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Abstract

In this paper, we present a Bayesian approach for finite mix-
ture models based on three-parameter bivariate Beta distribu-
tions. The estimation of the parameters is based on the Monte
Carlo simulation technique of Gibbs sampling mixed with a
Metropolis-Hastings step. The performance of our Bayesian
algorithm is verified by several synthetic datasets and at the
end, the feasibility of the proposed method is demonstrated
by experimenting on some real datasets in which, the results
are compared with those obtained by implementing the same
approach using Gaussian mixture model.

Introduction

Technological advances led to generating huge amounts of
various types of complex data and analyzing such valuable
resources of data and extraction of the latent pattern is a
topic of interest in different areas of science and technology.
Thus, data mining and machine learning techniques wit-
nessed tremendous improvement. One of the main attention-
grabbing approaches is clustering method, specifically mix-
ture model. To describe data by this approach, we need to de-
fine a distribution and Gaussian distribution has been widely
used in mixture models. However, various types of data may
have non-Gaussian and asymmetric nature and other dis-
tributions could better describe data. To use mixture mod-
els, parameter estimation is a major task and several ap-
proaches such as expectation-maximization have been ap-
plied. However, they have some disadvantages (McLachlan
and Krishnan 1997) such as optimization problems and local
maxima (Robert and Casella 2013). Due to considerable de-
velopments in computational methods, Bayesian techniques
have been applied to overcome above-mentioned drawbacks
(Diebolt and Robert 1994), (Neal 1992). In this work, we
apply Beta distribution as an alternative for Gaussian distri-
bution and introduce a three parameters-based bivariate Beta
mixture model to cluster two dimensional vectors with fea-
tures defined between zero and one. After that, we discuss
our mixture model and model learning, respectively. Then,
the experimental results are provided to show the accuracy
and performance of the proposed model. In this part first, we
test the algorithm on synthetic data by comparing the real
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and estimated parameters and second the accuracy of the
model is verified by applying the method on real datasets.
For each real dataset, the performance of our model is com-
pared with Gaussian mixture models in terms of accuracy.
Finally, the last section concludes the work.

Bayesian Learning of a Finite Bivariate Beta

Mixture Model

Bivariate Beta distribution with three shape parameters
a, b, c and two real positive correlated random variables X
and Y was introduced in (Olkin and Liu 2003) and its joint
density function is given as:

f(X,Y ) =
Xa−1Y b−1(1−X)b+c−1(1− Y )a+c−1

B(a, b, c)(1−XY )
(a+b+c)

(1)

B(a, b, c) =
Γ(a)Γ(b)Γ(c)

Γ(a+ b+ c)

A finite bivariate Beta mixture model with M components
is defined as p

(
�X | Θ

)
=

∑M
j=1 p(

�X | �αj)Pj (Bishop
2006) where the Pj is the mixing probability and p

(
�X | Θ)

is the bivariate Beta distribution. The symbol Θ = (Pj , �αj)
refers to the set of weight and shape parameters of compo-
nent j. �αj = (aj , bj , cj) is the set of parameters defining
the j-th component, and �Pj = (P1, . . . , PM ). The weight of
each cluster ,Pj , is between zero and one and all the weights
sum up to = 1 for j = 1, . . . ,M .

Bayesian Learning

One of the important problems in the model learning phase
is the estimation of the mixture parameters. To do so,
we have to initialize our values by applying k-means and
method of moments (MOM) (Manouchehri and Bouguila
2018). Then, the new parameters are estimated by us-
ing Gibbs sampling within Metropolis-Hastings algorithm
(Bouguila, Ziou, and Hammoud 2009).

Gibbs within Metropolis-Hastings

Let’s assume that X = { �X1, . . . , �XN} is a set of N 2-
dimensional vectors where each vector is composed of M
different finite clusters. Each observation, �Xn = (Xn, Yn),
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is generated from a finite but unknown bivariate Beta mix-
ture model p

(
�X | Θ)

. We propose a M -dimensional mem-
bership �Zi = (Zi1, . . . , ZiM ) to each observation, such that
Zij = 1 if �Xi belongs to component j and zero, otherwise.
Thus, for X we have Z = {Z1, . . . , ZN} and a complete
form of data (X ,Z) follows p(X ,Z | Θ). In Bayesian in-
ference, we assume a prior and posterior probability distri-
bution for parameters Θ, which here we express them by
π(Θ) and π(Θ | X ,Z), respectively (Robert and Casella
2013). This is based on Bayes formula defined as follows:

π(Θ | X ,Z) = p(X ,Z | Θ)π(Θ)∫
p(X ,Z | Θ)π(Θ)

∝ p(X ,Z | Θ)π(Θ)

(2)
where

∫
p(X ,Z | Θ)π(Θ) is the marginal density of the

complete data (X ,Z). The posterior distribution assists to
simulate Θ which follows π(Θ | X ,Z). This technique,
called Gibbs sampling, is commonly applied in estimating
of Bayesian mixtures. In fact, instead of computation, we
consider membership vector �Xi as a missing multinomial
variable defined by �Zi ∼ M(1; Ẑi1, . . . , ẐiM ) where each

of Ẑij can be expressed by Ẑij =
p( �Xi|ξj)Pj

∑M
j=1 p( �Xi|ξj)Pj

. Assum-

ing π(P | Z,X ) as a density function for weight and con-
sidering this fact that it is independent of X , we can write
π(P | Z,X ) = π(P | Z). As mentioned before, Θ in-
cludes weight and shape parameter. Thus we need to sim-
ulate missing value Z , weight �P and shape parameter �α se-
quentially by standard Gibbs sampler with following pro-
cedure (Diebolt and Robert 1994), (Marin, Mengersen, and
Robert 2005), (Bouguila, Ziou, and Hammoud 2009):

1. Initialization with k-means and MOM
2. Step t: For t = 1, . . .

(a) Generate �Z
(t)
i ∼M(1; Ẑ

(t−1)
i1 , . . . , Ẑ

(t−1)
iM )

(b) Generate P from π(P | Z(t))

(c) Generate �α from π(�α | Z(t), X)

For missing parameters, as π(P | Z) ∼ π(P )π(Z | P ), if
we determine π(P ) and π(Z | P ), we can find π(P | Z).
As mentioned before, in Bayesian inference we need to as-
sign a prior to each parameter to simulate its posterior and
in this part we find proper priors. To do this task, consid-
ering the nature of weight �P , as it sums to one and all
its values (P1, . . . , PM ) are positive, our natural choice is
the Dirichlet distribution (Marin, Mengersen, and Robert

2005) which is defined by π(P ) =
Γ(

∑M
j=1 ηj)

∏M
j=1 Γ(ηj)

∏M
j=1 P

ηj−1
j

where η = (η1, . . . , ηM ) is the Dirichlet distribution’s pa-
rameter vector. Thus, π(Z | P ) =

∏N
i=1 π(Zi | P ) =∏N

i=1

∏M
j=1P

Zij

j =
∏M

j=1 Pj
nj where ηj =

∑N
i=1 IZij

=j .
Then,

π(P | Z) = Γ(
∑M

j=1 ηj)∏M
j=1 Γ(ηj)

M∏
j=1

P
ηj+nj−1
j (3)

∝ D(η1 + n1, . . . , ηM + nM )

where D is a Dirichlet distribution with parameters D(η1 +
n1, . . . , ηM + nM ). To find π(αj) as the prior of shape pa-
rameter, we consider the fact that bivariate Beta distribution
belongs to the exponential family. In fact, if a S-parameter
density p belongs to the exponential family and we assume
θ as its distribution parameter, then we can write it as fol-
lowing (Bouguila, Ziou, and Hammoud 2009):

p( �X | θ) = H( �X)exp
( s∑

l=1

Gl(θ)Tl( �X) + Φ(θ)
)

(4)

π(θ) ∝ exp
(∑s

l=1 ρlGl(θ) + κΦ(α)
)

as a conjugate prior
on θ is given where ρ = (ρl, . . . , ρs) ∈ Rs and κ > 0
are hyperparameter. Considering our density function and
�X = (X,Y ), the prior distribution is as follows:
π(θj) ∝ exp

(
ρ1(aj − 1) + ρ2(bj − 1) + ρ3(bj + cj − 1)

+ ρ4(aj + cj − 1) + ρ5(aj + bj + cj) + κ×
(log Γ(aj + bj + cj)− log Γ(aj)− log Γ(bj)− log Γ(cj)))

(5)
Thus, the posterior distribution is defined by following equa-
tion where (ρ1, ρ2, ρ3, ρ4, ρ5, κ) are prior hyperparameters:

π(θj | Z,X ) ∝ π(θj)
∏

Zij=1

π(Xi | θj)

∝ exp((aj − 1)(ρ1 +
∑

Zij=1

logXi)+

(bj − 1)(ρ2 +
∑

Zij=1

log Yi) + (bj + cj − 1)

(ρ3 +
∑

Zij=1

log(1−Xi)) + (aj + cj − 1)

(ρ4 +
∑

Zij=1

log(1− Yi)) + (aj + bj + cj)

(ρ5 +
∑

Zij=1

log
1

1−XiYi
) + (κ+ nj)

((log Γ(aj + bj + cj)− log Γ(aj)− log Γ(bj)))

− log Γ(cj))) (6)
As the prior and the posterior have the same form, we con-
clude that π(θj) is a conjugate prior on θj . Thus, the poste-
rior hyper parameters are as follows:
ρ1 +

∑
Zij=1 logXi, ρ2 +

∑
Zij=1 log Yi,

ρ3 +
∑

Zij=1 log(1−Xi), ρ4 +
∑

Zij=1 log(1− Yi),

ρ5 +
∑

Zij=1 log
1

1−XiYi
, κ+ nj

Considering (Kleiter 1992), (Castillo, Hadi, and Solares
1997), once the sample X is known, it can be used to get
the prior hyperparameters (Bensmail et al. 1997). Then we
held (ρ1, ρ2, ρ3, ρ4, ρ5, κ) fixed at following values:

ρ1 =

N∑

Zi=1

logXi, ρ2 =

N∑

Zi=1

log Yi, ρ3 =

N∑

Zi=1

log(1−Xi),

ρ4 =

N∑

Zi=1

log(1− Yi), ρ5 =

N∑

Zi=1

log
1

1−XiYi
, κ = nj = 1
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Thus, the steps of the Gibbs sampler are (Bouguila, Ziou,
and Hammoud 2009) as follows:

1. Initialization

2. Step t: For t = 1, . . .

(a) Generate �Z
(t)
i ∼ M(1; Ẑ

(t−1)
i1 , . . . , Ẑ

(t−1)
iM )

(b) Compute ηj =
∑N

i=1 IZij
=j

(c) Generate P(t) by Equation (3) and α
(t)
j by Equation (6).

We are using a hybrid MH-within-Gibbs based Markov
chain Monte Carlo (MCMC) algorithm based on both Gibbs
and M-H sampling, known as Metropolis-within-Gibbs sam-
pling. When one of the parameters is hard to sample, the
M–H algorithm offers a solution which is simulating from
the posterior distribution. Starting from point α(0)

j , the corre-
sponding Markov chain explores the surface of the posterior
distribution. At iteration t, the steps of the M-H algorithm
can be described as follows (Bouguila, Ziou, and Hammoud
2009):

1. Generate α̃j ∝ q(αj | α(t−1)
j ) and U ∝ U [0, 1]

2. Compute r =
π(α̃j |Z,X )q(α

(t−1)
j |α̃j)

π(α
(t−1)
j |Z,X )q(α̃j |αj)(t−1)

3. If r < u then α
(t)
j = α̃j else α

(t)
j = α

(t−1)
j

To choose the proposal distribution q, we use the ran-
dom walk M–H algorithm. As ãjl, b̃jl, c̃jl are positive,
we choose log-normal distributions for them and ãjl ∼
LN (log(a

(t−1)
jl ), σ2

1), b̃jl ∼ LN (log(b
(t−1)
jl ), σ2

2), c̃jl ∼
LN (log(c

(t−1)
jl ), σ2

3). These equations are equivalent to

log(ãjl) = log(a
(t−1)
jl ) + ε1, log(b̃jl) = log(b

(t−1)
jl ) + ε2,

log(c̃jl) = log(c
(t−1)
jl ) + ε3 where ε1 ∼ N (0, σ2

1), ε2 ∼
N (0, σ2

2) and ε3 ∼ N (0, σ2
3). The random walk M–H algo-

rithm is composed of the following steps:

1. Generate ãjl, b̃jl, c̃jl , l = 1, . . . , d and U ∝ U [0, 1]
2. Compute:

r =
π(α̃j | Z,X )∏d

l=1 LN ((a
(t−1)
jl ) | log(ãjl), σ

2
1)

π(α
(t−1)
j | Z,X )∏d

l=1 LN (ãjl | log(a(t−1)
jl ), σ2

1)

LN ((b
(t−1)
jl ) | log(b̃jl), σ2

2)LN ((c
(t−1)
jl ) | log(c̃jl), σ2

3)

LN (b̃jl | log(b(t−1)
jl ), σ2

2)LN (c̃jl | log(c(t−1)
jl ), σ2

3)

r =
π(α̃j | Z,X )∏d

l=1 ãjlb̃jlc̃jl

π(α
(t−1)
j | Z,X )∏d

l=1 a
(t−1)
jl b

(t−1)
jl c

(t−1)
jl

3. If r < u then α
(t)
j = α̃j else α

(t)
j = α

(t−1)
j

Experimental Results

In this section, we verify the performance of our proposed
algorithm. To do so, first we test it on three synthetic datasets

Three clusters
Parameter Real Values Estimated Values

a1 1.41 1.4336
b1 4.14 4.0779
c1 7 7.0291
p1 0.5 0.4927
a2 5.154 5.1706
b2 3.923 3.9326
c2 2.511 2.5176
p2 0.1571 0.1534
a3 5.33 5.3448
b3 1.42 1.4584
c3 8.631 8.6294

Four clusters
a1 1.515 1.5023
b1 4.177 4.1026
c1 7.6491 7.6583
p1 0.48 0.4734
a2 5.1149 5.1895
b2 3.1595 3.1875
c2 2.599 2.6023
p2 0.15 0.1557
a3 5.2137 5.1854
b3 1.5444 1.4965
c3 5.1469 5.1646
p3 0.16 0.1584
a4 1.112 1.0937
b4 9.192 9.0896
c4 11.2 11.1893

Five clusters
a1 3.8 3.7937
b1 4.1 4.064
c1 11.58 11.5478
p1 0.2 0.2074
a2 8.3 8.3490
b2 1 1.0023
c2 8.3 8.3469
p2 0.15 0.1563
a3 7.111 7.0737
b3 7 6.9753
c3 1.1 1.2046
p3 0.25 0.2495
a4 1.26 1.2947
b4 11.1330 11.0978
c4 8.8233 8.8641
p4 0.25 0.2434
a5 11.133 11.1402
b5 3.133 3.1238
c5 2.483 2.4376

Table 1: Real and estimated values of parameters for 3, 4,
5-component mixture

generated from bivariate Beta mixtures with different pa-
rameters. Table 1 demonstrates the real and estimated pa-
rameters. Regarding the results, our approach estimates pa-
rameters successfully in all three cases. Then, we evaluate
our model accuracy on three real datasets which are nor-
malized first. To assess the accuracy of the algorithm, we
compare the accuracy of our model with Gaussian mixture
models. We hereby introduce each datasets shortly describ-
ing their bivariate attributes, classes. Then, we present the
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Dataset BBMM GMM
Elephants Classification 93.48% 81.88%

PET Film 97.73% 84.09%
Cane Age Estimation 79.7% 37.91%

Table 2: Accuracy of model performance in real datasets

results of our evaluation in Table 2. As it is obvious, our
propose model bivariate Beta mixture models (BBMM) out-
performs Gaussian mixture models (GMM).

Male African Elephants Classification: The first real
dataset (Lee et al. 2013a) is based on a research about 138
male African elephants that lived through droughts in the
first two years of their life (Lee et al. 2013b). Each obser-
vation is described by two features, namely, age and height.
The animals are labeled one if they are firstborn and zero,
otherwise.

Failure Time of Polyethylene Terephthalate (PET) Film:
The second dataset (Hirose 1993) is about the failure time
of PET film which is used in electrical insulation. This
experiment tests the failure times for 44 samples in gas-
insulated transformers in which four different voltage levels
were used. This dataset contains two features: the voltage (in
kv) and the failure or censoring time in hours. The target is
the censoring indicator. 1 and 0 means right or left-censored
data, respectively.

Age Estimation of Bramble Canes: In the last case of
experimenting on real data, we used brambles dataset (Dig-
gle and Milne 1983) which has 823 observations. In this re-
search, the location of living bramble canes in a nine-meter
square plot was recorded. We take nine meters to be the unit
of distance so that the plot can be thought of as a unit square.
As the target of the experiment, the bramble canes were clas-
sified by their age. Therefore; the dataset consists of the fol-
lowing features: the x coordinate of the position of the cane
in the plot as well as the y coordinate. And the target value
is the age classification of the canes; 0 indicates a newly
emerged cane, 1 indicates a one-year old cane and 2 indi-
cates a two-year old cane.

Conclusion

In this paper, we introduced first a new mixture model based
on a bivariate Beta distribution with three parameters. Sec-
ondly, relying on the missing data structure of the mix-
ture model, we presented an MCMC method to evaluate the
posterior distribution and Bayes estimators by Gibbs sam-
pling. After presenting our parameter estimation algorithm,
we evaluated the statistical mixture model using synthetic
and real datasets. From the results, we can conclude that the
bivariate Beta mixture has a better accuracy in comparison
with the performance of Gaussian mixture model.
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