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Abstract
We propose a Multi-task Multi-dimensional
Hawkes Process (MMHP) for modeling event
sequences where there exist multiple triggering
patterns within sequences and structures across
sequences. MMHP is able to model the dynam-
ics of multiple sequences jointly by imposing
structural constraints and thus systematically
uncover clustering structure among sequences.
We propose an effective and robust optimization
algorithm to learn MMHP models, which takes
advantage of alternating direction method of
multipliers (ADMM), majorization minimization
and Euler-Lagrange equations. Our experimental
results demonstrate that MMHP performs well on
both synthetic and real data.

1 Introduction
In practical information systems (e.g., social networks, finan-
cial systems, IPTV systems), a temporal event sequence of a
certain user can be modeled as a point process [Rodriguez et
al., 2011; Yang and Zha, 2013; Linderman and Adams, 2014;
Li and Zha, 2014]. Typically, an event in the sequence may
trigger a series of later events, forming a triggering pattern
of the event sequence. On the other hand, multiple event se-
quences may exhibit similar triggering patterns and therefore
can be characterized as a cluster. For example, in an IPTV
system, users buy and watch various TV programs, and their
watching behaviors (when and what they watch) form a large
number of temporal event sequences. For each user, watching
an early episode of a drama may trigger the events of watch-
ing its following episodes (i.e., self-triggering) and other re-
lated news (i.e., mutual-triggering). The triggering pattern
among watching behaviors reflects the watching preferences
of the user. Furthermore, the sequences of the users having
similar preferences can be clustered according to the similar-
ity of their triggering patterns. Simultaneously learning the
triggering pattern of each individual event sequence and the
clustering structure across all the sequences has great prac-
tical significance, because it enables both local and global
∗These two authors contribute equally.

depictions of the entire dynamic system. However, such a
learning task is very challenging as it demands concurrent
modeling point processes individually and globally.

Mathematically, suppose that each user’s behaviors can
be represented as a event sequence {(t1, E1), ..., (tN , EN )}
(0 < ti ≤ T ). The event Ei occurs at time ti, which is
an element of a event set E = {1, ..., C}. Given a set of
event sequences from different users, we aim to 1) find the
triggering pattern among events for each user, including the
influence of the event c on the event c′, c, c′ ∈ E , denoted
as Au = [acc′ ] ∈ RC×C+ and the temporal dynamic of the
influence; 2) explore the clustering structure ofAu’s.

In this paper, we propose a novel point process
model, namely Multi-task Multi-dimensional Hawkes Pro-
cess (MMHP), to learn triggering patterns and clustering
structures from a number of event sequences. Specifically,
given a set of temporal event sequences, MMHP models
the corresponding dynamic system using an intrinsic inten-
sity matrix, a structured infectivity tensor and a trigger-
ing kernel. The intrinsic intensity matrix captures the ba-
sic instantaneous happening rate of various events; the ten-
sor represents the infectivity among events, which reveals
the triggering pattern among events; the triggering kernel
measures the time decay effect of the infectivity. As the
learning of event sequences from the same cluster should
share implicit relatedness, we learn our model under the
multi-task learning framework [Evgeniou and Pontil, 2007;
Liu et al., 2009]. We impose sparse and low rank con-
straints on the infectivity tensor so as to induce the clustering
structure among sequences, and propose an effective algo-
rithm that takes advantage of alternating direction method of
multipliers (ADMM), majorization minimization and Euler-
Lagrange equations to solve the optimization problem.

Different from traditional multi-dimensional Hawkes pro-
cess models, which only consider the triggering pattern
within sequences, MMHP considers both the triggering pat-
tern within sequences and the clustering structure across se-
quences. In MMHP, the triggering patterns of sequences and
their similarities are captured by the structured infectivity ten-
sor. An advantage of MMHP is that they can avoid over-
fitting for the sequences where only a few events are ob-
served. For those cases, the structure of the infectivity ten-
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sor facilitates the knowledge transfer from sequences with
many observed events to those short of observations. We
evaluate MMHP and compare it with other state-of-the-art
methods. Our experimental results on both synthetic and real
datasets demonstrate the superior performance and robust-
ness of MMHP.

2 Related Work
Point processes. Point processes [Daley and Vere-Jones,
2007] are popular models for sequential and temporal data,
which have been successfully applied to model the occur-
rences of earthquakes [Ogata, 1988; 1999], the transactions in
the stock market [Chavez-Demoulin and McGill, 2012; Bacry
et al., 2013], asset management [Yan et al., 2013], meme
tracking [Yang and Zha, 2013] and user interactions [Zhou
et al., 2013a] on social networks. A point process is typically
represented as an event sequence {(t1, E1), ..., (tN , EN )}
(0 < ti ≤ T ), where the event Ei occurs at time ti. De-
note N(t) as the number of points (i.e., events) happening in
the time interval (−∞, t] and Ht = {Ei|ti < t} as the set of
events happening before t, a point process is characterized by
its conditional intensity function

λ(t) = lim
∆t→0

E(N(t+ ∆t)−N(t)|Ht)
∆t

=
E(dN(t)|Ht)

dt
,

where E(dN(t)|Ht) is the expectation of the number of
events happening in the interval (t, t+dt] given historical ob-
servations Ht. The conditional intensity function represents
the expected instantaneous rate of events at time t.

Hawkes processes. A Hawkes process [Hawkes, 1971;
Hawkes and Oakes, 1974] is a point process having a self-
triggering property, that is, the occurrences of previous events
trigger the occurrences of future events. Its conditional inten-
sity function is defined as follows,

λ(t) = µ+
∑

j:tj<t
g(t− tj), (1)

where µ ∈ R+ is an intrinsic intensity for the occurrences of
events, g : R+ → R+ is a triggering kernel function quanti-
fying the triggering effects from previous events.

Multi-dimensional Hawkes processes. In most situa-
tions, there can be multiple types of events happening sequen-
tially, e.g., multiple users post information and interact with
each other on a social network, multiple items are sold on an
online shop. In those cases, each event not only triggers the
events of its type, but also triggers the events of other differ-
ent types. Multi-dimensional Hawkes processes are used to
model such processes. Specifically, given C types of events,
the conditional intensity λ(t) = [λ1(t), ..., λC(t)]> is a size-
C vector, where λc(t) is the conditional intensity for type-c
events defined as follows,

λc(t) = µc +
∑

j:tj<t
accjg(t− tj), (2)

where µc is the intrinsic intensity of the event of type c. Com-
pared with (1), an infectivity matrixA ∈ RC×C+ is introduced
to measure the influence across events of different types, that
is, acc′ represents the infectivity of type-c′ events to type-c

events.
∑
j:tj<t

accjg(t− tj) represents the influence of his-
torical events on the instantaneous rate of event at time t.

Multi-dimensional Hawkes processes have been proposed
and applied to analyze the topic diffusion [Rodriguez et al.,
2011; Du et al., 2013; Yang and Zha, 2013] and the user in-
teractions [Zhou et al., 2013a; Blundell et al., 2012] on so-
cial networks, the transactions in the stock market [Chavez-
Demoulin and McGill, 2012; Bacry et al., 2013], etc. In
these works, the event types can correspond to topics, users,
transaction types and any other objects. Among these works,
Blundell et al. proposed a multi-dimensional Hawkes pro-
cesses with the Infinite Relational Model (IRM) [Blundell
et al., 2012] to simulate and predict the social interactions
among users on social networks. Zhou et al. proposed a
multi-dimensional Hawkes process model, which learns an
infectivity matrix of users explicitly with sparse and low-
rank constraints [Zhou et al., 2013a]. Furthermore, the trig-
gering kernel of the model is learned by nonparametric es-
timation in [Zhou et al., 2013b]. Yang et al. proposed
to use multi-dimensional Hawkes process to perform dif-
fusion network inference and meme tracking jointly [Yang
and Zha, 2013]. Recently, an online learning algorithm for
multi-dimensional Hawkes processes is proposed in [Hall
and Willett, 2014], which approximates continuous Hawkes
processes in a discrete manner. Multi-dimensional Hawkes
processes have achieved promising results in many chal-
lenging tasks. However, most of the existing works fo-
cus on learning triggering patterns of sequences while few
of them consider the clustering structure across sequences.
The recent works in [Du et al., 2013; Li and Zha, 2014;
Linderman and Adams, 2014] start to explore the relation-
ship among sequences by learning parametric models. Dif-
ferent from these works, we take advantage of the multi-task
learning strategy [Evgeniou and Pontil, 2007; Liu et al., 2009;
Jacob et al., 2009] and add structural regularization directly
to the proposed model.

3 Multi-task Multi-dimensional Hawkes
Processes

We propose the following Multi-task Multi-dimensional
Hawkes Process (MMHP) models to learn triggering pat-
terns of each event sequence and structures across various
sequences jointly, where each event sequence includes multi-
ple types of events. Given U sequences with C event types,
we represent the uth event sequence as Su = {(tui , cui )}nu

i=1,
where u = 1, 2, · · · , U . cui ∈ {1, ..., C} and tui ∈ (0, Tu] are
the event type and time stamp of the i-th event in Su, respec-
tively. Tu is the time span of Su, and nu is the number of
events in Su. Each sequence Su can be modeled by a multi-
dimensional Hawkes process. Based on (2), the conditional
intensity function for Su on type-c event at time t is as fol-
lows,

λuc (t) = µuc +
∑

j:tuj<t
auccuj g(t− tuj ). (3)

Different from the conventional multi-dimensional Hawkes
processes as in (2), the model parameters in (3) fall in two
categories: 1) a global triggering kernel g(t), which re-
flects the attenuating influential effects from historical events
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and is shared by all the sequences; 2) a local infectivity
matrix Au = [aucc′ ] and a local natural intensity vector
µu = [µu1 , ..., µ

u
C ]>, which are specific to sequence Su.

We represent such Au’s and µu’s into an infectivity tensor
A = [aucc′ ] ∈ RC×C×U+ and an intrinsic intensity matrix
µ = [µuc ] ∈ RC×U+ , respectively.

3.1 Structural Constraints on MMHPs
We impose structural constraints on the model parameters in
(3) so as to enable pattern learning across sequences. Specif-
ically, we impose sparse and low-rank constraints on the flat-
tened matrix A = [vec(A1), ..., vec(AU )] ∈ RC2×U from
tensorA. The sparsity constraint is based on the observations
that typically within each sequence, only a subset of event
types happens and triggers others. The intuition behind the
low-rank constraint is to uncover clustering structures when
the overall triggering patterns of multiple sequences in terms
of their infectivity effects are similar and thus introduce sim-
ilar Au’s. Here we assume that the similarity is described by
the self-representation property of infectivity matrices, which
implies the low-rank structure of A. These two structural
constraints are reasonable for practical systems. For exam-
ple, in an IPTV system, each user typically has a preference
over a small number of program categories, and such a pref-
erence can be common among a large number of users.

3.2 Learning Algorithms for MMHPs
We learn our MMHP model via Maximum Likelihood Esti-
mation (MLE). Specifically, we learn the parameters µ, A
and g(t) by solving the following optimization problem.

min
µ,A,g

L(µ,A, g) + αR(g) + λ1‖A‖∗ + λ2‖A‖1

s.t. A ≥ 0, µ ≥ 0, g(t) ≥ 0,
(4)

where L(µ,A, g) is the negative log-likelihood of MMHP
that can be written as:

L =−
U∑

u=1

(
nu∑
i=1

log λu
cui

(tui )−
C∑

c=1

∫ Tu

0

λu
c (t)dt

)

=−
U∑

u=1

[ nu∑
i=1

log

(
µu
cui

+
∑

j:tuj <tui

aucui cuj
g(tui − tuj )

)

− Tu

C∑
c=1

µu
c −

C∑
c=1

nu∑
i=1

auccui

∫ T−tui

0

g(t)dt

]
,

(5)

The second termR(g) in (4), defined as

R(g) =

∫ ∞
0

[g′(t)]2dt,

regularizes the triggering kernel [Zhou et al., 2013b] to en-
sure the triggering kernel is smooth and differential energy
limited (i.e.,

∫∞
0

[g′(t)]2dt < ∞). The nuclear norm and `1
norm onA in (4) impose low rank and sparsity onA.

To solve the optimization problem (4), we apply the
scheme of ADMM [Boyd et al., 2011; Ouyang et al., 2013;
Zhou et al., 2013a] and introduce two auxiliary variables Z1

and Z2, two dual variables U1 and U2, and thus convert the
problem in (4) as follows.

min L(µ,A, g) + αR(g) + λ1‖Z1‖∗ + λ2‖Z2‖1
+ ρ(tr(U>1 (A−Z1))) + ρ(tr(U>2 (A−Z2)))

+
ρ

2
(‖A−Z1‖2F + ‖A−Z2‖2F )

s.t. A ≥ 0, µ ≥ 0, g(t) ≥ 0.

(6)

We solve the problem in (6) by an iterative algorithm, which
updatesA and µ, g(t), Z1 and Z2, U1 and U2 iteratively.

Step 1: Update A and µ. We first update A and µ by a
majorization-minimization algorithm. Given the parameters
of k-th iteration as Θ(k), we find a surrogate function of ob-
jective function by Jensen’s inequality as follows.

Q(Θ|Θ(k)) =

−
U∑

u=1

[ nu∑
i=1

(
puii log

µu
cui

puii
+

i−1∑
j=1

puij log
aucui cuj

g(tui − tuj )

puij

)

− Tu

C∑
c=1

µu
c −

C∑
c=1

nu∑
i=1

∫ T−tui

0

(
(auccui )2

g(k)(t)

2a
u(k)
ccui

+ (g(t))2
a
u(k)
ccui

2g(k)(t)

)
dt

]
+
ρ

2
(‖A−Z

(k)
1 + U

(k)
1 ‖

2
F

+ ‖A−Z
(k)
2 + U

(k)
2 ‖

2
F ) + αR(g).

(7)

where

puii =
µ
u(k)
cui

µ
u(k)
cui

+
∑i−1

j=1 a
u(k)
cui cuj

g(tui − tuj )
,

puij =
a
u(k)
cui cuj

g(tui − tuj )

µ
u(k)
cui

+
∑i−1

j=1 a
u(k)
cui cuj

g(tui − tuj )
.

Considering the terms related to {µ,A} and setting ∂Q
∂µu

c
= 0

and ∂Q
∂au

cc′
= 0, we obtain close-form solutions for µ = [µuc ]

andA = [aucc′ ]:

µu(k+1)
c =

∑
i:cui =c p

u
ii

Tu
, (8)

a
u(k+1)
cc′ =

−B +
√
B2 − 4AC

2A
, (9)

where

A =2ρa
u(k)

cc′ +
∑

i:cui =c′

∫ T−tui

0

g(t)dt,

B =ρa
u(k)

cc′ (u
u(k)

1,cc′ − z
u(k)

1,cc′ + u
u(k)

2,cc′ − z
u(k)

2,cc′),

C =− au(k)cc′

∑
i:cui =c

∑
j:j<i,cuj =c′

puij ,

z
u(k)
cc′ and uu(k)

cc′ are the elements in Zu(k) and Uu(k) w.r.t.
aucc′ , respectively.
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Step 2: Update g(t). The triggering kernel g can be up-
dated in an infinite dimensional space [Zhou et al., 2013b].
Considering the terms of (7) related to g(t), the solution of
g(t) satisfies the Euler-Lagrange equation:

−D(t)

g(t)
+ F (t)g(t)− 2αg′′(t) = 0, (10)

where g′′(t) is the second-order derivative of g(t) and

F (t) =
∑U

u=1

∑C

c=1

∑nu

i=1

a
u(k)
ccui

g(k)(t)
I(t < Tu − tui ),

D(t) =
∑U

u=1

∑nu

i=1

∑i−1

j=1
puijI(t = tui − tuj ).

I(·) is the indicator function which returns 1 if the input pred-
icate is true and 0 otherwise. We solve (10) numerically us-
ing the following efficient Seidel-type iterations. Specifically,
setting the sampling interval as ∆t, we discretize the differ-
ential equation over small intervals m∆t, for m = 1, ...,M ,
as follows:

−Dm

gm
+ Fmgm − 2α

gm+1 + gm−1 − 2gm
∆t2

= 0, (11)

where gm = g(m∆t), Fm = F (m∆t) and Dm = D(m∆t).
M is the number of samples of g and M∆t is the length of
g. Therefore, we can solve for gm by fixing all other gm′ ,
m′ 6= m and solving the above quadratic equation.

Step 3: Update Z1 and Z2. Given the updated A(k+1)

from Step 1, we solve for Z1 by solving the following op-
timization problem.

min
Z1

λ1‖Z1‖∗ + ρ(tr((U
(k)
1 )>(A(k+1) −Z1)))

+
ρ

2
‖A(k+1) −Z1‖2F .

The solution is obtained by shrinking the singular values of
A(k+1) +U

(k)
1 by soft-thresholding [Zhou et al., 2013a] as

Z
(k+1)
1 = Sλ1/ρ(A

(k+1) +U
(k)
1 ), (12)

where Sλ1/ρ(·) is the soft-thresholding function with the
threshold λ1/ρ. Similarly, we solve for Z2 by solving the
following optimization problem,

min
Z2

λ2‖Z2‖1 + ρ(tr((U
(k)
2 )>(A(k+1) −Z2)))

+
ρ

2
‖A(k+1) −Z2‖2F ,

and the solution is
Z

(k+1)
2 = Eλ2/ρ(A

(k+1) +U
(k)
2 ), (13)

where Eλ2/ρ(·) is the soft-thresholding function of matrix’s
elements. The threshold is λ2/ρ.

Step 4: UpdateU1 andU2. The dual variablesU1 andU2

are solved as follows based on ADMM.
U

(k+1)
1 = U

(k)
1 + (A(k+1) −Z(k+1)

1 ), (14)

U
(k+1)
2 = U

(k)
2 + (A(k+1) −Z(k+1)

2 ). (15)
The whole learning algorithm is summarized in Algorithm 1.

Algorithm 1 MMHP Learning Algorithm

Input: event sequences {Su}, parameters {λ1, λ2,M, α}
Output: A, µ and g(t)

Initialize µ ∈ RC×U+ ,A ∈ RC
2×U

+ , g ∈ RM+ randomly.
Z

(0)
1 = Z

(0)
2 = A(0), U (0)

1 = U
(0)
2 = 0, k = 0

repeat
k = k + 1
Update {µ(k),A(k)} by (8) and (9)
repeat

for m = 1 : M do
Update g(k)

m by (11)
end for

until convergence
Update Z(k)

1 , Z(k)
2 by (12) and (13)

Update U (k)
1 , U (k)

2 by (14) and (15)
until convergence
A = A(k), µ = µ(k), g(t) = {g(k)

m |m = 1 : M}

4 Experimental Results
We evaluate the performance of MMHP on both synthetic and
real-world data. Specifically, we compare the learning algo-
rithm MMHP in Algorithm 1 with the following alternatives:
• Full: the infectivity tensor A has no structures (i.e., λ1 =
λ2 = 0 in (4)). This method is similar to that in [Zhou et
al., 2013b], where they learn triggering patterns for each
sequence independently.

• Sparse: only the sparsity constraint is imposed on A (i.e.,
λ1 = 0 in (4)).
• LowRank: only the low-rank constraint is imposed on A

(i.e., λ2 = 0 in (4)).
We use the following metrics to evaluate the performance

of various methods:
• LogLik: the log-likelihood of testing data using the trained

model.
• EstErr: the averaged estimation error of instantaneous in-

fectivity aucc′g(t), defined as

EstErr =
1

UC2

U∑
u=1

C∑
c,c′=1

∫ ∞
0

[aucc′g(t)− âucc′ ĝ(t)]2dt,

where {Â, ĝ(t)} represents real parameters and {A, g(t)}
represents the corresponding estimates.

• RankCorr: the averaged Kendall’s rank correlation coeffi-
cient between each row of the real Â and that of the esti-
matedA.

• ClusAcc: the clustering accuracy, defined as the percent-
age of sequences clustered correctly based on the learned
infectivity tensor. It is only used for synthetic data.

• ClusDiff : a metric of clustering accuracy for real-world
data, where the ground truth of parameters and the clus-
tering indices are unavailable. In specific, we first cluster
sequences by applying k-means [Zha et al., 2001; Ng et al.,
2002] on the estimatedA. After computing centers of clus-
ters from estimated A, we then construct a clustered infec-
tivity tensor Ã, where the u-th slide Ãu is the center of the

3688



cluster theAu belongs to. Denote the set of possible meth-
ods as I (Here I = {Full, Sparse, LowRank, MMHP}).
For a certain method, ClusDiff measures the difference of
the log-likelihood calculated from the ever best perform-
ing method and the log-likelihood calculated using the con-
structed Ã from that method, that is, ClusDiff of the i-th
method is defined as

ClusDiff(i) = max
j∈I

LogLik(Aj)− LogLik(Ãi).

If a clustering result is good, then each cluster center
should be representative for capturing the dynamics of the
sequences belonging to the cluster, and the difference of
log-likelihood caused by replacing the specific infectivity
matrices with the cluster centers should be small.

4.1 Experimental Results on Synthetic Data
We generate a synthetic dataset in which there are U =
40 sequences and C = 5 event types. The sequences
are generated so as to fall into two clusters of equal size.
We generate the flatten version of the infectivity tensor as
A = [thres(u1v

>
1 ), thres(u2v

>
2 )], where u1, u2 ∈ RC2

+

and v1, v2 ∈ RU/2+ are four random vectors with values
uniformly distributed over [0, 1]. The function thres(X) ran-
domly sets half of the rows in X as zero. In this way, the
generated A is low-rank and sparse, and inherently repre-
sents two clusters. We generate an intensity matrix µ from
a uniform distribution over [0, 0.001]. We use an exponen-
tial kernel g(t) = exp(−t) with t ∈ (0, 20] as the triggering
kernel for the synthetic data. Given the above parameters, we
simulate 100 training sequences and 100 testing sequences re-
spectively. Each training sequence contains 2500 events, and
each testing sequence contains 500 events.

Figure 1: Parameter Study for MMHP.

Parameter Studies. We first conduct a parameter study on
the four parameters {λ1, λ2, M, α} involved in our MMHP
algorithm. The parameters λ1 and λ2 control the rank and
sparsity level of the infectivity tensor, and M and α control
the sampling rate and the smoothness of the triggering ker-
nel. We first identify the optimal parameter configuration by
doing a grid search in the parameter space of λ1 ∈ [0, 0.8],
λ2 ∈ [0, 0.008], M ∈ [50, 1500] and α ∈ [1, 10000] on a
training set where each sequence has 500 events. With the
identified optimal configuration as λ1 = 0.2, λ2 = 0.004,

M = 500, α = 100, we fix 3 parameters as their optimal val-
ues each time and alter the fourth parameter to train a different
MMHP model. Fig. 1 represents the LogLik of such MMHPs
as the different parameters vary. As the value of λ1 or λ2

grows larger, the LogLik of MMHPs first increases and then
decreases, and this demonstrates the effectiveness of λ1 and
λ2 in controlling the rank and sparsity of the infectivity ten-
sor, respectively, and thus the model quality. Similar trends
apply for M corresponding to the fact that extremely small
M leads to a coarse estimation of the triggering kernel while
extremely large M leads to over-fitting. The performance is
relatively stable for α ∈ [1, 1000] as for larger α values, the
strong smoothness regularization leads to an over-smoothed
triggering kernel. Overall, the relatively small performance
changes around the optimal parameter configuration demon-
strate the robustness of our algorithm with respect to its pa-
rameters.

Performance Comparisons. We compare MMHP with
the Full, Sparse and LowRank methods on LogLik,
EstErr and RankCorr, respectively. For each method, we
evaluate its performance when the number of events in each
training sequence varies. We run the experiment 10 times
with various parameter configurations. For each configura-
tion, except the λ1, λ2 in Full, the λ1 in Sparse and the
λ2 in LowRank, which are fixed to be 0’s, the rest param-
eters are sampled from a small neighborhood of the optimal
configuration shown in the parameter studies. Fig. 2 presents
the averaged results of the 10 runs, which shows that MMHP
consistently achieves significantly better performance (i.e.,
higher LogLik, lower EstErr and higher RankCorr) than
other methods over different training sets. This is particu-
larly true when the training sequences have fewer events. The
experimental results demonstrate that by learning from mul-
tiple sequences concurrently, MMHP is able to leverage in-
formation from other sequences for the sequences with fewer
events, and thus effectively prevent over-fitting.

Figure 2: Experimental Results on Synthetic data.

Clustering Effects Comparisons. We cluster the train-
ing sequences by applying k-means clustering algorithm on
the learned infectivity tensors and evaluate the clusters using
ClusAcc. The results in Table. 1 demonstrate that MMHP
outperforms others in uncovering structures across sequences
and the performance difference is more significant when
training sequences have fewer events, indicating the effec-
tiveness of MMHP in preventing over-fitting.

4.2 Experimental Results on Real IPTV Systems
We apply MMHP to model the data from a real IPTV system.
The dataset is collected from China Telecom, in Shanghai,
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Table 1: Clustering on Synthetic Data (ClusAcc(×100%)).

#Events per sequences Full Sparse LowRank MMHP
50 0.67 0.81 0.80 0.88
75 0.86 0.92 0.90 0.94

100 0.97 0.97 0.98 0.99
Bold numbers correspond to the best performance.

China [Luo et al., 2014], which consists logs of TV program
watching events from multiple users, time stamps for the be-
ginning and endings of each watching session, and the names
and the categories (labeled manually) of the TV programs.
The dataset contains 2967 users (i.e., U = 2967) and 9,000
TV programs belonging to 25 categories (i.e., C = 25) that
these users ever watched during 11 months in 2012.

Modeling Watching Behaviors. We model the watching
behaviors of users using MMHP. Specifically, for each user u,
the event sequence corresponding to her watching behaviors
is Su = {(tui , cui )}nu

i=1, where the event (tui , c
u
i ) represents

that the user u watches a program of cui -th class at time tui .
Given the sequences of all the users during a period, we learn
models using MMHP, Full, Sparse and LowRank, respec-
tively. For all the methods, we set the length of the triggering
kernel as 11520 minutes (8 days) and the sampling interval
∆t as 20 minutes(M = 576). Such a configuration ensures
that 1) for daily and weekly TV programs, the triggering ker-
nel will capture their periodic influence on its own, and 2) for
most TV programs, which are 20-40 minutes in length, the
triggering kernel has a good resolution to capture the influ-
ence from a previous watching event.

For all the methods, we learn the models from the first
N months and test them on the data from the (N + 1)-th
month. Running the experiments in the same way as for
the synthetic data in Section. 4.1, we obtain the averaged
LogLik with respect to N = 2, ..., 10 shown in Fig. 3(a).
Similar to the results on the synthetic data, MMHP produces
better LogLik than other methods. Additionally, we visualize
the triggering kernel learned by MMHP in Fig. 3(b), which
clearly shows that the triggering kernel captures the tempo-
ral influence decay of a program on its following programs,
which corresponds to the expected nature of user watching
behaviors well. There are 8 spikes in the kernel with 1 spike
per day periodically, which corresponds to the self-triggering
pattern of daily programs. The first spike is the highest
and corresponds to the influence of previous watching events
on that day. It indicates that the mutual-triggering patterns
among various program categories mainly exist in the watch-
ing behaviors happening in the same day. With time elapsing,
the intensity of the spikes is reduced gradually, which corre-
sponds to the decay of influences over time. However, the
spike of the 7th day is a little higher than those of its adjacent
days, indicating the existence of the self-triggering pattern of
weekly programs.

Learning User Clusters. We evaluate the performance
of various methods on clustering users using ClusDiff . We
cluster the users into 5 clusters by considering the infectivity
matrix {Au}Uu=1 as the feature of a certain user and apply-
ing k-means. Table. 2 shows that compared with the other

(a) LogLik. (b) Triggering kernel

Figure 3: Experimental Results on an IPTV system.

methods, MMHP not only achieves the best learning result
(maxLogLik(A)) given the data from 11 months, but also ob-
tains the smallest ClusDiff . It means that the clustering re-
sults based on the proposed MMHP learning method are rea-
sonable, where the clustering centers are representative for
most of users’ watching behaviors.

Table 2: Clustering Performance on IPTV Data (×107).

Metric Full Sparse LowRank MMHP
maxLogLik(A) — — — -1.02

LogLik(Ã) -1.78 -1.18 -1.41 -1.09
ClusDiff 0.76 0.16 0.39 0.07

Bold numbers correspond to the best performance.

5 Conclusion
In this paper, we propose a multi-task multi-dimensional
Hawkes process model and the corresponding learning algo-
rithm. By considering the sparse and low-rank structure of
the infectivity tensor, the proposed model captures the trig-
gering patterns within sequences and the clustering structure
across sequences jointly. The proposed learning method has
superior performance compared to the other methods on both
synthetic data and real-world data. In the future, we plan to
propose practical applications based on the model, e.g., per-
sonalization of IPTV service.
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Appendix
Feasibility of Surrogate Function. The surrogate func-
tion Q(Θ|Θ(k)) in Eq. (7) is induced as follows. Based on
Jensen’s inequality, we have

log

(
µu
cui

+
∑

j:tuj <tui

aucui cuj
g(tui − tuj )

)
≥puii log

µu
cui

puii
+

i−1∑
j=1

puij log
aucui cuj

g(tui -tuj )

puij
,

The equality holds if and only if µ = µ(k) and A = A(k).
Similarly, we also have

auccui g(t) ≤ (auccui )2 g
(k)(t)

2a
u(k)
ccui

+ (g(t))2
a
u(k)
ccui

2g(k)(t)
.
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The equality holds if and only if g(t) = g(k)(t) and A =
A(k). Denote the objective function as L(Θ). As a result, the
surrogate function satisfies

Q(Θ|Θ(k)) ≥ L(Θ), Q(Θ(k)|Θ(k)) = L(Θ(k)).

Therefore,

L(Θ(k)) = Q(Θ(k)|Θ(k)) ≥ Q(Θ(k+1)|Θ(k)) ≥ L(Θ(k+1)).

Euler-Lagrange Equations. Similar to that in [Zhou et
al., 2013b], the optimization of Q(Θ|Θ(k)) w.r.t. to g(t) is
equivalent to minimize

∫∞
0
f(g, g′)dt, where

f(g, g′) =−
U∑

u=1

nu∑
i=1

i−1∑
j=1

puij log g(t)I(t = ti − tj)

+

U∑
u=1

C∑
c=1

nu∑
i=1

g2(t)a
u(k)
ccui

2g(k)(t)
I(t ≤ Tu − ti) + α[g′(t)]2.

By Euler-Lagrange equation, the solution satisfies

∂f

∂g
− d

dt

∂f

∂g′
= 0,

which corresponds to Eq. (10).
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