_i, v, [t-k, t+k])\) and \(R_2 = (a_j, v, [t])\). \(R_1\) and \(R_2\) are a sound pair of constraints, because a solution must satisfy either \(R_1\) or \(R_2\), since violating both results in a \(k\)-delay conflict. \(R_1\) and \(R_2\) are extremely asymmetric, but one can imagine asymmetric range constraints that are more balanced. An open question for asymmetric range constraints is how to choose on which agent to impose the more restrictive constraint.

4.3 Experimental Results

Next, we experiment with \(k\)-R-CBS and I\(k\)-R-CBS using symmetric and asymmetric pairs of range constraints.

8x8 open grid 60 random problem instances were generated in an open 8x8 grid. Then a \(k\)-R-MAPF solver for \(k = 0, 1, 2\) was executed and the resulting plan cost and CPU runtime were measured.

Table 1 shows the average plan cost and CPU runtime when finding \(k\)-robust solutions using \(k\)-R-CBS (labeled KR) and I\(k\)-R-CBS with the asymmetric and with the symmetric range constraints (labeled IKR(A) and IKR(S), respectively) for 4, 6, 7, 8, 9, and 10 agents (different rows). Since all solvers return optimal \(k\)-robust plans, we show the plan cost only once for every value of \(k\). Note that \(k = 0\) is standard CBS.

First, consider the plan costs. As can be seen, the \(k\)-robust plans are often more costly than a plan that are not robust \((k = 0)\), but the added cost is relatively small. In fact, the largest relative increase in cost when moving from \(k = 0\) to \(k = 1\) was observed for 4 agents, where for \(k = 0\) the
average cost was 21 and for \(k = 1 \) the average cost increased to 22, which amounts to an increase of less than 5%.

Second, the runtime of finding a \(k \)-robust solution increase as \(k \) increases. For example, finding an optimal valid plan with \(k \)-R-CBS for 9 agents required 9 milliseconds but finding an optimal 1-robust plan required 379 milliseconds. As expected, both \(k \)-R-CBS variants run much faster than \(k \)-R-CBS and this improvement increases when increasing \(k \) and when there are more agents. When comparing the symmetric and the asymmetric range constraints, we see a clear advantage for the symmetric range constraints. For example, consider finding an optimal 2-robust solution for 9 agents: it required 20,006 milliseconds for \(k \)-R-CBS, 4,408 for \(k \)-R-CBS with asymmetric constraints, and only 556 milliseconds for \(k \)-R-CBS with the symmetric constraints. We conjecture that this is due to the arbitrary way in which we choose which agent to constrain more when using the asymmetric range constraints; better ways of choosing asymmetric range constraints may exist.

brc202.d Map We also performed some experiments on a larger map from the Dragon Age Origins (DAO) video game, which is available in the movingai repository (Sturtevant 2012). Specifically, we generated 50 randomly generated instances with 50 agents on the brc202.d map, which has 43,151 vertices. The results show the same trends observed in the 8x8 grid results reported above: increasing \(k \) results in slightly higher plan costs and longer runtime. Since this map is very large, the optimal \(k \)-robust plan often has the same cost as the optimal plan that is not robust. When averaging over 50 random instances, the average plan cost was 3,818.35, 3,818.43, and 3,818.53 for \(k = 0, 1 \), and 2, respectively. The increase in runtime when increasing \(k \) was also more modest compared to the 8x8 results: 213, 284, and 381 seconds, for \(k = 0, 1 \), and 2, respectively. This lower impact of \(k \) on plan cost and runtime is because the map’s large size provides more room to find alternative plans that are more robust.

Increasing \(k \) Larger values for \(k \) increase the ranges that are checked and has the potential to increase the number of conflicts that should be checked. Nevertheless, the effect of increasing \(k \) is moderate and problems with large values of \(k \) can be solved in relatively reasonable time. Table 2 shows the number of instances out of 50 that could be solved within 5 minutes when trying to solve problems on 16x16 open grid with \(k \)-R-CBS with the symmetric constraints for different values of \(k \) (rows) and different number of agents \(n \) (columns). As can be seen, increasing \(k \) and increasing \(n \) both have an effect on the success rate. However, unless both were large, the majority of the problem instances could be solved.

5 A Declarative Solution

An alternative approach to solve MAPF problems is to compile them into other known NP-hard problems that have mature and effective general purpose solvers (Surynek 2012; Yu and LaValle 2013a; Erdem et al. 2013; Surynek et al. 2016).

Generally speaking, these approaches express a set of constraints that define the MAPF problem in some declarative language and then call a general purpose solver, e.g., a SAT solver or a Mixed Integer Linear Program (MILP) solver, to obtain the solution. Adapting such solvers to the \(k \)-robust variant is relatively simple, requiring a simple modification to the constraints. To demonstrate this, we implemented a MAPF solver using Picat (Zhou, Kjellerstrand, and Fruhman 2015), a logic-based programming language that has three constraint modules. The encoding we used is based on Surynek’s SAT-based MAPF solver (Surynek et al. 2016), in which there is a Boolean variable for every triplet \((a, t, v)\) of agent \(a\), time \(t\), and location \(v\), where this variable is true iff agent \(a\) occupies location \(v\) at time \(t\). A set of constraints is imposed on these variables, namely:

1. Each agent occupies exactly one vertex at each time step.
2. No two agents occupy the same vertex at any time.
3. In every time step an agent may only transition between two adjacent locations.
For producing \(k \)-robust solutions, the second constraint is extended such that no two agents occupy the same vertex in time steps that are closer than \(k \) from each other. The exact Picat model we developed is available at https://tinyurl.com/kRobust. The advantage of using Picat to encode MAPF is that the model can be compiled to SAT, to a constraint program (CP), or to MILP. In our experiments we only run a SAT compilation.

5.1 Experimental Results

Next, we experimentally evaluated our Picat-based solver, and compared it with I/R-CBS with symmetric range constraints, which is the CBS-based solver that performed best in our experiments.

Table 3 shows the average plan cost and planning runtime for 50 problem instances on a 8x8 grid with 6 agents and \(k = 0, 1, \) and 2. We experimented here with problem instances with a different number of randomly allocated obstacles (the “Obs.” column). As expected, increasing \(k \) results in plans of higher cost and higher runtime. For both algorithms, the impact of varying the number of obstacles on the planning time follows a classical easy-hard-easy pattern: with either a few or many obstacles is easy, and it becomes harder for the middle-ground, where the problem is not under- or over-constrained.

Now we compare the results of \(k \)R-CBS and the Picat-based solvers. Since both Picat and \(k \)R-CBS solvers solve \(k \)R-MAPF optimally, their solution cost is the same, and the comparison between them is in the runtime of finding an optimal solution.2 For this small grid, the Picat-based solver shows better performance in most settings. Indeed, compilation-based approaches are known to perform well for small and relatively dense grids (Surynek et al. 2016).

Next, we compared the Picat-based and CBS-based solvers on a larger, 32x32 grids, with 20% obstacles at random locations, with 10, 15, 20, 25 and 30 agents, and \(k = 0, 1, \) and 2. These problems were harder to solve and thus we set a 5 minutes timeout for every problem instance. Table 4 shows the number of instances solved under this timeout, out of a total of 50 problem instances. Here, the results of both solvers are very similar, and there is no clear advantage to either.

Finally, we experimented with the brc202d DAO map described earlier, which is much larger than the 32x32 grid used in Table 4. Here, the Picat-based solver was not able to solve any problem instance, even with only 5 agents. By contrast, the CBS-based solver was able to find even optimal 2-robust solutions for some instances with 95 agents. Figure 3 shows the number of problems solved within the 5 minutes timeout from a total of 50 problem instances, with \(k = 0, 1, \) and 2 and 5, 10, 15, ... 100 agents.

In conclusion, there is no universal winner: for small grids the Picat-based solver is best, while for very large grids the CBS-based solver is much better. This trend was also observed in prior works in regular MAPF (Surynek et al. 2016; Zhou et al. 2017).

6 Robust Planning and Execution

An important motivation for creating robust plans is to avoid the need to replan during execution when experiencing unexpected delays. Recent work by Ma et al. 2017 proposed an execution policy called MCP that is designed to minimize the number of times agents need to communicate and re-plan during execution to avoid conflicts from occurring.

As an application of robust MAPF, we implemented MCP so that the initial plan it is given is \(k \)-robust, and evaluated experimentally whether or not this results in fewer replans needed during execution. The results of these experiments are given in Figure 4. The \(x \)-axis shows the number of agents and the \(y \)-axis shows the average number of re-plans needed. The different curves represent different values of \(k \). The results clearly show the benefit of using a \(k \)-robust plan: increasing \(k \) indeed reduces the number of modifications dramatically. For example, when \(k = 2 \) the average number of modifications is less than 0.5 even for 12 agents, while it is almost 3.5 when using an optimal plan (which is not robust, i.e., \(k = 0 \)).

7 Probabilistic Robust MAPF

In some cases, it is possible to estimate the probability that agents will be delayed. This raises a probabilistic form of robustness, where the aim is to find a low-cost plan that keeps the probability of collisions below a given threshold \(p \). Wagner and Choset (2017) studied this form of probabilistic robustness and proposed a corresponding solver based on M* (Wagner and Choset 2015).

We started to adapt our ideas for finding \(k \) robust solutions on this setting, as follows. Instead of defining a \(k \)-delay conflict that either exists or not, we define a potential conflict, which occurs if two agents have a \(k \) delay conflict for any \(k \). That is, a pair of agents do not have a potential conflict only if their paths are vertex and edge disjoint. Using the given delay probabilities, we compute for each potential conflict the probability that it will occur. Next, we used a CBS-based approach, starting with an initial plan created by having each agent plan separately. Then, potential conflicts

2For \(k = 0 \), the problem formulation used by \(k \)R-CBS and the Picat-based solver differs slightly, as our Picat code MAPF is that the model can be compiled to SAT, to a constraint program (CP), or to MILP. In our experiments we only run a SAT compilation.
as possible, results show that finding a \(k \)-robust plan is possible, results in fewer re-plans during execution, and requires only a minimal increase in plan cost. There are many possible lines of future work, including adapting other MAPF solvers such as the ICTS algorithm ((Sharon et al. 2013)) to find \(k \)-robust plans, and a deeper integration of robust MAPF plans with execution policies.

9 Conclusions and Future Work

In this paper, we explored a form of robustness for MAPF called \(k \)-robust, where a \(k \)-robust plan is a plan in which each agent can experience up to \(k \) delays while still preserving the ability to follow the generated plan. Several ways to obtain \(k \)-robust plan were proposed, including solvers based on A*, CBS, and constraint programming. Our experimental results show that finding a \(k \)-robust plan is possible, results in fewer re-plans during execution, and requires only a minimal increase in plan cost. There are many possible lines of future work, including adapting other MAPF solvers such as the ICTS algorithm ((Sharon et al. 2013)) to find \(k \)-robust plans, and a deeper integration of robust MAPF plans with execution policies.

10 Acknowledgements

This research was supported by the Israel Ministry of Science, the Czech Ministry of Education, and by ISF grants #844/17 to Ariel Felner and #210/17 to Roni Stern.
References

Ma, H.; Kumar, S.; and Koenig, S. 2017. Multi-agent path finding with delay probabilities. In AAAI.

Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016. Efficient SAT approach to multi-agent path finding under the sum of costs objective. In ECAI.

Surynek, P. 2010. An optimization variant of multi-robot path planning is intractable. In AAAI.

