
Understanding Crowdsourcing Workflow:
Modeling and Optimizing Iterative and Parallel Processes

Shinsuke Goto and Toru Ishida and Donghui Lin
Kyoto University

s-goto@ai.soc.i.kyoto-u.ac.jp, {ishida,lindh}@i.kyoto-u.ac.jp

Abstract

The advantages and disadvantages of different crowdsourc-
ing workflow structures have been analyzed. Existing stud-
ies on crowdsourcing workflow mainly focused on the qual-
ity control of the tasks using iterative and parallel processes.
On the other hand, the characteristics of workflow consid-
ering the various task and crowdsourcing environments are
not yet fully analyzed. Therefore, we face two difficulties in
making use of workflow: the workflow optimization and the
prior quality estimation. This research proposes the crowd-
sourcing workflow model for the set of improvement tasks,
considering the ability distribution of crowdsourcing work-
ers, improvement difficulty of the task, and the preference of
the requester. In addition, we show the optimal workflow can
be found by the search algorithm on the proposed model. The
result of optimization can be used for both constructing the
best workflow and estimating the quality of task performance.
Experimental results under various conditions indicate that
the degree of parallelism of the optimal workflow increases
with the variance of worker ability. Also, iterative processes
should be used when the average ability of the workers trends
away from the middle level. These results include the exist-
ing research and therefore the model presented is useful in
understanding crowdsourcing workflows.

Introduction
Today, crowdsourcing is being used for a variety of open-
ended tasks such as writing, design and translation. How-
ever, when performing the open-ended tasks, the quality of
the result from a single worker is not guaranteed because of
the various abilities of crowdsourcing workers. To ensure
the quality, requesters create a workflow, in which the result
of one crowd worker is incrementally refined by other work-
ers. Although the importance of crowdsourcing workflow
has already been addressed (Kittur et al. 2013), the general
characteristics of such workflows are not yet well compre-
hended.

Until recently, the crowdsourcing workflow for collabora-
tion among workers mainly lies on two processes: the iter-
ative process and the parallel process. In an iterative pro-
cess, the result of a task conducted by one worker is it-
eratively improved by other workers (Little et al. 2010a).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In a parallel process, the same task is executed by mul-
tiple workers and the final result is selected by voting or
some other means (Kittur et al. 2011; Luther et al. 2015).
Analyses of iterative and parallel processes in crowdsourc-
ing workflows have yielded two main findings: (1) the va-
riety of crowd workers is important in a parallel process
(Luther et al. 2015), and (2) prior results can have a nega-
tive effect on quality by leading subsequent workers down
the wrong path in an iterative process of tasks with high
difficulty (Little et al. 2010a). However, previous research
mainly focused on workflow analysis for special tasks, and
did not provide a comprehensive understanding of crowd-
sourcing workflows. Even though there exist several stud-
ies on workflow optimization (Dai, Lin, and Weld 2013;
Tran-Thanh et al. 2015), these works focused on the opti-
mization on the fixed workflow structure such as the number
of iteration or parallelism.

To make more use of crowdsourcing workflow, we should
solve two main problems. One is the relationship between
the characteristics of task and workflow. The optimal pro-
cess can be changed by the category of tasks. However, pa-
rameters to determine the process are not yet found. The
other problem is the prior estimation of utility for task re-
questers. The estimated utility can help them for deciding if
they use crowdsourcing or not before the actual request.

In this paper, we aim at understanding the general char-
acteristics of crowdsourcing workflows. We first regard a
crowdsourcing workflow as an agglomeration of improve-
ment tasks. The quality of the workflow is predicted based
on the model of improvement tasks, where there are three
parameters: worker’s average ability, variance of worker’s
ability distribution, and improvement difficulty. To define
the requester’s utility, we consider the final quality of the
workflow and the cost incurred in obtaining the result. Fi-
nally, we apply a search algorithm to find the optimal work-
flow based on the utility of the requester.

To achieve comprehensive understandings of crowdsourc-
ing workflows, we conduct two experiments. First, we ana-
lyze how the optimal workflow depends on the characteris-
tics of tasks, quality of workers, and requester preference.
Then, we compare the iterative and parallel processes to
show that the model can explain the results of previous stud-
ies. We will use the results to explain existing researches
and to more fully understand the general characteristics of

Proceedings, The Fourth AAAI Conference on
Human Computation and Crowdsourcing

52

crowdsourcing workflows.

Previous Researches on Crowdsourcing
Workflow

Crowdsourcing workflow is widely used for enhancing the
quality of difficult tasks. It is originally proposed to com-
plete the tasks whose quality cannot be guaranteed by a sin-
gle worker. Quality control of the classification or voting
task by multiple workers can be regarded as the workflow of
parallel process (Sheng, Provost, and Ipeirotis 2008). On the
other hand, the iterative process of improvement is proposed
to deal with open-ended tasks.

Several workflow processes for special tasks have been
proposed considering the issue of quality control. Soylent
uses the Find-Fix-Verify crowd programming pattern to im-
prove worker quality; it splits word processing tasks into
a series of generation and review stages (Bernstein et al.
2010). Zaidan and Callison-Burch propose a crowdsourced
translation workflow, in which high quality translations are
obtained by aggregating multiple translations, redundantly
editing them, and then selecting the best of the bunch based
on machine learning (Zaidan and Callison-Burch 2011).

Various workflow support tools have been proposed for
managing the crowdsourcing of complex tasks. For exam-
ple, TurKit is a toolkit for prototyping and exploring algo-
rithmic human computation (Little et al. 2010b). Crowd-
Forge decomposes and recomposes complex crowdsourcing
tasks based on the MapReduce algorithm(Kittur et al. 2011).
Turkomatic was developed for supporting task decomposi-
tion by crowd workers (Kulkarni, Can, and Hartmann 2012).
CrowdWeaver is a system to visually manage complex tasks
and revise task decomposition during execution (Kittur et
al. 2012). Tool development for modeling and managing
workflows is of interest as it actually shares our objective of
enhancing the understanding of crowdsourcing workflows.
Our research can be regarded as a theoretical basis for work-
flow design in crowdsourcing.

Some workflow optimization approaches have been pro-
posed to attain excellent cost-quality tradeoffs for crowd-
sourcing tasks. Dai, Lin, and Weld proposed a POMDP-
based workflow control approach for optimizing the itera-
tive improvement process (Dai, Lin, and Weld 2013). Tran-
Thanh et al. proposed an effective algorithm to solve the
problem of task allocation under a budget constraint in
crowdsourcing systems (Tran-Thanh et al. 2015). Different
from the previous work, which mainly deals with maximiz-
ing the quality of tasks or requester utility, we focus on the
comprehensive analysis of crowdsourcing workflows based
on the characteristics of the tasks.

Modeling Iterative and Parallel Processes
To understand the crowdsourcing workflow, we first develop
the model to estimate the utility from the workflow com-
posed of iterative and parallel processes. A model is fea-
tured by the ability distribution of crowdsourcing workers,
the improvement difficulty of the task, and the preference of
the requester. We first explain the scenario where the model

is used, then define the workflow, and show the method to
estimate the utility for a given workflow.

Motivating Scenario
Let us suppose a scenario wherein a requester wants to use
crowdsourcing to execute an open-ended translation task.
There are numerous workers available on the crowdsourcing
platform. However, the ability of a worker remains unknown
until the task is executed by that worker. Since translation
quality cannot be ensured if only one worker is used, it is
necessary to consider a translation workflow that consists
of several improvement tasks performed by multiple work-
ers. In each iteration, a worker improves the result which
is the best result among those output in the previous itera-
tion. However, the requester wants to obtain the best result
while balancing cost off against quality. Also, they want to
predict the tradeoff of quality and cost for decision-making.
Therefore, it is necessary to model crowd workers, tasks and
requester utility towards a better understanding of general
crowdsourcing tasks.

Worker
High worker ability should yield high quality results. To
simplify our model, we assume that the quality of a task ex-
ecution result is determined uniquely by the ability of the
worker who executed the task. Since the ability is unknown
before the task is undertaken, we use a beta distribution to
model the distribution of worker ability. Its probability den-
sity function f(x|a, v) is given by Equation (1).

f(x|a, v) = Beta(
a

min(a, 1− a)v
,

(1− a)

min(a, 1− a)v
) (1)

Here a ∈ (0, 1) is the normalized value of the average
ability of the workers in the crowdsourcing platform. v ∈
(0, 1) is a parameter that determines the variance in worker
ability. If v is near 0, then the variance approaches 0. If v is
near 1, then the variance is approaches the highest variance
with average a. The above model extends the previous work
(Dai, Lin, and Weld 2013) by modifying a parameter that
describes the variance of worker ability.

Workflow
An open-ended task consists of iterations of improvement
tasks, which is called an iterative process where the high-
quality result is acquired by iteratively improving the prior
work by a new worker. However, there is also a situation that
multiple workers improve the same task in parallel, which is
called a parallel process. Examples of improvement tasks
implemented as iterative and parallel processes are reported
in (Little et al. 2010a).

We formally define a workflow as w = (p1, . . . , pn),
where n is the number of improvement tasks in the iterative
process and pi(1 ≤ i ≤ n) is the number of workers that
execute the ith improvement task in parallel. As a result,
the total number of the workers in the workflow is given by

m =
n∑

i=1

pi.

53

After each iteration, the best result will be automatically
selected. If none of the results have better quality than the
input of the improvement task, the input will be selected as
the best result.

Improvement Task
Different types of tasks have different difficulties. For each
task, we set a parameter d ∈ [0, 1] to denote its improve-
ment difficulty. If the improvement difficulty d is 0, then the
improvement task is extremely easy. In contrast, the quality
of a task with d = 1 is extremely difficult to improve. For
example, if the task is to describe a picture, then d is near 0
since it is easy for a new worker to improve the quality by
adding information. If the task is to improve an illustration,
then d might approach 1 since it is always extremely diffi-
cult to improve the output of another designer. For most of
other types of tasks like translation improvement, the value
of d lies between 0 and 1. Given the improvement difficulty
d of a task, we use function q′(a, q) to define the quality of
the result after executing the improvement task once, where
a is the ability of the worker and q is the quality of the input
result of the current improvement task.

q′(a, q) = q + (1− q)a− q(1− a)d (2)

The above equation is the sum of three parts. The first part
denotes the original quality q of the input result for the cur-
rent improvement task. The second part means the increase
in quality after the execution of the improvement task. The
third part shows the penalty in quality if the improvement
fails. Let us explain the second part and the third part in
more detail. If the original quality of the input result is q,
then the room left for quality improvement is 1 − q. The
second part, (1−q)a, means that the improvement is propor-
tional to the worker’s ability a. On the other hand, q(1− a)
denotes the possibility of improvement failure. When the
original quality is high or the worker’s ability is low, the
possibility of improvement failure is high. The reason why
the improvement difficulty d is multiplied in the third part is
that it is more probable that quality decreases if d is larger,
i.e., the task has higher improvement difficulty. In the sit-
uation that the improvement task is executed by just one
worker, the expected value of the quality after executing the
improvement task is q′(a, q) since the expected value of the
worker’s ability is a.

Next, we explain the quality improvement for adding the
parallel process. If two or more workers perform the im-
provement task simultaneously, the result with maximum
quality will be selected according to the assumption. There-
fore, the quality of result is equal to that performed by the
worker with maximum ability in the iteration. Here, we note
p as the number of workers participated in improvement task
in the iteration. The maximum ability among p workers
(amax

p) are estimated by the average of the maximum dis-
tribution (Equation (4)). Here, F (x|a, v) is the cumulative
density function for f(x|a, v). Also, Ix(y, z) is regularized
beta function calculated by Equation (3).

Ix(y, z) =

∫ x

0
ty−1(1− t)z−1dt

Beta(y, z)
(3)

amax
p =

∫ 1

0

xF (x|a, v)pdx (4)

= [xF (x|a, v)]10 −
∫ 1

0

F (x|a, v)pdx

= 1−
∫ 1

0

Ix(
a

min(a, 1− a)v
,

(1− a)

min(a, 1− a)v
)pdx

Using amax
p as a, the quality obtained by the parallel pro-

cess with p workers will be q′(amax
p , q).

Utility
The utility of the requester in executing workflow U is used
as the objective function of workflow optimization. In previ-
ous researches, the utility of a workflow is calculated based
on the quality of the task and the cost of the execution (Dai,
Lin, and Weld 2013; Kamar, Hacker, and Horvitz 2012). We
define utility as the weighted sum of quality Q and cost C
(Yoon and Hwang 1995). The preference of the requester is
denoted by the weight of quality, β, that is used for calculat-
ing the utility. Thus, the weight of cost is 1− β.

U = βQ+ (1− β)C (5)

Q ∈ [0, 1] can be acquired from the predicted quality of
workflow w. The cost, C ∈ [0, 1], is the normalized value
given by Equation (6), where m is the number of workers
andM is the predefined maximum number of workers. Here
we count only the number of the improvement tasks. There-
fore, the iterative and parallel processes do not affect the
total cost.

C =
M −m
M

(6)

Optimal Workflow Search
Based on the process model introduced in previous section,
we can predict the utility of a given workflow. Since the
number of possible workflows is large (if the number of
workers is n, there are 2n possible workflows), it is nec-
essary to consider an efficient search approach for workflow
optimization. We propose a search algorithm that extracts
the maximum expected value of utility in a limited search
space.

The Search Algorithm
Utility is calculated from cost and quality. We assume that
the cost increases in proportional to the number of crowd
workers. Therefore, utility will monotonically decrease as
the worker number increases when the quality is fixed. On
the other hand, the quality will monotonically increase with
the worker number. Although there might be occasional fail-
ures in the improvement tasks, it is assumed that the result
with better quality is selected when comparing the input and
output of an improvement task. Therefore, the increase of
the worker number does not lead to a drop in quality. From
the above assumptions, we can see that the utility will be-
come low if the number of workers is increased excessively
since quality always has an upper bound. That is why there
always exists an optimal workflow that can maximize the
utility.

54

Figure 1: Explanation of expand. Given a workflow
w = (2, 1), expand(w) returns the set of workflows W =
{(3, 1), (1, 2, 1), (2, 2), (2, 1, 1)}

The algorithm proposed to identify the optimal work-
flow is written as Algorithm 1. In the algorithm, the state
space consists of workflows, each of which is regarded as
a state. The initial state is a workflow consists of just one
improvement task by one crowd worker, and is denoted as
w = (1); it is stored in the state setOPEN . The state space
is searched by expanding the contents of state set OPEN .
The expansion process expand is written as Algorithm 2. It
uses workflow w as an argument and returns a set of work-
flows, W , that includes all possible workflows generated by
adding one crowd worker to workflow w. Figure 1 shows
the example of function expand. The function expand will
return workflow set W = {(3, 1), (1, 2, 1), (2, 2), (2, 1, 1)}
if w = (2, 1) is the argument. W is the set of all possible
workflows that can be obtained by adding one worker from
the workflow w = (2, 1). The function utility in Algorithm
1 uses workflow w as an argument and returns the predicted
utility. The search algorithm stores only w′ that is in the ex-
panded set of w and has higher utility than workflow w in
OPEN , which means that the search starts from the center
of the crater and stops at the crater rim. In other words, our
proposed model is designed to avoid the horizon effect in the
state space where workflows are regarded as states.

Optimality
The optimality of the workflow search algorithm (Algorithm
1) for crowdsourcing tasks is described below: In a crowd-
sourcing workflow that consists of iterative and parallel pro-
cesses, let the search algorithm starts from an initial work-
flow state that consists of just one crowd worker and search
the state space that is expanded gradually by adding once
crowd worker at each epoch. The search algorithm stops
when the workflow state with maximum utility has reached
the optimal workflow under the given assumptions.

To prove the termination of our search algorithm, we
show that the increase of utility by adding a worker mono-
tonically decreases with higher utility. Let the expected val-
ues of the quality and cost of workflow w with m crowd
workers be q and c, respectively. Assume that one crowd
worker is added and the value of utility changes as follows.

First, we show that incremental quality monotonically de-
creases if one crowd worker is added for either iteration or
parallelism. Assume that the additional crowd worker is
used to increase the iteration number, the incremental qual-

Algorithm 1 Searching Optimal Workflow search

1: w /* workflow */
2: utility(w) /* utility function for workflow w */
3: s /* current best workflow */
4: u /* utility value of the current best workflow */
5: Closed /* set of workflows already expanded */
6: Open /* set of workflows to be expanded */
7: s← (1)
8: u← utility(s)
9: Open← {s}

10: Closed← {}
11: while Open 6= null do
12: Select w ∈ Open
13: Open← Open− {w}
14: Closed← Closed ∪ {w}
15: for all w′ ∈ expand(w) do
16: if w′ /∈ Closed and utility(w′) ≥ utility(w)

then
17: Open← Open ∪ {w′}
18: if utility(w′) ≥ u then
19: s← w′

20: u← utility(w′)
21: end if
22: end if
23: end for
24: end while
25: return s

Algorithm 2 Expanding Workflow expand

Input: w
1: pi /* number of workers that execute the ith improve-

ment task in parallel */
2: n /* number of iteration */
3: w = (p1, . . . , pn) /* workflow */
4: W = {w1, . . . , wm} /* the set of created workflows by

expansion of w */
5: m /* number of workflows created by expansion of w */
6: W ← {}
7: W ←W ∪ {(1, p1, . . . , pn)}
8: for i = 1 to n do
9: W ←W ∪ {(p1, . . . , (pi + 1), . . . , pn)}

10: W ←W ∪ {(p1, . . . , pi, 1, . . . , pn)}
11: end for
12: return W

ity satisfies ∆q = a(1 − q) − (1 − a)qd. Here a and d
are constants assuming the additional worker always has the
expected quality a. In each iteration, q monotonically in-
creases. Therefore, a(1 − q) monotonically decreases and
(1− a)qd monotonically increases. As a result, incremental
quality ∆q monotonically decreases. Also, when the addi-
tional crowd worker is set to increase the parallelism, the in-
cremental quality ∆q depends on the increment of the max-
imum ability of worker ∆a. Since the maximum expected
ability is calculated from the regularized beta function and
regularized beta function satisfies Ix(y, z) ≤ 1, therefore,
∆a monotonically decreased by the increase of m. There-

55

Table 1: Optimal workflows w and their utilities U in differ-
ent variations of v and d (β = 0.5, a = 0.5).

d=1 d=0.5 d=0
v w U w U w U

0.9 (2) 0.7313 (2) 0.7257 (1,1,1) 0.7875
0.7 (2) 0.7229 (2) 0.7225 (1,1,1) 0.7875
0.5 (2) 0.7144 (2) 0.7129 (1,1,1) 0.7875
0.3 (2) 0.7024 (1,1) 0.7125 (1,1,1) 0.7875
0.1 (1) 0.7 (1,1) 0.7125 (1,1,1) 0.7875

fore, when repeatedly adding parallelism, ∆q monotonically
decreases. The increment of maximum value of beta distri-
bution monotonically decreases as it approaches to 1, and
therefore incremental quality ∆q monotonically decreases
by adding a worker. Secondly, incremental cost ∆c is al-
ways constant if one crowd worker is added. This means
the normalized cost C monotonically decreases. As utility
is calculated by the weighted summation of quality and cost,
the increased amount of utility decreases and turns to minus.

To summarize, the incremental utility will monotonically
decrease and finally become a negative value at a certain
point. Therefore, the search algorithm will stop under the
given assumptions. Moreover, since the expansion of the
workflow state space will stop when the incremental utility
becomes a negative value, the workflow state with the max-
imum utility is obtained when the search algorithm stops.

The above discussion does not ensure an optimal solu-
tion when increasing crowd workers in real crowdsourcing
tasks. Rather, it shows that the optimal workflow can be cal-
culated by setting the values in the model. However, we can
understand the characteristics of crowdsourcing workflows
and use the knowledge in real crowdsourcing task design if
the optimal solution search can be conducted efficiently.

Understanding Crowdsourcing Workflow
Based on the model and the optimization algorithm on the
model, we can estimate the utility for every workflow on
each parameter settings. We conducted two experiments to
verify the proposed model. Each experiment analyzes the
structure of optimal workflow for various parameter, and the
comparison of iterative and parallel processes, respectively.

Analysis of Optimal Workflows
We use the proposed search algorithm to obtain optimal
workflow w by varying the combinations of parameters in
our model. In addition, we calculate the utility for each w.
Settings of the parameters are as follows.

Average ability of workers a ∈ (0, 1) : varied from 0.1 to
0.9 in steps of 0.2 for each variation.

Variance of worker ability v ∈ (0, 1) : varied from 0.1 to
0.9 in steps of 0.2 for each variation.

Improvement difficulty d ∈ [0, 1] : 0 (low), 0.5 (middle)
and 1 (high) for three variations.

Preference of the requester over quality β : 0.1, 0.5 and
0.9 for three variations.

Table 2: Optimal workflows w and their utilities U in differ-
ent variations of a and β (v = 0.5, d = 0.5).

β = 0.9 β = 0.5 β = 0.1
a w U w U w U

0.9 (1,2) 0.9378 (1) 0.9 (1) 0.9
0.7 (1,4) 0.8683 (1,1) 0.8025 (1) 0.88
0.5 (8) 0.7517 (2) 0.717 (1) 0.86
0.3 (3,6) 0.5819 (1,1) 0.6025 (1) 0.84
0.1 (2,5) 0.2452 (1) 0.5 (1) 0.82

We first analyze the optimal workflows obtained by the
search algorithm.

Table 1 lists the result of optimal workflows and their util-
ities with different values of the variance of worker ability
and improvement difficulty of tasks. The results in Table 1
show that optimal workflows are more parallel as the vari-
ance of worker ability increases. Moreover, the parallelism
of optimal workflows also increases with the improvement
difficulty. The utility of optimal workflows increases as
the improvement difficulty decreases. However, the utility
of optimal workflows can also increase as the variance in
worker ability increases even when the improvement diffi-
culty is high. This is because the workflow with high degree
of parallelism is apt to be an optimal solution and worker
ability is more obvious when the variance of worker ability
is high.

Table 2 lists the results of optimal workflows and their
utilities with different variations of the average worker abil-
ity and quality preference of the requester. The results in
Table 2 show that the optimal workflows are most parallel
when the average worker ability occupies the middle level
(i.e., a = 0.5). Moreover, the degree of parallelism of op-
timal workflows falls and iterative improvement becomes
more effective when the average worker ability trends away
from the middle level (higher or lower). Not surprisingly, an
optimal workflow has greater worker number when the qual-
ity preference of the requester is high, i.e., cost has low im-
portance. The utility of optimal workflows is more affected
by the average worker ability when the requester emphasizes
quality.

The above analysis can also explain previous research re-
sults. For example, (Kittur et al. 2011) indicated that the
variety of crowd workers is important in a parallel process.
(Kamar, Hacker, and Horvitz 2012) suggested that it is effec-
tive to increase the number of crowd workers when the cost
is low. Further, (Little et al. 2010a) showed that prior work
with poor quality can have a negative effect on the overall
quality of the workflow if the crowdsourcing task is diffi-
cult.

Analysis of Utility
Secondly, we compare the iterative and parallel processes
to understand the characteristics of workflows. We mea-
sured the changes of quality and utility for each processes
by adding workers in various combinations of the parameter
settings.

Firstly, we analyze the quality of each process. Figure 2

56

1 2 3 4 5 6 7 8 9 10

Number of Workers

0.4

0.5

0.6

0.7

0.8

0.9

1.0
E
x
p
e
ct

e
d
 Q

u
a
lit

y

Iterative (v=0. 5)

Parallel (v=0. 5)

Parallel (v=0. 1)

Parallel (v=0. 9)

Figure 2: Effects of worker number on expected quality (a =
0.5, d = 0.5).

1 2 3 4 5 6 7 8 9 10

Number of Workers

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
e
st
 Q

u
a
lit
y
 (
Fi
v
e
 T
ri
a
ls
)

Iterative (v=0. 1)

Iterative (v=0. 5)

Iterative (v=0. 9)

Parallel (v=0. 1)

Parallel (v=0. 5)

Parallel (v=0. 9)

Figure 3: Effects of worker number on best quality (a = 0.5,
d = 0.5).

and Figure 3 show how the expected value of quality and
best value of quality depend on worker number. The ex-
pected value of quality can be used to evaluate the quality
for a large number of tasks, while the best value of qual-
ity can be used to evaluate quality when the requester de-
mands excellent results for some special tasks. Figure 2
shows that expected value of quality increases with the num-
ber of workers, but eventually saturates. Moreover, the par-
allel approach can make good use of a wide variety of crowd
workers (i.e., worker variance) and so it attains more qual-
ity improvement from more crowd workers than the iterative
approach. Figure 3 shows that the parallel approach can at-
tain higher quality when worker variance is high.

Secondly, we emphasize cost by varying preferences of
the requester over quality β and analyze how the utility is
impacted by increasing the number of workers. Figure 4 and
Figure 5 plots the expected values of utility and best value

1 2 3 4 5 6 7 8 9 10

Number of Workers

0.0

0.2

0.4

0.6

0.8

1.0

E
x
p
e
ct

e
d
 U

ti
lit

y

Iterative (β=0. 1)

Iterative (β=0. 5)

Iterative (β=0. 9)

Parallel (β=0. 1)

Parallel (β=0. 5)

Parallel (β=0. 9)

Figure 4: Effects of worker number on expected utility (a =
0.5, d = 0.5, v = 0.5).

1 2 3 4 5 6 7 8 9 10

Number of Workers

0.0

0.2

0.4

0.6

0.8

1.0

B
e
st
 U

ti
lit
y
 (
Fi
v
e
 T
ri
a
ls
)

Iterative (β=0. 1)

Iterative (β=0. 5)

Iterative (β=0. 9)

Parallel (β=0. 1)

Parallel (β=0. 5)

Parallel (β=0. 9)

Figure 5: Effects of worker number on best utility (a = 0.5,
d = 0.5, v = 0.5).

of utility, respectively.
The results in Figure 4 and Figure 5 show that increas-

ing the number of workers will not increase the utility if
requester preference for cost is high. However, increasing
worker number is effective if requester emphasizes quality.
In general, the optimal number of crowd workers can be
obtained by balancing the trade-off between cost and qual-
ity. This analysis result supports the insights from previ-
ous research, which suggests incentives for increasing crowd
workers are strong when preference of the requester over
cost is high (Dai, Lin, and Weld 2013; Kamar, Hacker, and
Horvitz 2012).

Conclusion
We provided a comprehensive analysis of crowdsourcing
workflows based on the characteristics of the tasks. A model
was proposed that includes the new parameter of requester

57

preference along with worker’s average ability, and the vari-
ance, and difficulty of task improvement. The optimal work-
flows found for various conditions indicate the following:
• The degree of parallelism of optimal workflows increases

as the variance of worker ability increases. Also, the de-
gree of parallelism of optimal workflows increases as task
improvement difficulty increases.

• The degree of parallelism of optimal workflows is high-
est when the average ability of workers occupies the mid-
dle level. Moreover, the degree of parallelism of optimal
workflows becomes lower, and iterative improvement be-
comes more effective, when the average worker ability
deviates from the middle level (higher or lower).

In addition, an analysis of the quality and utility of iterative
and parallel processes in various combinations of parameter
settings yielded the following results:
• The parallel approach can make good use of the variety of

crowd workers, and therefore parallel processes can attain
higher quality when worker variance is high.

• Increasing of the number of workers will not increase util-
ity if requester emphasizes cost (the opposite is true if the
requester prefers quality). In general, the optimal num-
ber of crowd workers can be obtained by balancing cost
against quality.

These results are consistent with existing works, and are use-
ful in more fully understanding crowdsourcing workflows.

Future work includes finding the method to obtain the pa-
rameters for optimization, such as the ability distribution of
workers and the improvement of difficulty. Parameter ac-
quisition based on past performance can provide the frame-
work for the general crowdsourcing workflow. One possible
method for acquisition is the crowdsourcing based evalua-
tion method and the estimation of parameters with online
learning. In addition, real-world experiments on crowd-
sourcing could be executed to confirm the tendency of work-
flow structures. This is a rather practical direction for ap-
plication, which can show a growth in understanding the
crowdsourcing workflow.

Acknowledgments
This research was partially supported by a Grant-in-Aid for
Scientific Research(S) (24220002, 20122016) from Japan
Society for the Promotion of Science (JSPS).

References
Bernstein, M. S.; Little, G.; Miller, R. C.; Hartmann, B.;
Ackerman, M. S.; Karger, D. R.; Crowell, D.; and Panovich,
K. 2010. Soylent: a word processor with a crowd inside. In
Proceedings of the 23nd annual ACM symposium on User
interface software and technology, 313–322. ACM.
Dai, P.; Lin, C. H.; and Weld, D. S. 2013. Pomdp-based con-
trol of workflows for crowdsourcing. Artificial Intelligence
202:52–85.
Kamar, E.; Hacker, S.; and Horvitz, E. 2012. Combining
human and machine intelligence in large-scale crowdsourc-
ing. In Proceedings of the 11th International Conference

on Autonomous Agents and Multiagent Systems - Volume 1,
AAMAS ’12, 467–474. Richland, SC: International Foun-
dation for Autonomous Agents and Multiagent Systems.
Kittur, A.; Smus, B.; Khamkar, S.; and Kraut, R. E. 2011.
Crowdforge: Crowdsourcing complex work. In Proceedings
of the 24th annual ACM symposium on User interface soft-
ware and technology, 43–52. ACM.
Kittur, A.; Khamkar, S.; André, P.; and Kraut, R. 2012.
Crowdweaver: Visually managing complex crowd work.
In Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work, CSCW ’12, 1033–1036. New
York, NY, USA: ACM.
Kittur, A.; Nickerson, J. V.; Bernstein, M.; Gerber, E.; Shaw,
A.; Zimmerman, J.; Lease, M.; and Horton, J. 2013. The
future of crowd work. In Proceedings of the 2013 Con-
ference on Computer Supported Cooperative Work, CSCW
’13, 1301–1318. New York, NY, USA: ACM.
Kulkarni, A.; Can, M.; and Hartmann, B. 2012. Collabo-
ratively crowdsourcing workflows with turkomatic. In Pro-
ceedings of the ACM 2012 Conference on Computer Sup-
ported Cooperative Work, CSCW ’12, 1003–1012. New
York, NY, USA: ACM.
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C.
2010a. Exploring iterative and parallel human computation
processes. In Proceedings of the ACM SIGKDD Workshop
on Human Computation, HCOMP ’10, 68–76. New York,
NY, USA: ACM.
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C.
2010b. Turkit: Human computation algorithms on mechan-
ical turk. In Proceedings of the 23Nd Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’10,
57–66. New York, NY, USA: ACM.
Luther, K.; Hahn, N.; Dow, S. P.; and Kittur, A. 2015.
Crowdlines: Supporting synthesis of diverse information
sources through crowdsourced outlines. In Third AAAI Con-
ference on Human Computation and Crowdsourcing.
Sheng, V. S.; Provost, F.; and Ipeirotis, P. G. 2008. Get
another label? improving data quality and data mining using
multiple, noisy labelers. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery
and data mining, 614–622. ACM.
Tran-Thanh, L.; Huynh, T. D.; Rosenfeld, A.; Ramchurn, S.;
and Jennings, N. 2015. Crowdsourcing complex workflows
under budget constraints. In AAAI Conference on Artificial
Intelligence.
Yoon, K. P., and Hwang, C.-L. 1995. Multiple attribute
decision making: an introduction, volume 104. Sage publi-
cations.
Zaidan, O., and Callison-Burch, C. 2011. Crowdsourcing
translation: Professional quality from non-professionals. In
ACL, 1220–1229.

58

