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Abstract

‘We propose novel algorithms for the problem of crowd-
sourcing binary labels. Such binary labeling tasks are
very common in crowdsourcing platforms, for instance,
to judge the appropriateness of web content or to flag
vandalism. We propose two unsupervised algorithms:
one simple to implement albeit derived heuristically,
and one based on iterated bayesian parameter estima-
tion of user reputation models. We provide mathemati-
cal insight into the benefits of the proposed algorithms
over existing approaches, and we confirm these insights
by showing that both algorithms offer improved per-
formance on many occasions across both synthetic and
real-world datasets obtained via Amazon Mechanical
Turk.

Introduction

Crowdsourcing is now in wide use by organizations and in-
dividuals allowing them to obtain input from human agents
on problems for which automated computation is not ap-
plicable or prohibitively costly. Due to the involvement of
the human factor, several challenges come with the use of
crowdsourcing. Poor quality feedback from users is com-
mon due to malevolence or due to misunderstanding of
tasks.

Crowdsourcing applications address the problem of poor
human workers reliability through redundancy, that is, by
assigning the same task to multiple workers. Redundancy
comes at a cost: crowdsourced tasks usually cost money, and
the use of multiple workers entails an indirect cost of latency
in completing the tasks. This raises the issue of how to opti-
mally aggregate the worker’s input. Simple majority voting
will predictably fail in cases where a majority of unreliable
users will vote on the same task. In the presence of historical
data and multiple input from same users on different tasks, it
is natural to assume that there are ways to analyze the work-
ers’ activity and derive more accurate answers by isolating
systematic spammers or low quality workers. We study and
propose methods that can improve results by inferring user’s
reliability taking into account all input.

Crowdsourcing algorithms have been the subject of re-
search for several years. Recent benchmarks such as the one
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in (Sheshadri and Lease 2013) and (Hung et al. 2013) com-
pare different approaches across different dimensions. Su-
pervised approaches can benefit from access to golden data
and/or significant prior knowledge on the crowd or tasks.
Empirical results suggest that no single method is univer-
sally superior, as comparative performance varies with the
domain and the dataset in question.

We focus here on a simple form of the problem, the unsu-
pervised binary crowdsourcing problem, where workers an-
swer Yes/No questions about items. An example of a binary
crowdsourcing problem is to determine whether a Wikipedia
edit is vandalism, or whether a given webpage is appropri-
ate for children. One can view the problem as a process
of probabilistic inference on a bipartite graph with work-
ers and items as nodes, where both worker reputations and
item labels are unknown. The problem of indirect inference
of human reputation was first studied in the 70s, long before
the advent of the internet and crowdsourcing marketplaces,
with the description of the Expectation Maximization algo-
rithm (Dawid and Skene 1979). Approaches closely related
to EM were proposed in (Smyth et al. 1994) and (Raykar
et al. 2010). A variational approach to the problem was re-
cently proposed in (Karger, Oh, and Shah 2011) and a mean
field method was proposed in(Liu, Peng, and Ihler 2012).
The approach of (Karger, Oh, and Shah 2011), which we ab-
breviate by KOS, is proved to be asymptotically optimal as
the number of workers tends to infinity, provided there is an
unlimited supply of statistically independent workers. Nev-
ertheless, we will show that KOS is not optimal in extracting
the best estimate of the underlying truth from a finite amount
of work performed.

In this paper, we begin by describing a general framework
for binary inference, in which a beta-shaped belief function
is iteratively updated. We show that the KOS approach cor-
responds to a particular choice of update for the belief func-
tions. Casting the KOS algorithm as a belief-function update
enables us to gain insights on its limitation. In particular,
we show that the KOS approach is not optimal whenever
the amount of work performed is non-uniform across work-
ers, a very common case in practice, as well as whenever
there is correlation between the answers provided by differ-
ent workers. Furthermore, in cases involving a finite number
of workers and items, correlation is created simply by iterat-
ing the inference step too many times; indeed, we show that



the performance of KOS generally gets worse with increas-
ing number of inference iterations.

We describe two variations of the beta-shaped belief func-
tion update, which we call the harmonic and the parameter
estimation algorithms. The harmonic update is a simple up-
date equation that aims at limiting the effects on the final re-
sult of worker correlation, worker supply finiteness, and dif-
ference in amount of work performed by different workers.
There is no deep theoretical underpinning for the harmonic
approach, and its virtues are its simplicity and empyrical
robustness. The parameter estimation approach, in contrast,
consists in updating the belief beta-distributions by estimat-
ing, at each iteration, the beta-distribution parameters that
provide the best approximation for the true posterior belief
distribution after one step of inference. We develop in de-
tail the parameter estimation procedure, showing that it is
feasible even for large practical crowdsourcing problems.

For the purpose of this study, we model the user reputa-
tions by a one-coin parameter. However, the ideas we de-
scribe for performing the update user and item distributions
are extensible to a more complex two-coined model, such as
the two-coin extension of (Dawid and Skene 1979) and (Liu,
Peng, and Ihler 2012), where it is assumed that users can
have different true positive and true negative rates. While
our empirical study focuses on unsupervised settings, super-
vised variants with our methods are possible, as the meth-
ods maintain distributions on both user reputations and item
qualities, and we can use knowledge on the crowd or the
items to impose informative priors on the distributions.

We evaluate the harmonic and parameter estimation ap-
proaches both on synthetic data, and on large real-world
examples. On synthetic data, we show that for non-regular
graphs and for correlated responses, both our approaches
perform well, providing superior performance compared
with the KOS and EM methods. We then consider four
real-world datasets generated by other research groups via
Amazon Mechanical Turk. One dataset, kindly provided by
the author of (Potthast 2010), consists of Wikipedia edits
classified by workers according to whether they are vandal-
ism; other two datasets contain annotations by non-experts
on questions of textual entailment and temporal ordering
of natural language texts (Snow et al. 2008), and a fourth
dataset comes from the Duchenne experiment (Whitehill et
al. 2009). The parameter estimation approach shows statisti-
cally significant superiority against other methods with re-
spect to average recall for two of the real-word datasets,
while it ties with other methods in the other two cases. The
harmonic approach provides performance closely approach-
ing that of parameter estimation, while maintaining the ad-
vantage of simplicity and ease of implementation.

Overall, the experiments show that the harmonic and pa-
rameter estimation approaches provide robust approaches to
binary crowdsourcing that improve on the state of the art in
a wide variety of settings.

Definitions

We consider a set U of users and I of items. A task consists
in auser u € U giving an answer a,; € {+1,—1} on item
i € I; by convention, +1 denotes a positive answer (i.e.
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‘true’, or ‘yes’) and —1 a negative answer. We denote the
answer set by A. The set of users, items and answers form
a bipartite graph £ C U x I, whose edges represent the
users’ votes on the items. We call the users that have voted
on an item ¢ € [ the neighborhood of i, denoted by 0i =
{v | (u,7) € E}. Likewise, the neighborhood du of a user
u consists of the set {i € I | (u,i) € E} of items that
u voted on. The goal of the binary crowdsourcing problem
consists in aggregating the user votes into item labels. One
can view this as a double inference task: infer the most likely
reliability of workers (which we can view as latent variables)
based on their answers, and then use the worker’s inferred
reliabilities to infer the most likely labels of the items.

Viewing this as problem of probabilistic inference on a
graphical model (the bipartite graph), its optimal solution is
intractable (Koller and Friedman 2009). There exist several
approaches to tackle this problem (Karger, Oh, and Shah
2011; Dawid and Skene 1979; Liu, Peng, and Ihler 2012;
Raykar et al. 2010).

The KOS algorithm (Karger, Oh, and Shah 2011)

A recent approach to the binary crowdsourcing problem is
described in (Karger, Oh, and Shah 2011). The approach
is closely related to belief propagation (BP) (Yedidia, Free-
man, and Weiss 2003), and executes on the bipartite voting
graph in the style of BP by passing messages from workers
to items and back in iterations. We give the pseudocode of
KOS approach in Figure 1. The authors present results on
synthetic graphs showing the superiority of this method to
EM (Dawid and Skene 1979), and prove that the approach is
asymptotically optimal for regular graphs, that is, as the size
of the graph tends to infinity their approach is up to a con-
stant factor as good as an oracle that knows the reliability of
the workers.

Mean Field Approximation (Liu, Peng, and Ihler
2012)

Liu et al.(Liu, Peng, and Ihler 2012) propose a variation to
the EM method (Dawid and Skene 1979). Making a beta dis-
tribution assumption for the probability ¢; that a user j will
provide a correct answer, the M-step update for their method
is obtained using a variant written in terms of the posterior
mean of the beta distribution rather than its posterior mode.
The authors argue that this variation plays a role of Laplace
smoothing. They report results that display a superior per-
formance compared with EM and comparable performance
to KOS (Karger, Oh, and Shah 2011) for some informative
priors on users’ quality. They also explore different models
for users’ voting. Instead of assuming a fixed reliability of
users, they examine a two-coin model where each user has a
varying reliability based on the task (specificity). Alternative
models for user behavior have been considered and appear
applicable in tasks requiring expertise such as the Bluebird
Dataset (Welinder et al. 2010).

Beta belief distributions for users and items

We now show that the KOS algorithm, and our algorithms,
can be interpreted as update rules for beta distributions of be-



Input : bipartite graph F, answers a;, kmaz
Output: Estimation of correct solutions s; € {41, —1}
forall¢ € I.

foreach (u,i) € E do
2 | Initialize y,; with Z; j ~ N(1,1);

-

3 fork=1..., kpq: do

4 foreach (u,i) € E do

s | [ @ e Sweona o v S
6 foreach (u,i) € E' do

7 L yi(l,kii = Dircouni Giru nggu’

8 foreach item ¢ do
(kmaz*l).
9 L T = Eu’eai Qiw’ * Yoy 5 ’

0 Return estimate §; = [sgn(x;)| foralli € I.;

-

Figure 1: KOS algorithm for labeling items using binary
crowdsourced answers

lief on item value and user quality. This will provide an uni-
fying framework to understand the properties of KOS and of
our algorithms. Note that our setting of beta belief updates is
not a variant of belief propagation; despite of the use of the
term ‘belief’ in both cases, we maintain real-valued distri-
butions of users reputations and item qualities, unlike belief
propagation.

Similarly to (Liu, Peng, and Thler 2012), we characterize
users and items with probability distributions in the domain
[0, 1]. The distribution of a worker represents the informa-
tion on the worker’s reputation or reliability, while the dis-
tribution of an item represents the information on its quality.
The smaller the standard deviation of the distribution, the
”peakier” the distribution, and the smaller the uncertainty
over item quality or worker reliability. The higher the mean
of the distributions, and higher the expected quality of work-
ers or the expected truth value of items. A worker of perfect
reliability has distribution p(r) = d(r — 1) and a perfectly
unreliable worker has distribution u(r) = §(r), where § is
the Dirac delta function. A natural choice for the distribu-
tions over worker reliability and item quality is the beta dis-
tribution. A beta distribution Beta(c, ) with parameters «,
[ represents the posterior probability distribution over the
bias z of a coin of which we saw o — 1 heads (positive votes
for items, truthful acts for users) and 8 — 1 tails (negative
votes for items, false acts for users), starting from the uni-
form prior. An item whose distribution has o > /3 will have
distribution median greater than 0.5, and be classified as true
at the end of the inference process; conversely if a < 3.

A beta-distribution interpretation of KOS

The presentation of the KOS algorithm is slightly compli-
cated by the fact that the algorithm, when computing the
feedback to item 4 from users in 07, avoids considering the
effect of 7 itself on those users. This leads to the message-
passing presentation of the method that we see in Figure 1.
If we allow the consideration of the effect of ¢ on 0i, we ob-
tain a simpler version of KOS that “allows self-influence”.
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Such a version can be described succintly as follows. For ev-
ery user u, initialize its reputation via r,, ~ N(1,1). Then,
iteratively perform the updates:

Ty = Z Ti Qug -

Ty = E Ty Qg
i€0u

u€di

(D

Note that, at a step, the influence of user u on item ¢ is that
the amount r,, a,,; is added to r; (and similarly in the other
direction, from items to users). After the desired number of
iterations, decide the value of i by §; = sign(r;), for all
1€l

We can view this algorithm as an update rule for beta
distributions as follows. Every user u is associated with
a beta distribution Beta(c,, 3,) representing their truth-
fulness, and every item ¢ is associated with the distribu-
tion Beta(«;, ;) representing its quality. Our interpretation
maintains the invariants r,, = a,, — 3, and r; = a; — (3;. Ini-
tially, we set a,, = 1 + 1, B, = 1 for every u € U, where
1, 18 initialized from the normal distribution as before. To
perform the update step of (1), for each ¢ € I we initialize
a; = B; = 1, and for each u € 9i, we increment «;, [3; as
follows:

{ai =0y 4
a; = o + Bu,

/Bi = ﬂz"’au

A similar update is then performed for each u € U. It is easy
to prove by induction that the above beta-distribution based
algorithm, and the simplified (1) algorithms, are equivalent.
We can obtain an analogous reformulation of the original
KOS algorithm 1 by sending («, 3) pairs as messages, in
place of single quantities = and y, exchanging « and 3 when-
ever a,; < 0.

ifam» > 0,
otherwise.

2

Limitations of KOS approach

The above re-statement of the KOS algorithm in terms of
beta distribution updates sheds light on some of the limita-
tion of the KOS algorithm.

Non-regular graphs. In real world scenarios, it is rare that
items and workers are connected in a regular graph. Usually,
some workers are very active providing multiple reviews,
while others may provide only a few. Similarly, items have
different popularity or visibility, some of them receiving
many reviews, while others receiving only a few. In many
real cases, power-law phenomena are in place.

The KOS algorithm may not perform well on non-regular
graphs. To understand the reason, note that as the number of
iteration progresses, the values of z, y (or o and (3 in our re-
statement) grow with a geometric rate related to the degrees
of the nodes. Consider an item 7, which is connected in the
bipartite graph to two users, u1 and us. The user u; is part of
a large-degree subgraph; the user us is instead part of a sub-
graph where all nodes (items and users) have small degree.
Assume that u; and uo both give the same judgement (say,
+1) about ¢. If the algorithm determines that w; has high
reputation (av,, > f,), this reputation will be reflected in
a strong certainty that the value of 7 is +1 (a; > ;). In
the subsequent iteration from items to users, we will have



that the full amount of a; will be added to «,,, : the certainty
of uy being truthful will be transferred to us. But this is of
course inappropriate: us’s vote on ¢ is only one instance of
agreement with the highly-reputed user us, and we should
infer only a limited amount of certainty from one instance
of behavior. In general, if the bipartite review graph is non-
regular, the KOS algorithms will weigh excessively the ev-
idence from the higher-degree portions of the graph. Our
simulation results on artificial graphs will show that both
the harmonic and the parameter estimation algorithms we
propose outperform KOS on non-regular graphs.

Source dependence, and iterations over a finite graph.
The additive nature of the KOS update rule makes the al-
gorithm highly sensitive to the assumption of independent
sources, and independence can fail, for two reasons.

First, the original sources (the users) are usually not statis-
tically independent. For example, to answer a question such
as “what is the phone number of this restaurant”, most work-
ers will consult a limited number of sources such as Google
Maps, Bing, and Yelp, and choose the source they trust the
most in case of conflict. The workers would not be perform-
ing statistically independent inferences on the phone num-
ber; rather, they would be influenced by their a-priory trustin
the information sources. The issue of crowds deriving their
information from a limited number of information sources
has been studies in finance; (Hong, Page, and Riolo 2012)
show that the resulting correlation can hinder the ability of
groups to make accurate aggregate predictions.

Furthermore, and even more relevant to our context, sta-
tistical dependence is generated simply by running the KOS
algorithm on a finite graph for many iterations. Indeed, if
the graph has degree m, after n iterations we would need
(m — 1)™ distinct sources for them to independently con-
tribute to the value at a node. This is analogous to the fact
that most of our ancestors 7 > 30 generations ago appear
in multiple nodes of our genealogical trees, since there were
several orders of magnitude fewer than 2" humans at that
time. In essence, for each item, the infinite tree of inference
with branching m — 1 is being folded inside the finite graph,
and correlated information (corresponding to the same ac-
tual nodes in the graph) is being treated as if coming from
independent graph nodes. The upshot is that after the first
few initial rounds, the updates recycle the same information.
Indeed, our experiments show that on finite graphs, the per-
formance of KOS and other iterative methods peaks after
a few initial rounds, and gets worse as the method reaches
the fixed point. These empirical results appear to contradict
the optimality results given in (Karger, Oh, and Shah 2011),
but the contradiction is only apparent. The optimality results
proved in (Karger, Oh, and Shah 2011) concern the behav-
ior when the number of reviewers, and the size of the graph,
grow to infinity; they do not concern the problem of opti-
mally extracting information from a finite graph.

Our proposed algorithms are also affected by source cor-
relation. However, our empirical results indicate that they
are less affected than KOS. Intuitively, this is because our
updates are performed based on reputation mean, rather than

45

adding up the shape parameters.

Two proposed algorithms: Harmonic and
Parameter-Estimation

We now describe two methods for the binary crowdsourced
labels aggregation problem. Both algorithms model the dis-
tributions of item quality and user reliability via beta distri-
butions, updating the distributions in iterative manner.

The Regularized Harmonic Algorithm is derived from the
beta-distribution interpretation of KOS by adopting an up-
date rule based on distribution means, rather than addition
of shape parameters. This leads to a simple and efficient al-
gorithm that performs well in presence of correlated infor-
mation.

The Beta Shape Parameter Estimation Algorithm uses
beta distributions to represent both item and worker distribu-
tions, and performs updates by first performing a Bayesian
update, and then using parameter estimation to approximate
the posterior distributions with beta distributions.

In both algorithms, we assume that each item is associated
with a quality or ambiguity y that corresponds to a Bernoulli
trial probability of the item being perceived as true by a per-
fectly reliable user. Similarly, each user has a probability x
of telling the truth (i.e. report accurately the result of the
bernulli trial of the item), and 1 — x of lying (i.e., report-
ing the opposite of the observed result). We assume that y
and « follow distributions that can be approximated by beta
distributions.

The root reason why these algorithms outperform EM is
that unlike EM, the algorithms explicitly represent (via the
variance of the beta distributions) the amount of information
we have on each user and item, so that they can distinguish
users with the same averge quality but different amounts of
certainty over it.

The Regularized Harmonic Algorithm

The Regularized Harmonic Algorithm represents the knowl-
edge about a user u via a beta distribution Beta(a,,, 8.),
and the knowledge about an item 7 via a beta distribution
Beta(a;, 8;). The update rule (2) adds the shape parameters
Quy, By of users u € 0i to compute the shape parameters
of item ¢. Thus, a user v whose distribution has shapre pa-
rameters «,,, 3, has an influence proportional to cv, + 5,.
As «, and (3, grow during the iterations, this can affect
the performance over non-regular graphs, and in presence
of correlated information, as discussed earlier. In the har-
monic algorithm, the influence of a user is proportional to
|2p,, — 1|, where p, = a,/(a, + Bu) is the mean of the
beta distribution; and symmetrically for items. This leads to
a more stable update rule, where differences in graph degree,
and information correlation, have a more moderate effect on
the final result. The detailed algorithm is given in Figure 2,
where we use the standard notation z+ = (z + |z|)/2 for
the positive part of x.

Beta Shape Parameter Estimation Algorithm

The Beta Shape Parameter Estimation Algorithm, which we
abbreviate by BSP, also models user and item distributions



Input : Bipartite graph £ C U X I, answers ay;, kmaz
Output: Estimation of correct solutions s; for all ¢ € I.

1 foreach wuser u and item i do

2 a, =1+ A for some A > 0, and
| Bu=a; =8 =1
3sfork=1... knq do
4 foreach user u € U do p,, <+ ay/(ay, + Bu)
5 foreach itemi € I do
6 a; < 1+ Zueai (aui(2pu — 1))+
| B 1+ Y ueoi (—awi(2py — 1))
foreach item ¢ € I do p; + «;/(c; + 3;)
8 foreach user v € U do
9 ay 1+ Y o0 (aui(2p — 1)T
L Bu =1+ Yicou (—aui(2pi — 1))+

—

0 Return estimate vector §; = sign(a; — ;) forall i € I.

Figure 2: Regularized Harmonic Algorithm

as beta distributions. The algorithm updates iteratively these
distributions by first performing a pure Bayesian update,
obtaining general posterior distributions, and then by re-
approximating these poserior distributions by beta distribu-
tions having the same mean and variance. The idea of mak-
ing a specific assumption about a distribution and perform-
ing approximate bayesian updates using parameter estima-
tion is fairly classical; it was applied in a crowdwourcing
context in (Glickman 1999) to the problem of computing
chess and tennis player rankings from match outcomes mak-
ing a normal distribution assumption for the strengths of the
players.

In practice, BSP never computes the actual posterior dis-
tributions; these distributions are simply used as a mathe-
matical device to derive update rules that are expressed di-
rectly in terms of shape parameters. To derive the update, as-
sume that user u voted True (or Yes) for item ¢. We assume
there is a prior for the quality of the item, given by distribu-
tion Beta(a;, 8;). We can observe the event of a True vote
by u on ¢ when one of two mutually exclusive events occur:
either the item was seen as true and the user reported it as
true, or the item was seen as false, but the user flipped the
observation. The probability of the former event is x - y, and
the probability of the latter is (1 — x) - (1 — y); given that
the two events are mutually exclusive, the overall probabil-
ity of a vote True is their sum. A Bayesian update for the
item distribution after the user True vote yields:

1

g* () o g () / (@y+(1-2) (1-y)
0

cx®e Tt (1 - 2)Pe e 3)

BSP starts by assigning a prior to the users reputations.
The choice of the prior is open. In most cases, we use a prior
where users are considered weakly truthful, corresponding
to a beta distribution with shape parameters « = 1 + A and
8 =1, where A > 0 is small.

We use the votes of the users to update the items distribu-
tion by calculating the bayesian update through integration
and normalization of Formula 3. The derived function is not
a beta distribution and further updates in an iterative manner
are intractable. We thus approximate the derived distribution
by beta distribution through calculation of the expectation
and variance of the derived distribution and estimation of the
shape parameters of the beta distribution that corresponds
to this expectation and variance. For details see our tech-
nical report (de Alfaro, Polychronopoulos, and Shavlovsky
2015). The procedure proceeds in a symmetrical way to up-
date the user distributions from the item distribution and the
votes. BSP performs these iterative updates of user and item
distributions, either until the distributions converge (the dif-
ference across iterations is below a specified threshold), or
until we reach a desired number of iterations. After the final
iteration, we label with True (or Yes) the items ¢ for which
«; > (3, and we label with False (or No) the others.

Excluding self-votes Similarly to the KOS method
(Karger, Oh, and Shah 2011), for each user we can have
separate distributions g,,; for all the items 7 the user voted
on, where the distribution g,,; represents the information on
u derived without using ¢ directly; similarly for the distri-
butions r,; for items. The final estimate of item labels is
obtained by adding all the differences o« — 3 of the shape
parameters of all the distributions for the item, and obtain-
ing the sign. We provide a pseudocode for the method in
Figure 3.

Input : bipartite graph £ C U x I, answer set A, kyqz
Output: Estimation of correct solutions s : §({a;})

1 foreach (u,i) € F do
2 Initialize user distributions r,;(x) with
Beta(l + A, 1) for some A > 0;
Initialize item distributions g,,;(y) with Beta(1,1);

for k =1..., k4. do
foreach itemi € I do
foreach item u € O0i do

Obtain g¥*V

. Jui
derivation;
8 Obtain a,; and ﬁf” for g,; through shape
parameter estimation;

gfjﬂ) (y) < Beta(ad;, B;);

9 foreach useru € U do
10 foreach item i € Ou do

w

N S s

(y) through pure bayesian

i1l Obtain TSZH) (y) through pure bayesian
derivation;
12 Obtain o, and 3} for r,,; through shape

parameter estimation;

r®D (y) < Beta(a,, BY);

13 Return vector 8; = sign( Y. of,; —
u€di

i) foralli € 1.

Figure 3: Beta Shape Parameter estimate (BSP) algorithm



Experimental study on synthetic data

We conducted experiments on synthetic regular graphs as
in (Karger, Oh, and Shah 2011) and (Liu, Peng, and Ihler
2012). We also tested graphs whose vertex degrees follow a
uniform distribution in a predefined range, and graphs whose
vertex degrees follow a Pareto distribution. This is true in
many graphs where task allocation is not defined by the al-
gorithm: for example, popular items on Yelp will have much
more votes than others, following some form of power law.

Independent users model In the spammer-hammer
model of (Karger, Oh, and Shah 2011), users are either
spammers or honest. Spammers provide random answers,
that is, they reply True or False with 50% probability re-
gardless of the true label, while honest workers report the
truth. We also use a model where user accuracies follow a
uniform distribution in [0.5, 1], and a model where user ac-
curacies follow a beta distribution with o = 0.03, 8 = 0.01
which corresponds to a mean accuracy of 0.75 and variance
~ 0.18. Parameter g represents the percentage of honest
workers. We report the fraction of misclassified labels, av-
eraged for 10 runs of the algorithm (on newly constructed
graphs) which is an estimate of the probability of misclassi-
fication for a given method. For sets with balanced classes,
the average error is a reliable performance measure. We also
conduct experiments with varying class balance skew and re-
port the F-1 measure which is more appropriate in this case.

The limited sources model In one set of experiments, we
induce correlation to users’ answers by forcing them to seek
their answers by a limited set of sources. We fix the number
of sources to 5, the sources vote on the items with a prede-
fined accuracy, then users pick one of the sources to seek the
answer in the following manner: the most popular source
is picked with a given probability, the second most proba-
ble source is picked with 20% less probability and likewise
for the remaining sources. This depicts a realistic scenario
where some internet sources are more popular than others
or contain more information. The correlation induced in this
manner can be a challenge for algorithms that aim to ob-
tain reliable aggregations from crowdsourcing. We could get
overconfident in an answer which is in fact only a replicated
erroneous answer from a single source.

Algorithms We implement the BSP approach, the Har-
monic approach, EM (Dawid and Skene 1979), KOS ap-
proach (Karger, Oh, and Shah 2011), and AMF-EM (Liu,
Peng, and Thler 2012). The two last methods are the state-
of-the-art methods of the literature. We also implemented a
variation of the KOS method suitable for non-regular graphs
(uniform and Pareto) which we call ‘Regularized KOS al-
gorithm’. It works in the same manner but regularizes item
messages by the square root of the total votes they received
(for and against). In that way, it prevents items becoming
very highly reputed simply because they have received more
votes than average. In all synthetic cases, we have a prior on
user’s reputation that is slightly truthful with A = 0.001,
that is, we are almost agnostic with respect to human work-
ers reliability.
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100 x 100, g=0.60

0.35 ——
03F EM-AMF )

0.25 - KOS i
021 Harmonic —8—

BSP —a— |

OO 5 10 15 20 25 30 35 40 45 50
Iterations (zero is the first iteration)

Prob. of error(freq. of misclass. items,avg 10 runs)

Figure 4: Results for a 100X 100 regular bipartite graph with
5 votes per item, q=0.6

Statistical significance testing We do not know the distri-
bution of the average error or other performance measures
of the algorithms. However, the result of independent runs
across different random graphs are i.i.d. random variables.
For large samples (> 30), due to the central limit theo-
rem, the arithmetic mean of a sufficiently large number of
iterates of independent random variables is approximately
normally distributed, regardless of the underlying distribu-
tion, and the z-test is an appropriate statistical hypothesis
test method in this case (Sprinthall 2011). We conducted the
z-test for large samples (> 80) across different runs, using
the unbiased sample variance to approximate the distribu-
tion variance, to confirm the relevance of results that we see
in the plots. When we report a superior result, we have con-
firmed its statistical significance with a high enough sample
size that makes the test reject the null hypothesis with very
low critical values (<< 0.01), i.e. very high confidence.

100 x 100, uniform user accuracy in [0.5,1]
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Figure 5: Results for a 100X 100 regular bipartite graph with
uniformly distributed user accuracies

Results Figure 4 shows the results for a regular bipartite
graph of 100 users and 100 items for levels of spamming at
40%(g = 0.6) using the spammer-hammer model. Figure 5
shows results for uniformly distributed user accuracies, and
Figure 6 shows resuts using the beta distribution to model



user accuracies. We observe the superiority of the BSP and
Harmonic approaches, confirmed through significance test-
ing, to other techniques while we note that simple majority
voting outperforms EM in Figure 5, and both EM and EM-
AMF in Figure 6. We omit results on majority voting which
is outperformed by all iterative methods (the plot already
contains several methods).

Figure 7 shows the comparative performance using the
limited sources model. Again, the BSP method and the har-
monic approach demonstrate the best performance, yet, the
harmonic approach is the one performing better. The BSP
method observably deteriorates as the iterations increase, re-
inforcing errors due to the independence assumption which
does not hold.

Figure 8 shows the performance for a graph where the
number of votes on each item follow a Pareto distribution
with shape parameter 0.9. We used both KOS standard and
regularized approaches. EM-AMF, BSP and harmonic out-
perform the rest with a slight lead of BSP. KOS approach
performs poorly, the regularized variant we implemented
provided benefits but the performance is still low. We also
confirm that the KOS method diverges from its best perfor-
mance as iterations increase when the regularity assumption
is broken.

Finally, Figures 9 and 10 show the performance for a
graph that is 1000 x 1000, an order of magnitude higher in
the number of nodes for the beta distribution accuracies and
limited sources models. We confirm the superiority of both
the BSP and Harmonic methods in Figure 9 and that of the
BSP method in Figure 10.

We omit results for graphs with uniform distribution of
edges which demonstrate a similar performance.

Figure 11 shows the performance with increasing votes
per item. Unsurprisingly, majority voting steadily improves
with increasing number of votes (as the law of big numbers
materializes and the percentage of inaccurate responses con-
verges to their probability). KOS significantly improves with
increasing number of votes and matches BSP and Harmonic
in absolute correctness for 13 and 15 votes per item. Sur-
prisingly, 9 votes per item are worse than 7 votes per item
for all three iterative methods (and we confirmed its statis-
tical significance). The reasons for this are not evident. An
explanation is that while 9 and 11 votes are more than 7, a
graph with 9 and 11 votes per item has a wider span and an
error may propagate more widely compared to a graph with
fewer votes. For the case of 7, the graph hits a sweet spot
where the votes are high enough that it improves over fewer
votes, but also few enough so the impact of errors remains
localized. A formal explanation of the phenomenon may be
an object of further study.

Figure 12 shows the F1 measure as we vary the skew
of the balance of classes. BSP and Harmonic (alternately)
have the lead in performance as skew varies, with Har-
monic demonstrating less sensitivity across the variance of
the skew.

Experimental study on real-world data

To demonstrate the relevance of our approach on real-
world data, we conducted experiments with datasets ob-
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Figure 6: Results for a 100X 100 regular bipartite graph with
Beta distributed user accuracies
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Figure 7: Results for a 100X 100 regular bipartite graph with
the limited sources model (5 sources), g=0.6

tained through Amazon’s Mechanical Turk. For the workers
priors, we make the assumption they are 4 times more likely
to be reliable than not, that is, A = 3.

Statistical significance testing We sample the edges of
the bipartite graph that corresponds to the real world dataset
with a probability of 90%, constructing a set of random sub-
graphs. For each of the random subgraphs we obtain the
required performance using two different methods measure
and run the z-test on the results to determine statistical sig-
nificance of difference in performance between the methods.

Wikipedia edits Mechanical Turk data

We tested our method on a real world dataset involv-
ing judgements of Mechanical Turk workers on a set of
Wikipedia edits. The question that the workers addressed
was whether a particular edit was valid or the result of van-
dalism. The set of workers and edits are therefore an instance
of the binary crowdsourcing problem that our methods ad-
dress. For this dataset, we do not have an explicit ground
truth for the Wikipedia edits. We obtain the ground truth for
a set of edits through the redundant nature of the data. For a
particular set of edits we have a very high number of votes.
We isolate the edits that have more than 25 votes and obtain
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Figure 9: Results for a 1000X1000 regular bipartite graph
with Beta distributed user accuracies

what we deem as ground truth through majority voting. The
number of votes is high enough that we can with high con-
fidence consider that the ground truth for those edits can be
obtained only through the consensus.

The idea is that majority voting approaches correctness as
the number of votes increase. This is the same intuition used
in (Piech et al. 2013) to measure the precision of crowd-
sourced grading algorithms. While we acknowledge that a
small margin of error might remain after averaging 25 judge-
ments, we argue that the residual error is likely to be small.
Sadly, obtaining futher information on what has been re-
verted on the Wikipedia is not practical and also not reli-
able. Edits can be reverted multiple times, and reversions do
not always indicate bad content leading to disaffected ed-
itors (Adler, de Alfaro, and Pye 2010). Also, training ML
models with independent set of parameters to detect vandal-
ism converges to the golden set obtained through annotators
(Mola-Velasco 2012), an additional indication that obtain-
ing labels through highly redundant annotation from human
workers is a reliable method.

To construct the bipartite graph, we obtain the earlier 5
votes for all the highly-voted items. These votes, and the
corresponding workers and edits, together with the ground
truth that we obtain by using all the votes, define the bipar-
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Figure 11: Comparative performance with increasing num-
ber of votes per item

tite graph on which we run and test our algorithms. We end
up with a graph of 1927 edits and 677 workers. We omit the
iterations performance study, which is available at the tech-
nical report (de Alfaro, Polychronopoulos, and Shavlovsky
2015), due to space limitations. A summary of the itera-
tions study, all approaches start with similar or close results
to majority voting, and then the error rates go higher as the
iterations increase, apparently due to reinforcing wrong be-
liefs on some users reputation. BSP appears to be robust to
this effect, and is the only method that has a lead over sim-
ple majority voting reducing the error rate of the vandalism
classification. The difference with majority voting is small
(in the order of 1%) but statistically significant.

NLP Mechanical Turk datasets

We also conducted experiments with publicly available
NLP datasets obtained through Amazon’s Mechanical Turk
(Snow et al. 2008). Unlike the Wikipedia dataset, for these
datasets we have a given ground truth. Similarly to (Liu,
Peng, and Ihler 2012), we report results for increasing num-
ber of votes per task. We show the performance of the
methods after 5 iterations. The results of igure 13 for the
textual entailment dataset (RTE) confirm the divergence of
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Figure 13: Comparative performance for the RTE dataset

the (Karger, Oh, and Shah 2011) approach and show that
with the exception of KOS which performs bad, the itera-
tive methods have generally a comparable performance. We
omit the vanilla EM from the already dense plot as its perfor-
mance is comparable. Due to space limitations, we omit the
results of the NLP Temp dataset (available in the technical
report) as they show a qualitatively similar performance.

The Duchenne experiment dataset

The last real-world dataset we examined is the publicly
available dataset from the Duchenne experiment which was
used in (Whitehill et al. 2009), and contains binary answers
from MTurk users on whether a face is smiling along with
the ground truth. We omit the comparative results for the
average classification error which is available at the techni-
cal report. For the average error, regularized KOS is again
diverging, while EM-AMF emerges as slightly superior to
majority voting for the average error, also confirmed through
significance testing.

Average recall for real-world datasets

The results on the real-world datasets are inconclusive with
respect to which method is superior, in line with other
studies (Sheshadri and Lease 2013) that show performance
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Wiki | RTE | Temp | Duchenne
Reg. KOS | 0.720 | 0.506 | 0.534 | 0.611
Harmonic | 0.782 | 0.929 | 0.937 | 0.731
BSP 0.810 | 0.923 | 0.947 | 0.752
Majority | 0.810 | 0.919 | 0.937 | 0.743
EM-AMF | 0.762 | 0.925 | 0.938 | 0.468
EM 0.731 | 0.925 | 0.934 | 0.427

Table 1: Comparative average recall for real-world datasets.
Statistically significant superiority is marked with bold. We
report performance at the fixed point.

of methods oscillating across datasets. Average recall has
emerged as an efficient evaluation measure where the data
has a skewed class distribution. F-1 measure is often an
appropriate measure but it is not symmetric with respect
to positive and negative classes and the real-world datasets
we tested have variable skew (Wikipedia: 1460 positives/
467 negatives, RTE 400 negatives/positives, Temp 203 neg-
atives/259 positives, Duchenne 101 negatives/58 positives)
where the negative class is not always a minority. We thus
report the average recall along the datasets in Table 1 for all
methods.

Though both majority voting and BSP are superior to
other methods for the average recall of the Wikipedia
dataset, we cannot reject the null hypothesis for the perfor-
mance difference between them, that is, it is not statistically
significant for the size of the samples we use. BSP has supe-
rior performance for the NLP Temp and Duchenne experi-
ment datasets, whereas we note that the EM methods obtain
a particularly low average recall, even though they emerge
as slighly superior for the average error measure which is
blind to the classes, which they achieve by labeling items
with the label of the majority class in an indiscriminate way.

The reason for the low performance of the iterative meth-
ods in some of the real-world datasets is likely to be due
to the underlying user model. We use a one-coin model to
describe user behavior. In some cases, users do not behave
according to the simple Bernoulli assumption. A two-coin
model is likely to have benefits on the performance. Also, for
the purposes of the study we do not assume any information
on the class skew and we have non-informative priors on the
items. Our methods can support informative priors, Indeed,
modifying the item prior to reflect the class skew provides
benefits. Estimating the data skew is feasible in real-world
settings by sampling, so we expect our iterative methods to
adapt well in a non unsupervised setting where we use exist-
ing knowledge on the users and items to impose informative
priors.

Conclusion

We describe two new methods for aggregating binary crowd-
sourcing tasks. The first, named harmonic, is derived heuris-
tically, and it is simple to describe and implement. The sec-
ond method has a principled derivation, rooten in the iter-
ative update of estimates of user reliability and item qual-
ity distributions via bayesian parameter estimation. Our ex-
perimental evaluation indicates that the two algorithms per-



form better on many occasions, both on synthetic data, and
on real-world data. The algorithm based on bayesian pa-
rameter estimation exhibits a slightly superior performance.
In many practical applications, however, the simplicity, ro-
bustness and ease of implementation of the harmonic ap-
proach may make it the preferable approach. The practice in
the literature is to report results on the fixed point, that is,
when iterations stop producing changes. Our experiments,
by following performance through iterations, show that the
methods can achieve their best performance well before the
fixed point, only to occasionally worsen as the fixed point
is achieved. We attribute this to the recycling of informa-
tion after several iterations that induces artificial correlation.
We discovered that a good heuristic criterion is to perform

k= % iterations, where m, n are the numbers
of items of users and items, and d is the geometric average of
all node degrees. This helps to propagate all available infor-
mation across the length of the graph, while keeping corre-
lation low. Stopping after k iterations instead of converging

to the fixed point offers benefits for all iterative methods.
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