Query Answering for Rough \mathcal{EL} Ontologies

Rafael Peñaloza
KRDB Research Centre,
Free University of Bolzano, Italy
Rafael.Penaloza@unibz.it

Veronika Thost
MIT-IBM Watson AI Lab
IBM Research
veronika.thost@ibm.com

Anni-Yasmin Turhan
Inst. of Theor. Computer Science
TU Dresden, Germany
Anni-Yasmin.Turhan@tu-dresden.de

Abstract

Querying large datasets with incomplete and vague data is still a challenge. Ontology-based query answering extends standard database query answering by background knowledge from an ontology to augment incomplete data. We focus on ontologies written in rough description logics (DLs), which allow to represent vague knowledge by partitioning the domain of discourse into classes of indiscernible elements. In this paper, we extend the combined approach for ontology-based query answering to a variant of the DL \mathcal{EL}_H, augmented with rough concept constructors. We show that this extension preserves the good computational properties of classical \mathcal{EL} and can be implemented by standard database systems.

Introduction

Ontology-based query answering performs database-style query answering over description logic (DL) knowledge bases (KBs), which consist of an ontology (or TBox) expressing terminological (i.e., background) knowledge about a domain, and a dataset (called ABox) containing facts about particular individuals. The knowledge in the KB is captured by means of concepts (unary predicates) and roles (binary relations). The use of conceptual background knowledge allows one to derive more answers to queries than from the data alone. The queries considered are typically conjunctive queries, which are special forms of first-order (FO) queries. The expressivity of a DL is determined by the concept (and sometimes also role) constructors it provides to describe important notions from the application domain. In classical DLs concepts represent unary predicates and hence are interpreted as sets of elements. Thus, classical DLs lack capabilities of modeling uncertainty or vagueness (Lukasiewicz and Straccia 2008).

A moderate form of relaxation of concepts can be achieved by interpreting them as rough sets (Pawlak 1982). Rough sets employ an indiscernibility relation ρ, which groups objects that are considered to be indistinguishable from one another. The relation ρ effectively partitions the set of elements into so-called granules. A granule, in essence, relaxes the notion of an element to a class of equivalent elements. In rough sets, every classic set, say S, is accompanied by two sets. The lower approximation \overline{S} contains elements that all share the properties of elements in S as it contains those partitions that lie completely in S. The upper approximation \overline{S} contains elements that are indistinguishable from an element in S, i.e., it contains those granules that overlap with S. Rough sets are employed in knowledge discovery and data mining, among others (Lin and Cercone 2012). The capability of rough sets to relax objects in the data was already noticed in (Pawlak 1998) and is a standard way to relax database queries. One of the goals of this paper is to extend these ideas to relax ontology-based query answering techniques.

In the context of DLs, concept constructors for upper (and lower) approximations provide means to relax (and crispen) concepts, while granules effectively relax objects. The idea to use rough set interpretations for DLs is not new (Liau 1996; Klein, Mika, and Schlobach 2007; Schlobach, Klein, and Peelen 2007; Jiang et al. 2009; Keet 2010). Rough DLs typically have concept constructors for the upper and the lower approximation of concepts. One of their basic motivations is medical applications (Klein, Mika, and Schlobach 2007; Schlobach, Klein, and Peelen 2007), where, for instance, patients can be indistinguishable by their symptoms or drugs and their generica can be indistinguishable by their active agent. Similarly, they were suggested to enhance the web ontology language OWL (Keet 2010) or to solve the identity matching problem in the linked data cloud (Klein, Mika, and Schlobach 2007; Beek, Schlobach, and van Harmelen 2016). As in database settings, indiscernibility relations for rough DLs can be derived automatically from the data (d’Amato et al. 2013; Beek, Schlobach, and van Harmelen 2016) making rough DLs amenable for practical applications.

Another approach for dealing with vagueness is based on fuzzy logic. While fuzzy DLs (Bobillo et al. 2015) can express vagueness regarding the concept membership of objects, rough DLs can express granularity of objects. The former DLs can easily turn undecidable (Borgwardt, Distel, and Peñaloza 2015; Borgwardt, Cerami, and Peñaloza 2017), but the latter are always decidable, as long as the underlying classical DL is. Reasoning procedures for classical reasoning tasks such as satisfiability or subsumption, i.e., the computation of sub- and super-concept relationships in rough DLs were proposed in (Klein, Mika, and Schlobach 2007;
We introduce the rough DL $\mathcal{ELH}_\rho^\uparrow$, that extends the classical DL \mathcal{ELH}_\bot by an indiscernibility relation and by concept constructors for the lower and the upper approximation.

Based on this, we define the problem of answering conjunctive queries that we consider.

Syntax. Let N_C, N_R, and N_I be non-empty, pairwise disjoint sets of concept names, role names, and individual names, respectively, and let ρ be the indiscernibility relation. $\mathcal{ELH}_\rho^\uparrow$ concepts are built inductively by the following syntax rule (where $A \in N_C$ and $r \in N_R$):

$$C ::= \top \mid \bot \mid C \sqcap C \mid \exists r.C \mid D \mid \nexists D.$$

Concepts of the form $\nexists C$ (resp. C) are called the upper (resp. lower) approximation of C. Let $A \in N_C$, $r, s \in N_R$, $a, b \in N_I$, and $C \subseteq D$ be concepts. Axioms are the following kinds of expressions: general concept inclusions (GCIs) of the form $C \sqsubseteq D$, role inclusions (RIs) of the form $r \subseteq s$, and assertions of the form $A(a)$, $\nexists r(a, b)$, or $\exists r(a, b)$.

A TBox T is a finite set of GCIs and RIs, and an ABox A is a finite set of assertions. Together, they form a knowledge base (KB) $K = (T, A)$.

Note that the indiscernibility relation ρ is not an element of the set of role names N_R and does not occur in TBoxes explicitly, but it can be used directly in ABoxes to state that...
two objects cannot be distinguished. The relation ρ is the basis for the semantics of the upper and lower approximation.

We denote the sets of all concept names, role names, individual names, and concepts (including syntactic sub-concepts) occurring in a set X of expressions by $N_C(X)$, $N_R(X)$, $N_I(X)$, and $C(X)$, respectively.

Semantics. An interpretation $I = (\Delta^I, \cdot^I)$ consists of a non-empty set Δ^I, called the domain of I, and an interpretation function \cdot^I, which assigns to every $A \in N_C$ a set $A^I \subseteq \Delta^I$, to every $r \in N_R$ a binary relation $r^I \subseteq \Delta^I \times \Delta^I$, to every $a \in N_I$ an element $a^I \in \Delta^I$ such that, for all $a, b \in N_I$, $a^I \neq b^I$ if $a \neq b$ (unique name assumption), and to ρ an equivalence relation ρ^I on Δ^I.

Let $[x]_\sim$ denote the equivalence class of $x \in \Delta^I$ under the relation \sim. The function \cdot^I is extended to complex concepts by setting $\top^I := \Delta^I$, $\bot^I := \emptyset$, and

$$
(D \sqcap E)^I := D^I \sqcap E^I, \\
(\exists r.D)^I := \{ x \in \Delta^I \mid \exists y \in \Delta^I, (x, y) \in r^I, y \in D^I \}, \\
D^I := \{ x \in \Delta^I \mid [x]_\sim \in D \},
$$

The granule of an element $x \in \Delta^I$ is the equivalence class $[x]_\sim$ of elements indiscernible from x. Intuitively, D relaxes D to the union of all those granules with elements in D. Inversely, D strengthens D^I to those elements whose granule is fully contained in D. Observe that the lower approximation behaves to some extent like a value restriction from more expressive DLs in the sense that it refers to all elements of a granule. The semantics of the upper approximation \bar{C} and the lower approximation \underline{C} are shown in Figure 1 in relation to concept C.

The interpretation I is a model of the GCI $C \sqsubseteq D$ iff $C^I \subseteq D^I$, the RI $r \sqsubseteq s$ iff $r^I \subseteq s^I$, the assertion $A(a)$ iff $a^I \in A^I$, and the assertion $\exists r(a, b)$ with $r \in N_R \cup \{ \rho \}$ iff $(a^I, b^I) \in r^I$. An interpretation I is a model of (or satisfies) a set of axioms X, written $I \models X$, iff it is a model of all axioms in X. A KB $K = (T, A)$ is consistent if $T \cup A$ has a model, and inconsistent otherwise. K entails an axiom α, written $K \models \alpha$, iff all models of K also satisfy α. Given two concepts C and D, we say that C subsumes D w.r.t. K (written $C \sqsubseteq_K D$), iff $C^I \subseteq D^I$ holds in every model I of the KB K.

Query Answering. Consider a set of variables N_V, which is disjoint from $N_I \cup N_C \cup N_R$, and let $N_T := N_V \cup N_I$ be the set of terms. A first-order (FO) query is a FO formula $\Phi(\vec{x})$ over the signature $N_C \cup N_R \cup \{ \rho \} \cup N_T$.

The tuple $\vec{x} = x_1, \ldots, x_k$ with $x_i \in N_V$ for all i, with $1 \leq i \leq k$ are the answer variables of $\Phi(\vec{x})$. A query containing k answer variables is a k-ary query. Let C be an \mathcal{ELH}_0^0 concept, $r \in N_R$, and $t, u \in N_T$. A conjunctive query (CQ) is a FO query of the form $\exists \vec{v}.\Phi(\vec{v}, \vec{w})$, where Φ is a (possibly empty) conjunction built of concept atoms $C(t)$, role atoms $r(t, u)$, and indiscernibility atoms $\rho(t, u)$. The empty conjunction is denoted by true.

Given an interpretation I, a k-ary FO query $\Phi(\vec{x})$, and $a_i \in N_I$ for i, with $1 \leq i \leq k$, we write $I \models \Phi(a_1, \ldots, a_k)$ if the interpretation I satisfies $\Phi(\vec{x})$ with x_i assigned to a_i^I for i, with $1 \leq i \leq k$, and call $\{ a_1, \ldots, a_k \}$ an answer to Φ in I. Such a tuple $\{ a_1, \ldots, a_k \}$ is a certain answer to Φ w.r.t. a KB K if, for every model I of K, we have $I \models \Phi(a_1, \ldots, a_k)$. The set $\text{Cert}(\Phi, K)$ contains all certain answers for a given CQ Φ w.r.t. a KB K.

The reasoning task investigated in this paper is CQ answering in $\mathcal{ELH}_0^0 \downarrow$, i.e., the computation of the set $\text{Cert}(\Phi, K)$. In contrast to \mathcal{EL} queries, the CQs considered here can contain indiscernibility atoms $\rho(t, u)$ and complex concepts using upper or lower approximation, provided they have a concept name assigned in the TBox.

When convenient, we view a CQ Φ as the set of atoms occurring in it. For a given query Φ we use the following sets: $N_V(\Phi)$ for its terms, $N_I(\Phi)$ for its variables, $N_A(\Phi)$ for its answer variables and $N_Q(\Phi)$ for its quantified variables.

The Combined Approach for $\mathcal{ELH}_0^0 \downarrow$

Recall that the combined approach for query answering first absorbs the TBox information into the ABox. Afterwards, it computes a query rewriting that augments the initial query by filter conditions.

Let $K = (T, A)$ be a KB. For the remainder of the paper we make the following simplifying assumptions w.l.o.g.

1. CQs over K contain only individual names that do occur in K.
2. K contains no role synonyms; i.e., there are no $r, s \in N_R$ such that $r \neq s$ and $K \models \{ r \sqsubseteq s, s \sqsubseteq r \}$.
3. all concept names that appear in A appear also in T.

For the rest of the paper let Φ be a k-ary CQ to be answered w.r.t. a consistent $\mathcal{ELH}_0^0 \downarrow$ KB $K = (T, A)$.

Absorption of TBox Axioms.

The goal of TBox absorption is to rewrite the ABox in such a way that all the background knowledge is already included in it. In this way, the TBox can be disregarded in the query answering process, using only the relevant information encoded in the rewritten ABox. We show how this method,
\[\Delta^A := N_0(A) \cup N_0^C \cup N_1^{\text{low}} \cup N_1^{\text{up}} \]

\[a^A := a \]

\[I^A := \{ (a, b) \mid s(a, b) \in A, K \models s \subseteq r \} \cup \{ (a, x) \in N_0(A) \times N_0^C \mid K \models \exists r.C(a) \} \cup \{ (x, D) \in N_0^C \times N_0^C \mid K \models A \subseteq \exists r.D \} \cup \{ (x, C) \in N_0^C \times N_0^C \mid K \models A \subseteq \exists r.C \} \]

\[\rho_A := \{ (a, b) \mid \rho(a, b) \in A \} \cup \{ (a, x) \in N_0(A) \times N_0^C \mid K \models \exists r.C(a) \} \cup \{ (e, b) \mid e \in N_0^\text{low} \} \cup \{ (e, x) \mid e \in N_0^\text{up} \} \cup \{ (x, D) \in N_0^C \times N_0^C \mid K \models A \subseteq \exists r.D \} \cup \{ (x, C) \in N_0^C \times N_0^C \mid K \models A \subseteq \exists r.C \} \]

\[\rho^A := \text{reflexive, symmetric, transitive closure of } \rho_A \]

Figure 2: The canonical interpretation \(I_K = (\Delta^A, I^A) \) of \(K \), where \(a \in N_0(A), A \in N_C(K) \), and \(r \in N_R(K) \).

We turn now to the definition of the sets capturing these four sorts of domain elements. For simplicity, the named elements representing the individual names are denoted by the corresponding names from \(N_0(A) \). The other elements are called auxiliary elements and are contained in the sets:

\[N_C^0 := \{ x \mid C \in \mathcal{C}(T) \} \]

\[N_1^{\text{up}} := \{ x_{C,e} \mid C \in \mathcal{C}(T), e \in N_0(A) \cup N_0^C \} \]

\[N_1^{\text{low}} := \{ e_{C} \mid e \in N_0(A) \cup N_0^C \} \]

Intuitively, the auxiliary elements stand for the following:

- \(x_{C} \in N_0^C \) represents an element that satisfies \(C \) and acts as role-successor; it is employed to make the predecessors satisfy concepts of the form \(\exists r.C \);
- \(x_{C,e} \in N_1^{\text{up}} \) represents an element that satisfies \(C \). If the seed element \(e \) is an individual, then \(x_{C,e} \) is indiscernible from \(e \). In the case where the seed element \(e \) is a concept, then \(x_{C,e} \) represents that every element from \(e \) is indistinguishable from some element in \(C \). The element \(x_{C,e} \) is used to make the seed element \(e \) satisfy \(C \); and
- \(e_{C} \in N_1^{\text{low}} \) represents an element satisfying exactly those concepts \(C \) that are satisfied by all elements in the lower approximation of \(e \). If seed element \(e \) is an individual, then \(e_{C} \) is indiscernible from element \(e \). If seed element \(e \) is a concept, then \(e_{C} \) represents all granules fully contained in \(e \). The seed element \(e \) satisfies \(C \) for all concepts \(C \) associated to \(e_{C} \).

Sometimes we use the short-hand \(N_0^\rho = N_1^{\text{up}} \cup N_1^{\text{low}} \) for the ‘non-seed’ elements. Observe that all elements in \(N_1^{\text{up}} \) or \(N_1^{\text{low}} \) are ‘caused’ by a seed element. The idea is that in the canonical interpretation each seed element is associated with an element representing this seed element’s lower approximation. ABox individuals have the same granule as their lower or upper approximation, thus they only induce one element in \(N_1^{\text{low}} \). In contrast to this, concepts in \(T \) can have several granules in their approximations. Here, the lower approximation captures what is common to all granules in the

\[A^B := \{ a \in N_0(A) \mid K \models A(a) \} \cup \{ x \in N_0^C \mid K \models C \subseteq A \} \cup \{ x_{C,e} \in N_1^{\text{up}} \mid K \models C \subseteq A \} \cup \{ x_{C,b} \in N_0^C \mid K \models A(b) \} \cup \{ x_{C,x}, x_d, x_d, \in N_0^C \mid K \models D \subseteq A \} \]

\[\rho_K := \{ (a, b) \mid \rho(a, b) \in A \} \cup \{ (a, x) \in N_0(A) \times N_0^C \mid K \models \exists r.C(a) \} \cup \{ (e, b) \mid e \in N_0^\text{low} \} \cup \{ (x_{C}, D) \in N_0^C \times N_0^C \mid K \models A \subseteq \exists r.D \} \cup \{ (x_{C,b}, x_{D,c}) \in N_0^C \times N_0^C \mid K \models A \subseteq \exists r.D \} \cup \{ (x, C) \in N_0^C \times N_0^C \mid K \models A \subseteq \exists r.C \} \]

\[\rho^K := \text{reflexive, symmetric, transitive closure of } \rho_K \]

\[A^B := \{ a \in N_0(A) \mid K \models A(a) \} \]

\[\{ x \in N_0^C \mid K \models C \subseteq A \} \cup \{ x_{C,e} \in N_1^{\text{up}} \mid K \models C \subseteq A \} \cup \{ x_{C,b} \in N_0^C \mid K \models A(b) \} \cup \{ x_{C,x}, x_d, x_d, \in N_0^C \mid K \models D \subseteq A \} \]

\[\rho_K := \{ (a, b) \mid \rho(a, b) \in A \} \cup \{ (a, x) \in N_0(A) \times N_0^C \mid K \models \exists r.C(a) \} \cup \{ (e, b) \mid e \in N_0^\text{low} \} \cup \{ (x_{C}, D) \in N_0^C \times N_0^C \mid K \models A \subseteq \exists r.D \} \cup \{ (x_{C,b}, x_{D,c}) \in N_0^C \times N_0^C \mid K \models A \subseteq \exists r.D \} \cup \{ (x, C) \in N_0^C \times N_0^C \mid K \models A \subseteq \exists r.C \} \]

\[\rho^K := \text{reflexive, symmetric, transitive closure of } \rho_K \]
lower approximation, thus one element in N^low representing the lower approximation of a concept suffices. The granules in the upper approximation of a concept C can overlap with different concepts or individuals e, thus different representatives for each such overlap are introduced in N^up. During the reasoning process it can be discovered that some of the granule representatives belong into the same granule, which then gives rise to ρ-edges between the granule representatives.

The canonical interpretation I_K of a KB K is formally defined in Figure 2, through a description of the interpretation function of all the relevant elements. The size of Δ^{I_K} is polynomial (more precisely, cubic) in the size of K. Moreover, I_K is computable in polynomial time, and consistency of K can be checked in polynomial time (Peñaloza and Zou 2013).

Example 1. Consider $K_1 = (T_1, A_1)$ with $T_1 = \{D \sqsubseteq C, C \sqsubseteq A \sqcap B\}$, and $A_1 = \{C(a), D(a), \exists r. D(b), \rho(a, b)\}$.

Figure 3 depicts its canonical interpretation I_{K_1} (omitting transitive, reflexive ρ-edges). As in classical canonical interpretations, a is an instance of A since $(\ast) I_{K_1}$ satisfies both $C(a)$ and $C \sqsubseteq A \sqcap B$. The element b is an instance of $\exists r. D$ since it is related to the representative instance of $D (x_D \in N^\text{up})$. As in the rough setting, the relation $\rho^{\mathcal{K}_1}$ comes into play and (\ast) yields that a is an instance of B; i.e., all elements in $[a]_\rho$, especially $\ell_a \in N^\text{low}$, instantiate B in I_{K_1}. Since $D \subseteq C$, x_D instantiates C; i.e., it is related via $\rho^{\mathcal{K}_1}$ to its representative ρ-successor instantiating C: x_{C,x_D}. The latter similarly holds for $x_{D,a}$, the representative ρ-successor of a that instantiates D; i.e., $x_{D,a}$ is related via $\rho^{\mathcal{K}_1}$ to its representative successor that is an instance of $C, x_{C,a}$. Note, that $x_{D,a}$ exists due to the assertion $\overline{\mathcal{D}}(a)$.

Figure 3 shows that canonical interpretations in \mathcal{ELH}_\perp^ρ correspond to the ones in \mathcal{EL} modulo the granules—by regarding each granule as a single element, the result is an \mathcal{EL} interpretation that satisfies the TBox without approximation constructors. However, role assertions from the ABox can establish role edges between members of the same granule.

Lemma 2. If K is consistent, then I_K is a model of K.

Proof (Sketch). By construction, I_K is a model of A and of all Rs in T. We need to show that the GCIs in T are satisfied. By induction on the concept structure it can be shown that, for all $C \in \mathcal{C}(T)$, $a \in N^\text{up}(A)$, and $x_E \in N^\text{up}_I$, it holds that $a \in C^{\mathcal{K}_I}$ iff $K \models C(a)$, and $x_E \in C^{\mathcal{K}_I}$ iff $K \models E \subseteq C$. Similar equivalences hold for elements of the form $x_{C,e}$ and ℓ_e. Then, it is easy to show that the GCIs $C \sqsubseteq D$ are satisfied by applying the corresponding equivalences to C' and D. □

As mentioned already, the interpretation I_K can be seen as an ABox that encodes all the information stated in the original KB K. However, queries cannot be answered using I_K directly, for two reasons. The first reason is, that the domain Δ^{I_K} of I_K may contain superfluous elements. For example, for the KB $K_2 = \{(C \sqsubseteq A), \theta\}$, I_{K_2} contains an element $x_C \in A^{\mathcal{K}_I}$, Thus, the CQ $\exists y. A(y)$ would return an empty tuple (meaning that the query can be satisfied) w.r.t. I_{K_2}, even though this is not an answer w.r.t. K_2. We therefore restrict the canonical model I_K to those domain elements that are reachable from named elements.

A path in an interpretation I is a finite sequence $d_0 r_1 d_1 \cdots r_n d_n$, $n \geq 0$, such that $d_0 \in N^\text{up}(A)$ and, for all i with $1 \leq i \leq n$, $d_i \in \Delta^I \setminus N^\text{up}(A)$, $r_i \in \rho \cup \{\rho_K\}$, and $(d_{i-1}, d_i) \in r_i^2$. Paths(I) denotes the set of all paths in I. For a path $p = d_0 r_1 d_1 \cdots r_n d_n$, define Tail$(p) := d_n$. Intuitively, each path starts with an element that represents an ABox individual, each such element starts a path and there is no second ABox individual on a path. Observe that paths are defined using ρ_K and not its symmetric, reflexive, transitive closure.

To avoid the superfluous domain elements, the interpretation I^ρ_K is obtained from I_K by restricting its domain elements to those reachable from elements that represent ABox individuals, or, more formally:

$$\Delta^{I^\rho_K} = \{\text{Tail}(p) \mid p \in \text{Paths}(I_K)\}.$$

The next fact follows directly from this definition and states for those seed elements reachable by paths, the members of their granule. Thus it clarifies the picture of the indiscriminability relation in I^ρ_K.

Fact 3. For all seed elements that are reachable by paths, i.e., for all $e \in N^\text{up}(A) \cap \Delta^{I^\rho_K}$, we have:

$$\{e\}^{I^\rho_K} = \{e, \ell_e\} \cup \{x_{D,e} \in N^\text{up} \cap \Delta^{I^\rho_K}\} \cup \bigcup_{\rho(a,e) \in A} \{\ell_a, \ell_e\} \cup \{x_{D,a} \in N^\text{up} \cap \Delta^{I^\rho_K}\}.$$ □

The second reason why queries cannot be answered using I_K directly, is the unintended reuse of some elements. In the classical case of \mathcal{EL}, the elements in N^up_I can introduce unintended joins in the model, and hence yield erroneous answers. As noticed in (Lutz, Toman, and Wolter 2009), for the KB $K_3 = (T_3, A_3)$ with $T_3 = \{(A \sqsubseteq A r B \sqcap \exists r. B)\}$ and $A_3 = \{A(a)\}$, the element a is connected to x_B via r and s in I_{K_3}. Considering the query $\Phi_3(x) = \exists y. r(x, y) \land s(x, y)$, this gives rise to $I_{K_3} \models \Phi_3(a)$, but $a \not\in \text{Cert}(\Phi_3, K_3)$.

In the \mathcal{ELH}_\perp^ρ case, with the interpretation I^ρ_K, the unintended reuse additionally affects those elements from N^up_I.
(connected to the \(N_c\)-elements) that were induced by seed elements from \(N^c_i\). So, for the KB \(K_\Lambda\), there would be (among others) the element \(x_{B,x} \in N^p_i\) in the domain of \(I_{K_\Lambda}\). This element is connected to element \(x_B\) by a \(\rho\)-edge. For the query \(\Phi^*_3(x) = \exists x.y.r(x, y) \land s(x, y) \land \overline{T}(y)\) this gives rise to \(I_{x_B} = \Phi^*_3(a)\), but \(a \notin \text{Cert}(\Phi^*_3, K_3)\).

To remedy these effects, the canonical model can be unraveled into a new, tree-shaped interpretation \(U_{K}\) so that the paths in \(I_{K_\Lambda}\) become the domain elements of \(U_{K}\). The unraveling of \(I_{K_\Lambda}^c\) is the interpretation \(U_{K} = (\Delta_{U_{K}}, I_{U_{K}})\), where, for all \(a \in N_i(A), A \in N_c(K), r \in N_{R}(K)\):

\[
\Delta_{U_{K}} := \text{Paths}(I_{K_\Lambda}^c)
\]

\[
a^{U_{K}} := a
\]

\[
A^{U_{K}} := \{ p \mid \text{Tail}(p) \in A^{I_{K_\Lambda}} \}
\]

\[
\rho^{U_{K}} := \{(a, b) \mid a, b \in N_i(A), (a, b) \in r^{I_{K_\Lambda}} \} \cup \{(p, p \cdot se) \mid p, p \cdot se \in \Delta_{U_{K}}, K \models s \sim r \}
\]

\[
\rho^{U_{K}} := \{(a, b) \mid a, b \in N_i(A), (a, b) \in \rho^{I_{K_\Lambda}} \} \cup \{(p, p \cdot pe) \mid p, p \cdot pe \in \Delta_{U_{K}}\}
\]

\[
\text{re}^{U_{K}} := \text{reflexive, symmetric, transitive closure of } \rho^{U_{K}}
\]

Note that the construction of \(U_{K}\) from \(I_{K_\Lambda}^c\) does not depend on the GCIs but only on the RIs in \(T\).

Lemma 4. For every \(a_1, \ldots, a_k \in N_i(A)\), we have that \((a_1, \ldots, a_k) \in \text{Cert}(\Phi, K)\) iff \(U_{K} \models \Phi[a_1, \ldots, a_k]\).

The unraveling \(U_{K}\) gives the correct answers to CQs, but it is typically uninformative; e.g. in the presence of terminological cycles. The idea is therefore to focus on \(I_{K_\Lambda}^c\) for CQ answering, but to take \(U_{K}\) as a kind of reference model. Specifically, the query \(\Phi\) is extended with conditions that only answers compliant with \(U_{K}\), by avoiding the unintended joins.

The Query Rewriting

We focus now on the problem of rewriting a CQ \(\Phi\) in such a way that the answers of its rewriting \(\Phi^{\tau}_1\) w.r.t. \(I_{K_\Lambda}^c\) correspond exactly to the answers of the original query \(\Phi\) w.r.t. \(K\). More precisely, we want to prove the following result.

Theorem 5. For every finite set of role inclusions \(\mathcal{R}\) and each \(k\)-ary CQ \(\Phi\), one can construct in polynomial time a \(k\)-ary FO query \(\Phi^{\tau}_1\) such that, for all \(\mathcal{ELH}^{p}_{\mathcal{R}}\) KBs \(K = (\mathcal{T}, A)\) using only the role inclusions \(\mathcal{R}\), and all \(a_1, \ldots, a_k \in N_i(A)\), we have

\[(a_1, \ldots, a_k) \in \text{Cert}(\Phi, K) \text{ iff } I_{K_\Lambda}^c \models \Phi^{\tau}_1(a_1, \ldots, a_k)\,.
\]

In order to show this theorem, our first step is to develop the rewriting procedure. The combined approach extends a given CQ with additional filter conditions to discard those answers to \(\Phi\) in \(I_{K_\Lambda}^c\) that are not answers in \(U_{K}\). These conditions essentially target those parts of the CQ that can be satisfied by non-tree structures that may exist in \(I_{K_\Lambda}^c\) but not in \(U_{K}\). Observe that only non-tree structures including auxiliary elements are critical as these are the ones that would not appear in the original KB. We extend the filter conditions from Lutz, Toman, and Wolter to handle also the elements representing upper and lower approximations of concepts.

Specifically, due to the properties of the indiscernibility relation \(\rho\) (i.e., transitivity, reflexivity, and symmetry), and its influence in the approximation constructors, the new filter conditions need to consider potential equivalences and joins that are only implicitly stated. For instance, a tree-shaped query that leads to two different but indiscernible elements will include an implicit join that must be taken into account.

Let \(\mathcal{R}\) be an arbitrary but fixed finite set of RIs and \(\Phi\) be a \(k\)-ary CQ. To identify auxiliary elements, we introduce two fresh unary predicates (that is, concepts): \(\text{Aux}\) identifies elements from \(N^c_i\) and \(\text{Aux}_{\Phi}\) ‘approximation-related’, i.e., ‘non-seed’ elements from \(N^c_i\). We define them to be interpreted in \(I_{K_\Lambda}^c\) and \(U_{K}\) as:

\[
\text{Aux}^{U_{K}} := \Delta_{U_{K}} \cap N_{I}^c
\]

\[
\text{Aux}^{U_{K}} := \cup_{p \in \Delta_{U_{K}}, \text{Tail}(p) \in N_{R}^c} \{p\}
\]

\[
\text{Aux}_{\Phi}^{U_{K}} := \cup_{p \in \Delta_{U_{K}}, \text{Tail}(p) \in N_{R}^c \sim p} \{p\}
\]

To model the filters, we describe those mappings from answer variables to ABox individuals that describe non-tree structures which cannot be satisfied in \(U_{K}\). The latter is the case if the answer mapping uses a single \(N^c_i\) element as a role successor for mapping several objects referred to in the query such that there is no corresponding element in \(U_{K}\) that fits all of them. A corresponding such element in \(U_{K}\) exists, if the structures from the query can be mapped into a single path in \(I_{K_\Lambda}^c\), by identifying terms.

The terms that are identified in this way, and those that are indiscernible, are captured via an equivalence relation \(\sim_{\Phi}^p\) on terms, grouping them into equivalence classes. Let \(\sim_{\Phi}^p\) be another equivalence relation over \(N_{I}(\Phi)\) induced by the atoms of the form \(\rho(s, t)\) occurring in \(\Phi\) for some terms \(s\) and \(t\). The relation \(\sim_{\Phi}^p\) is defined inductively based on \(\sim_{\Phi}^{p}\), the smallest transitive and reflexive relation on \(N_{I}(\Phi)\) that (1) includes the relation

\[
\{(s, t') \mid r_1(s, t), r_2(s', t') \in \Phi, r_1, r_2 \in N_{R}^c, t \sim_{\Phi}^p t'\}
\]

and (2) satisfies the closure condition:

\[
\text{if } r_1(s, t), r_2(s', t') \in \Phi, r_1, r_2 \in N_{R}^c \text{ and } t \sim_{\Phi}^p t', \text{ then } s \sim_{\Phi}^p s'.
\]

Observe that the relation \(\sim_{\Phi}^p\) inherits symmetry by construction from the symmetric relation \(\sim_{\Phi}^p\), and, furthermore, \(\sim_{\Phi}^p\) does not need to contain \(\sim_{\Phi}^{p}\) as a sub-relation. The equivalence classes of \(\sim_{\Phi}^p\) group those terms that cannot be distinguished by homomorphisms from \(\Phi\) into \(U_{K}\). Such an inductively defined relation is already used in the combined approach for \(\mathcal{EL}\) (Lutz, Toman, and Wolter 2009). The important difference is that in that previous work, the induction is based on the identity relation. The closure condition then captures non-tree structures in the query \(\Phi\), where a term \(t\) has two role-successors \(s\) and \(s'\). For \(\mathcal{ELH}^{p}_{\mathcal{R}}\), the identity relation is too fine-grained, since truly distinct objects belong to different granules. So, in order to be able to handle
in the query the relaxation introduced by the rough constructors, we need to consider the whole indiscernibility relation on the query terms. Since granules can be separated by role relationships (as shown in Figure 3), the incoming role edges of a granule and the related role-predecessor need to be addressed. In order to do so we define for each equivalence class \(\zeta \) of the relation \(\sim_\Phi \), the predicates:

\[
\text{Pre}(\zeta) := \{ t \mid r(t, t') \in \Phi, r \in \mathbb{N}_R, t' \in \zeta \}
\]

\[
\text{In}(\zeta) := \{ r \mid r(t, t') \in \Phi, r \in \mathbb{N}_R, t' \in \zeta \}
\]

The set \(\text{Pre}(\zeta) \) describes all the role predecessors of terms in the equivalence class \(\zeta \). The set \(\text{In}(\zeta) \) contains all the incoming role names to \(\zeta \).

For the roles that separate the granules, the role hierarchy \(\mathcal{R} \) needs to be taken into account. As the more general role relationships of another is directly stated in the canonical model (by construction of \(r^{\mathcal{I}_\mathcal{K}} \)) and thus also in \(\mathcal{I}_\mathcal{K}^{\mathcal{L}} \), the query needs to refer to a most specific role. A role \(r \in \mathbb{N}_R \) is an implicant of \(R \subseteq \mathbb{N}_R \) if \(\mathcal{R} \models r \subseteq s \) for all \(s \in R \). It is a prime implicant if, additionally, \(\mathcal{R} \not\models r \subseteq r' \) for all implicants \(r' \) of \(R \) with \(r \not\subseteq r' \). Since KBs contain no role synonyms, there is a prime implicant for each \(R \subseteq \mathbb{N}_R \) for which there is an implicant.

The different filters focus on different kinds of structures in \(\Phi \). We collect these structures in the following sets, which are based on the sets \(\text{Pre}(\zeta) \) and \(\text{In}(\zeta) \), and on implicants:

- **Fork** is the set of variables \(v \in \mathbb{N}_QV(\Phi) \) such that there is no implicant of \(\text{In}(v)) \sim_\Phi \). Intuitively, Fork collects those variables that can never be mapped to the same Aux-element in \(\mathcal{U}_K \), due to the shape of \(\Phi \) (i.e., there are different role atoms where the variables occur as successors) and the interpretation of roles in \(\mathcal{U}_K \), which is based on the RIs entailed by \(K \).

- **Fork** is the set of pairs \((\text{Pre}(\zeta), \zeta) \) with \(|\text{Pre}(\zeta)| \geq 2 \). The first terms in the pairs in Fork are those variables that are mapped to indiscernible elements by an homomorphism of \(\Phi \) into \(\mathcal{U}_K \) and that may have to be identified if the successor variable is mapped to an Aux-element. Note that the case where the latter is not possible is captured by Fork. Moreover, it does not suffice to require the identification, this is addressed next.

- **Fork** is the set of pairs \((l, \zeta) \) such that \(\text{Pre}(\zeta) \not\subseteq \emptyset \), there is a prime implicant of \(\text{In}(\zeta) \) that is not contained in \(\text{In}(\zeta) \), and \(l \) is the set of all prime implicants of \(\text{In}(\zeta) \). By the definition of \(\mathcal{U}_K \), a pair of an arbitrary element and an element of \(N_2^{\mathcal{L}} \) can be contained in the interpretations of different roles in \(\mathcal{U}_K \), but then it must also be in the interpretation of a prime implicant of those roles. Fork therefore collects all relevant prime implicants so that the filter can enforce some such relation.

- **Cyc** is the set of all those quantified variables \(v \in \mathbb{N}_QV(\Phi) \) such that there exist the role atoms \(r_0(t_0, t_0'), \ldots, r_m(t_m, t_m'), \ldots, r_n(t_n, t_n'), m, n \geq 0 \) in \(\Phi \) with \(r_i \in \mathbb{N}_R \) for all \(i, 0 \leq i \leq m, \), and the following conditions hold:
 1. \((v, t_i) \in \sim_\Phi \cup \sim_\Phi \) for some \(i \leq n, \)
 2. \((t_i, t_{i+1}) \in \sim_\Phi \cup \sim_\Phi \) for all \(i < n, \) and

3. \((t_i', t_m) \in \sim_\Phi \cup \sim_\Phi \)

i.e., Cyc is the set of all quantified variables appearing in the query \(\Phi \) that lead, through role connections and equivalences based on the indiscernibility relation, to cyclic dependencies.

These definitions are analogous to those employed in the combined approach for \(\mathcal{E}_L \); the main change in our setting is the integration of the indiscernibility relation into \(\sim_\Phi \) to capture the notion of granules, which is fundamental for the correctness of the method. Notice that dealing with the indiscernibility relation requires a non-trivial extension of the classical case; indeed, indiscernible elements may affect many different points in the rewriting of a query. Moreover, to keep the connection to the work by Lutz, Toman, and Wolter explicit, we have used the same names for the filters; but they all differ from the original definitions.

For each equivalence class \(\zeta \) of \(\sim_\Phi \), we select an arbitrary but fixed representative \(t_z \in \zeta \), and if \(\text{Pre}(\zeta) \not\subseteq \emptyset \), we also select a fixed element \(t^\text{pre}_{qR} \in \text{Pre}(\zeta) \).

Using these filters, we can now describe the promised query rewriting. Given the CQ \(\Phi \), we define the FO query

\[
\Phi^\dagger_{\mathcal{R}} := \exists \exists \exists. (\Phi^\dagger \land \Psi_1 \land \Psi_2 \land \Psi_3), \text{ where}
\]

\[
\Psi_1 := \bigwedge_{v \in \text{N}_\text{Aux}(\Phi) \cup \text{Cyc}} \neg \text{Aux}_v(v) \\
\Psi_2 := \bigwedge_{(\{t_1, \ldots, t_k\}, \zeta) \in \text{Fork}_\mathcal{R}} (\text{Aux}(t_z) \rightarrow \bigwedge_{1 \leq i < k} t_i = t_{i+1}) \\
\Psi_3 := \bigwedge_{(l, \zeta) \in \text{Fork}_\mathcal{H}} (\text{Aux}(t_z) \rightarrow \bigwedge_{r \in l} r(t^\text{pre}_{qR}, t_z)),
\]

and \(\Phi^\dagger \) is a CQ equivalent to \(\Phi \) whose concept atoms are of the form \(A(t) \) with \(A \in \mathbb{N}_C \). This query \(\Phi^\dagger \) can be obtained from \(\Phi \) through an unfolding that transforms complex concepts into first-order terms. For example, the unfolding rewrites the conjunct \(\overline{C}(x) \) in \(\Phi \) into \(\exists y \rho(x, y) \land C(y) \). Notice that the constraints enforcing that the explicit indiscernibility relations included in the original KB form an equivalence relation are already encoded in the definition of \(\text{Aux}_v^{\mathcal{L}} \) and \(\text{Aux}_r^{\mathcal{L}} \).

The proof of Theorem 5 focuses on the new query \(\Phi^\dagger_{\mathcal{R}} \), which can, in fact, be constructed in polynomial time. It remains to show that this query satisfies the property claimed by the theorem. The idea is that the filter conditions introduced in the rewriting make sure that the answers over \(\Phi \) that do not hold in \(\mathcal{U}_K \) are excluded. \(\Psi_1 \) sifts out those answers in \(\mathcal{I}_\mathcal{K}^{\mathcal{L}} \) that contain auxiliary elements, and those that cannot be mirrored in \(\mathcal{U}_K \) because the corresponding mapping uses an \(N_2^{\mathcal{L}} \) element as a role successor in several cases such that there is no corresponding element in \(\mathcal{U}_K \) that fits all of them. The query parts \(\Psi_2 \) and \(\Psi_3 \) characterize the situation in which a corresponding element in \(\mathcal{U}_K \) exists: by identifying elements, the relevant structures from \(\Phi^\dagger \) mapped into \(\mathcal{I}_\mathcal{K}^{\mathcal{L}} \) must be collapsible into a single path (\(\Psi_2 \)), and a prime implicant must be among the edges between two nodes of this path (\(\Psi_3 \)).
The proof of Theorem 5 uses the FO query Φ^\dagger_4. The filtering conditions introduced in this rewriting make sure that the answers over Φ that do not hold in the model \mathcal{U} are excluded. For example, Ψ_i guarantees, amongst others, that any cyclic dependency between domain elements must occur in the ABox. That is, cycles introduced by the reuse of auxiliary names in the canonical model are ignored. For lack of space, full proofs are not included in this paper. They can be found in (Peñaloza, Thost, and Turhan 2018).

We now provide some simple examples of the rewriting, aimed to explain the ideas of the construction. Let $\mathcal{R} = \emptyset$. Notice that in this case, Fork_H is always empty, and hence $\Psi_0 = \text{true}$. We omit \mathcal{R} and these Ψ_0 formulas in the rewritings. We first demonstrate the role of Cyc. Consider

$$\Phi_4 := \exists y_1, y_2. (\text{hasA}(y_1, y_2) \land \rho(y_1, y_2)).$$

We have $\text{Cyc} = \{y_1, y_2\}$, $\text{Fork}_k = \text{Fork}_\rho = \text{Fork}_H = \emptyset$, and thus obtain the following rewriting Φ^\dagger_4:

$$\exists y_1, y_2. (\text{hasA}(y_1, y_2) \land \rho(y_1, y_2) \land \neg \text{Aux}(y_1) \land \neg \text{Aux}(x_2)).$$

This query guarantees that all the answer pairs provided are indiscernible elements, related via the role hasA, and that they contain no auxiliary elements. We next consider a similar query, demonstrating the rewriting of forking situations:

$$\Phi_5 := \exists y_1, y_2. (\text{hasA}(x_1, y_1) \land \text{hasA}(x_2, y_2) \land \rho(y_1, y_2)).$$

The relation $\neg \Phi_5$ has equivalence classes $\{x_1, x_2\}$, and $\{y_1, y_2\}$, and $\neg \Phi_5$ defines the partition $\{\{x_1, x_2\}, \{y_1, y_2\}\}$. In $\{y_1, y_2\} = \{\text{hasA}\}$. Thus, we have $\text{Fork}_k = \{\{x_1, x_2\}, \{y_1, y_2\}\}$, and $\text{Fork}_H = \text{Cyc} = \emptyset$. This yields the rewriting

$$\Phi^\dagger_5 := \exists y_1, y_2. (\text{hasA}(x_1, y_1) \land \text{hasA}(x_2, y_2) \land \rho(y_1, y_2) \land \neg \text{Aux}(x_1) \land \neg \text{Aux}(x_2) \land (\text{Aux}(y_1) \rightarrow x_1 = x_2)).$$

Notice that every step in the construction of the rewriting is polynomial in the size of the KB and the query. Specifically, $\neg \Phi_5$, Pre, and In are subsets of terms and variables that appear explicitly in Φ. By extension, the filters Fork_ρ, Fork_k, Fork_H, and Cyc are also polynomial in Φ. The only remaining case is ensuring that the auxiliary elements are not used to generate non-existing answers, as guaranteed by the queries $\Psi_i, 1 \leq i \leq 3$. The size of these queries is, in fact, polynomial in the number of auxiliary variables in $\mathcal{I}^{\text{aux}}_k$. By construction, the domain of $\mathcal{I}^{\text{aux}}_k$ is polynomial in the size of \mathcal{K}. Overall, this means that the rewriting procedure runs in polynomial time, and produces a polynomially bounded FO query.

Reduction to Classical DLs

After having considered the ontology-based query answering technique for rough DLs based on the combined approach in the last sections, we now take a brief look at a method for reducing this problem to QA in classical DLs that builds on proposals developed for rough DLs in the past.

It is known that rough DLs can be simulated in sufficiently expressive (classical) DLs (Schlobach, Klein, and Peelen 2007). Specifically, the upper and lower approximations C and \mathcal{U} are equivalent to the concepts $\forall \rho.C$ and $\exists \rho.C$, respectively, where ρ is a designated transitive, reflexive, and symmetric role. Hence, one needs only to be able to express existential and value restrictions (as in the DL EL), and the three mentioned properties on roles. In other words, every rough-EL KB can be expressed by an \mathcal{S}^Self KB. Thus, any QA tool capable of dealing with this (very) expressive DL would also be able to handle rough EL. Given the efforts to produce efficient QA methods for expressive DLs, one obvious question is whether such methods can be exploited directly to handle $\mathcal{EL}^{\text{aux}}_k$. The answer, unfortunately, is ‘no’. The reason for this negative answer is that this logic does not fall into the class of Horn DLs, for which QA tools are efficient. In a nutshell, Horn DLs are those that do not allow the expression of non-deterministic choices (Ortiz, Rudolph, and Simkus 2011).

Recall the normal form for $\mathcal{EL}^{\text{aux}}_k$ TBoxes presented at the beginning of the last section. It is easy to see that, under the translation of Schlobach, Klein, and Peelen described at the beginning of this section, all the axioms in the first row are in fact Horn axioms. Unfortunately, this does not hold for the last axiom since it requires a value restriction on the left-hand side. This kind of constraint, which implicitly requires a non-deterministic choice (an element belongs to $\forall \rho.A$ if it either has no r-successors, or it has at least one r-successor, and all of them belong to A), cannot be handled efficiently by state-of-the-art QA tools.

On the other hand, the restriction of $\mathcal{EL}^{\text{aux}}_k$ where lower approximations cannot appear on the left-hand side of GCI is, in fact, a Horn DL; more precisely, a sublanguage of Horn-\mathcal{S}^Self. Obviously, this restriction removes an important part of the expressive power of roughness, which may be fundamental for some practical applications. However, it is not hard to conceive cases where such lower approximations on the left-hand side are not really necessary. For instance, in our species classification and differentiation example, the TBox will fall within this sub-logic. Indeed, one may say that a property of a species is indiscernible from another, but a meaningful species description will never say that an element that is indiscernible from all in a species must satisfy some specific properties.

There are approaches for conjunctive query answering that extend \mathcal{EL} directly towards the expressivity needed for rough \mathcal{EL}. For instance, in (Stefanoni and Motik 2015) the authors investigate an extension of \mathcal{EL} that allows for reflexive and transitive roles, but not for symmetric ones, which in general damage the tractability of \mathcal{EL}. Their techniques were implemented in the system RDFox (Motik et al. 2014). As mentioned, this DL covers two of the three properties of an equivalence relation. Symmetry for roles is missing in their approach, since symmetric roles behave to some extent similarly to inverse roles which are notorious for raising the computational complexity of reasoning in many logics. Even transitive roles alone are known to be a handicap to the performance of query answering systems for \mathcal{EL} including them. However, for \mathcal{EL} with transitive roles practical reason-
ing procedures based on the combined approach have been devised in (Lutz et al. 2013) and implemented in the Combo system.

Conclusions

We have presented a combined approach for answering conjunctive queries in the rough graph H_{\bot}. This approach first extends the input ABox to include also the knowledge encoded in the TBox by materialization, and then rewrites the query to guarantee that no answers are unexpectedly introduced in the first step. This allows us to effectively answer conjunctive queries in this rough DL using standard database technologies.

Interestingly, we have shown that dealing with this rough extension of \(H_{\bot} \) does not incur in any increase of complexity w.r.t. its classical counterpart; the rewriting remains polynomial in the size of the input.

Being able to model and reason with rough concepts is fundamental for applications in the life sciences, as they allow the introduction of notions that cannot be precisely defined through use of approximating lower and upper bounds. In addition, they allow to introduce examples of elements that cannot be distinguished by these approximations. Such approaches have recently been investigated for a more fine-grained setting, where vagueness can be captured by a similarity measure and a proto-typical instance, yielding a vague concept that can be dynamically relaxed or strengthened depending on a similarity threshold (Baader, Brewka, and Fernández Gil 2015)—albeit only for unfoldable TBoxes. In our setting the query language itself allows to relax answers by admitting the indiscernibility relation and the approximation constructors in the query language. Here the degree of relaxation then depends on the presence of the indiscernibility relation in the data. A somewhat orthogonal approach has been investigated in (Ecke, Peñaloza, and Turhan 2015), where the query language admits relaxation (of instance queries) by the use of a concept similarity measure and a threshold. While the similarity-based approaches admit more flexibility, they crucially depend on the presence of an appropriate similarity measure supplied by the user. In case of approaches using rough DLs, the indiscernibility relation can, in principle, be automatically derived from the data (d’Amato et al. 2013; Beek, Schlobach, and van Harmelen 2016).

We highlight that there exist database systems providing native support for rough sets (Hu, Lin, and Han 2004; Beer and Bühler 2015). As an alternative approach, one could think of using them as a target language for rewriting the queries. While this would solve some of the technical issues regarding indiscernible elements in the query rewriting step, these systems are not as widely adopted and optimized as industrial database systems. Hence we believe that our approach has a higher potential for practical impact.

We plan to implement the rewriting technique and to test its performance empirically. We will also extend our methods to weaker notions of roughness, by removing restrictions in the indiscernibility relation; e.g. transitivity.

Acknowledgments

This work is partly supported by the German Research Foundation (DFG) within the Cluster of Excellence ‘Center for Advancing Electronics Dresden’ (cfaed) in CRC 912 (HAEC) and within the DFG project ‘Reasoning and Query Answering Using Concept Similarity Measures and Graded Membership Functions’ BA 1122/20-1.

References

Keet, C. M. 2010. Ontology engineering with rough concepts and instances. In Proc. of 17th International Conference on Knowledge Engineering and Management by

Schlobach, S.; Klein, M. C.; and Peelen, L. 2007. Description logics with approximate definitions - precise modeling