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Abstract

Coherent lower and upper conditional previsions defined by
Hausdorff inner and outer measures are proposed to repre-
sent respectively a partial strict order and a complete indif-
ference relations between random variables. The two binary
relations can describe the activity of the conscious human
thought ruled by the antisymmetric property and the uncon-
scious human thought which is governed by the symmetric
principle and the generalization principle.

Introduction

Because of incomplete and inaccurate information, a mea-
sure of uncertainty can be represented by coherent impre-
cise probabilities (Walley 1991), which consist of a class of
probability measures and not by a single probability mea-
sure. Coherent upper and lower probability are respectively
the maximum and the minimum of the given class. The ex-
tensions to the class of all bounded random are called co-
herent upper and lower previsions. A priori measure of un-
certainty is the level of knowledge each subject has before
having a new piece of information, denoted by the set B; the
measure of uncertainty that quantifies the level of knowl-
edge each subject has on a posteriori situations is a coherent
upper probability conditioned to the state B. A new model
of coherent conditional upper probabilities defined by Haus-
dorff outer measures has been proposed (Doria 2007), (Do-
ria 2012), (Doria 2015), (Doria 2019), to affirm that there is
updating of knowledge if the a priori and a posteriori mea-
sures of uncertainty are different, that is if they are defined
by different Hausdorff outer measures. It occurs when the
new piece of information represented by a set, has a differ-
ent complexity, measured in terms of Hausdorff dimension
of the set, with respect to the previous information. The new
model of coherent upper conditional probabilities based on
Hausdorff outer measures has been proposed because co-
herent upper and lower conditional probabilities cannot be
obtained as extensions of linear conditional probability de-
fined by the Radon-Nikodym derivative, as in the axiomatic
approach ((Billingsley 1986)); it occurs because one of the
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defining properties of the Radon-Nikodym derivative, that
is to be measurable with respect to the σ-field of the con-
ditioning events, contradicts a necessary condition for the
coherence (Doria 2012).

Many properties of the coherent lower previsions can be
obtained by the conjugate coherent upper conditional previ-
sions but the two non-linear functionals represent different
binary relations between random variables since preference
orderings represented by the coherent lower previsions sat-
isfy the antisymmetric property which is not satisfied by the
binary relation represented by their conjugate coherent up-
per conditional previsions (Doria 2015), (Doria 2019).

In this paper links between the new model of uncertainty
representation and the brain’s activity are investigated.

Coherent upper conditional previsions defined

by Hausdorff outer measures

Let (Ω, d) be a metric space and let B be a partition of Ω.
A bounded random variable is a function X : Ω → � and

L(Ω) is the class of all bounded random variables defined on
Ω; for every B ∈ B denote by X|B the restriction of X to B
and by sup(X|B) the supremum value that X assumes on B.
Let L(B) be the class of all bounded random variables X|B.
Denote by IA the indicator function of any event A ∈ ℘(B),
i.e. IA(ω) = 1 if ω ∈ A and IA(ω) = 0 if ω ∈ Ac.

For every B ∈ B coherent upper conditional previsions
P (·|B) are functionals defined on L(B) (Walley 1991).

Definition 1 Coherent upper conditional previsions are
functionals P (·|B) defined on L(B), such that the follow-
ing conditions hold for every X and Y in L(B) and every
strictly positive constant λ:

1) P (X|B) ≤ sup(X|B);

2) P (λX|B) = λP (X|B) (positive homogeneity);

3) P (X + Y )|B) ≤ P (X|B) + P (Y |B) (subadditivity);

4) P (IB |B) = 1.

1)− 4) in Definition 1 is said to be axioms coherence.
Suppose that P (X|B) is a coherent upper conditional

prevision on L(B) then its conjugate coherent lower condi-
tional prevision is defined by P (X|B) = −P (−X|B). Let
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K be a linear space contained in L(B); if for every X be-
longing to K we have P (X|B) = P (X|B) = P (X|B)
then P (X|B) is called a coherent linear conditional previ-
sion (de Finetti 1970), (de Finetti 1974),(Regazzini 1987)
and it is a linear, positive and positively homogenous func-
tional on L(B).

The unconditional coherent upper prevision P = P (·|Ω)
is obtained as a particular case when the conditioning event
is Ω. Coherent upper conditional probabilities are obtained
when only 0-1 valued random variables are considered.

An upper prevision is a real-valued function defined on
some class of bounded random variables K. A necessary and
sufficient condition for an upper prevision P to be coherent
is to be the upper envelope of linear previsions, i.e. there is a
class M of linear previsions such that P =sup{P : P ∈ M}.

A new model of coherent upper conditional probability
based on Hausdorff outer measures is introduced in (Do-
ria 2007),(Doria 2012), (Doria 2015). For the definition of
Hausdorff outer measure and its basic properties see (Rogers
1970) and (Falconer 1986).

The model is a generalization of Bayes Theorem, used to
update probabilities when a new piece of information, rep-
resented by the event B, is acquired.

The innovative aspect consists in the fact that the measure
that is used to define the conditional upper probability de-
pends on the complexity of the conditioning event, given in
terms of Hausdorff dimension of the set B.

Therefore the events with a zero-value a priori probabil-
ity determine the change of the measure of uncertainty that
represents the level of knowledge of the subject.

Let (Ω, d) be a metric space and let B be partition of Ω.
Let δ > 0 and let s be a non-negative number. The di-

ameter of a non empty set U of Ω is defined as |U | =
sup {d(x, y) : x, y ∈ U} and if a subset A of Ω is such that
A ⊆ ⋃

i Ui and 0 < |Ui| ≤ δ for each i, the class {Ui} is
called a δ-cover of A.

The Hausdorff s-dimensional outer measure of A, de-
noted by hs(A), is defined on ℘(Ω), the class of all subsets
of Ω, as

hs(A) = limδ→0 inf
∑+∞

i=1 |Ui|s .

where the infimum is over all δ-covers {Ui}.
A subset A of Ω is called measurable with respect to the

outer measure hs if it decomposes every subset of Ω addi-
tively, that is if hs(E) = hs(A∩E)+hs(E−A) for all sets
E ⊆ Ω.

Hausdorff s-dimensional outer measures are submodular,
continuous from below and their restriction on the Borel σ-
field is countably additive.

The Hausdorff dimension of a set A, dimH(A), is defined
as the unique value, such that

hs(A) = +∞ if 0 ≤ s < dimH(A),
hs(A) = 0 if dimH(A) < s < +∞.

For every B ∈ B denote by s the Hausdorff dimension of
B and let hs be the Hausdorff s-dimensional Hausdorff outer

measure associated to the coherent upper conditional previ-
sion. For every bounded random variable X a coherent up-
per conditional prevision P (X|B) is defined by the Choquet
integral with respect to its associated Hausdorff outer mea-
sure if the conditioning event has positive and finite Haus-
dorff outer measure in its Hausdorff dimension. Otherwise
if the conditioning event has Hausdorff outer measure in its
Hausdorff dimension equal to zero or infinity it is defined by
a 0-1 valued finitely, but not countably, additive probability.
Theorem 1 Let (Ω, d) be a metric space and let B be a par-
tition of Ω. For every B ∈ B denote by s the Hausdorff di-
mension of the conditioning event B and by hs the Haus-
dorff s-dimensional outer measure. Let mB be a 0-1 valued
finitely additive, but not countably additive, probability on
℘(B). Thus, for each B ∈ B, the function defined on ℘(B)
by

P (A|B) =

{
hs(A∩B)
hs(B) if 0 < hs(B) < +∞
mB if hs(B) ∈ {0,+∞}

is a coherent upper conditional probability.
If B ∈ B is a set with positive and finite Hausdorff outer

measure in its Hausdorff dimension s the fuzzy measure μ∗
B

defined for every A ∈ ℘(B) by μ∗
B(A) = hs(AB)

hs(B) is a co-
herent upper conditional probability, which is submodular,
continuous from below and such that its restriction to the σ-
field of all μ∗

B measurable sets is a Borel regular countably
additive probability.

The coherent upper unconditional probability P = μ∗
Ω

defined on ℘(Ω) is obtained for B equal to Ω.
Denoted by hs the Hausdorff inner measure of order s,

which is the dual of the Hausdorff outer measures of order s
hs, we have that the conjugate lower conditional probability
μ∗
B of μ∗

B is
μ∗
B(B) = μ∗

B(Ω)− μ∗
B(B

c) = 1− 0 = 1 = μ∗
B(B)

and since
μ∗
B(Ω)− μ∗

B(B
c) = hs(Ω∩B)

hs(B) − hs(Bc∩B)
hs(B) = hs(B)

hs(B)

so that hs(B)
hs(B) = 1 and every B is μ∗

B-measurable, i.e.
hs(B) = hs(B).

Moreover
μ∗
B(A) = μ∗

B(Ω) − μ∗
B(A

c) = hs(Ω∩B)
hs(B) − hs(Ac∩B)

hs(B) =
hs(A∩B)
hs(B) .
In the following theorem the coherent upper conditional

probability defined in Theorem 1 is extended to the class
of all bounded random variables and when the conditioning
event B has positive and finite Hausdorff outer measure in its
Hausdorff dimension the coherent upper prevision id defined
by the Choquet integral (Choquet 1953).
Theorem 2 Let (Ω, d) be a metric space and let B be a par-
tition of Ω. For every B ∈ B denote by s the Hausdorff di-
mension of the conditioning event B and by hs the Haus-
dorff s-dimensional outer measure. Let mB be a 0-1 valued
finitely additive, but not countably additive, probability on
℘(B). Then for each B ∈ B the functional P (X|B) defined
on L(B) by
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P (X|B) =

{
1

hs(B)

∫
B
Xdhs if 0 < hs(B) < +∞

mB if hs(B) ∈ {0,+∞}
is a coherent upper conditional prevision.

When the conditioning event B has Hausdorff outer mea-
sure in its Hausdorff dimension equal to zero or infinity,
an additive conditional probability is coherent if and only
if it takes only 0 − 1 values. Because linear previsions on
L(B) are uniquely determined by their restrictions to events,
the class of linear previsions on L(B) whose restrictions to
events take only the values 0 and 1 can be identified with
the class of 0 − 1 valued additive probability defined on all
subsets of B (Walley 1991). In Theorem 1 and Theorem 2 a
different mB is chosen for each B.

If the conditioning event B has positive and finite Haus-
dorff outer measure in its Hausdorff dimension the func-
tional P (X|B) is proven to be monotone, comonotonically
additive, submodular and continuous from below.

Preference ordering and indifference between

random variables represented by coherent

lower and upper conditional previsions

Non-linear functional are used to represent preference order-
ings that cannot be represented by a linear functional.
Definition 2 A preference ordering 	 on the class L(B) of
random variables defined on B is represented by a linear
functional Γ if and and only if

Xi|B 	 Xj |B ⇔ Γ(Xi|B) > Γ(Xj |B)
and

Xi|B ≈ Xj |B ⇔ Γ(Xi|B) = Γ(Xj |B)

Example 1 Let Ω = N and let B = {B1, B2} be the
partition of Ω where B1 = {p ∈ N : p = 2n;n ∈ N} and
B2 = {d ∈ N : d = 2n− 1;n ∈ N}. Let μ be a probability
measure defined on the field generated by B. Let consider the
class K = {X1, X2, X3} of bounded B-measurable random
variables defined on Ω by

random variables B1 B2

X1 0.3 0.3
X2 0.7 0.0
X3 0.0 0.7

The preference ordering X1 	 X2 and X2 ≈ X3 can-
not be represented by the linear functional (weighted sum)
Γ(X) =

∑2
i=1 X(Bi)μ(Bi) since there exists no probabil-

ity measure μ such that the following system has solution:
{

X1 	 X2

X2 ≈ X3
⇔

⇔
{

0.3μ(B1) + 0.3μ(B2) > 0.7μ(B1) + 0.0μ(B2)
0.7μ(B1) + 0.0μ(B2) = 0.0μ(B1) + 0.7μ(B2).

Let P (X|B) a coherent upper conditional prevision and
let P (X|B) its conjugate lower conditional prevision.

A partial strict order, which is an antisymmetric and tran-
sitive binary relation between random variables, can be rep-
resented by the lower conditional prevision P (X|B).

Definition 3 We say that X is preferable to Y given B with
respect to P , i.e. X 	∗ Y in B if and only if

P ((X − Y )|B) > 0

In particular we show that the binary relation 	∗ satisfies
the antisymmetric property, i.e.

X 	∗ Y ⇐⇒ P ((X − Y )|B) > 0 =⇒
P ((Y −X|B) ≤ 0 ⇐⇒ Y not 	∗ X.

In fact

0 < P ((X − Y )|B) < P ((X − Y )|B) =⇒
P ((X − Y )|B) = −P ((Y −X)|B) > 0

so that P ((Y −X)|B) < 0 that is Y not 	∗ X .
Two random variables which have previsions equal to

zero cannot be compared by the ordering 	∗.
A binary relation ∝ can be defined on L(B) with respect

to P but it cannot represent a strict preference ordering be-
cause it does not satisfied the antisymmetric property.

Definition 4 We say that X ∝ Y given B if and only if
P ((X − Y )|B) > 0.

Example 2 Let X,Y ∈ L(B) such that P ((X−Y )|B) > 0
and P ((X − Y )|B) < 0; then
P ((X − Y )|B) > 0 does not imply P ((Y −X)|B) < 0

since
P ((Y − X)|B) < 0 ⇐⇒ −P ((X − Y )|B) < 0 ⇐⇒

P ((X − Y )|B) > 0

Two complete equivalence relations, which are complete
reflexive, symmetric and transitive binary relations on L(B)
can be represented by the coherent upper conditional previ-
sion P (X|B) .

Definition 5 Two random variables X and Y ∈ L(B)
are equivalent given B with respect to P if and only if
P (X|B) = P (Y |B).

Definition 6 We say that X and Y are indifferent given B
with respect to P , i.e. X ≈ Y in B if and only if

P ((X − Y )|B) = P ((Y −X)|B) = 0.

Remark 1 If the coherent conditional prevision P (·|B) is
linear then P ((X − Y )|B) = P ((Y − X)|B) = 0 ⇐⇒
P (X|B) = P (Y |B)

and two random variables X and Y are indifferent given
B if and only if they are equivalent given B.

Theorem 3 Let X,Y ∈ L(B) be two random variables,
which are indifferent given B with respect to P then they are
indifferent with respect to the conjugate lower conditional
prevision P , that is P ((X −Y )|B) = P ((Y −X)|B) = 0.

Proof. Since X,Y ∈ L(B) are indifferent given B we have

−P ((Y −X)|B) = P ((X − Y )|B) = 0
−P ((X − Y )|B) = P ((Y −X)|B) = 0,

so that P ((X − Y )|B) = P ((Y −X)|B) = 0.�
Theorem 4 Let X,Y ∈ L(B) be two random variables,
such that X 	∗ Y given B with respect to P (·|B) then X
and Y are not indifferent given B with respect to P (·|B).
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Proof. If X 	∗ Y given B with respect to P (·|B) then
0 < P ((X − Y )|B) ≤ P ((X − Y )|B) so P ((X −

Y )|B) �= 0 and X and to Y are not indifferent given B
with respect to P (·|B) according to Definition 4. �

In the next example it is shown that the lower vacuous
conditional prevision does not represent the preference or-
dering X1 	∗ X2 and the upper vacuous conditional pre-
vision does not represent the indifference between X2 and
X3

Example 3 Let B and K = {X1, X2, X3} as in Example
1. The preference ordering X1 	 X2 and X2 ≈ X3 cannot
be represented by the lower vacuous conditional prevision
defined by P (X|Ω) = inf {X(ω) : ω ∈ Ω} since

P ((X1 −X2)|Ω) = −0.4 and
P ((X2 −X3)|Ω) = P (X3 −X4|Ω) = 0

and is is not represented by the upper vacuous conditional
prevision P (X|Ω) = sup {X(ω) : ω ∈ Ω} because

P ((X1 −X2)|Ω) = 0 and
P ((X2 −X3)|Ω) = P ((X3 −X2)|Ω) = 0.7.

Let P (X|B) the coherent upper conditional prevision de-
fined in Theorem 2 and let P (X|B) its conjugate lower con-
ditional prevision.

Example 4 Let (Ω, d) and be B as in Example 1 and let
(Ω, d) be a metric space. So dimH(Ω) = 0 and h0 =
(Ω) = +∞, dimH(B1) = dimH(B2) = 0 and h0(B1) =
h0(B2) = +∞.

By Theorem 2 we have the coherent lower and upper con-
ditional prevision are equal to a 0-1 valued finitely additive,
but not countably, probability

P ((X1 −X2)|Ω) = 1

P ((X2 −X3|Ω)) = P (X2 −X3|Ω) = 0.

and the ordering X1 	 X1 and X2 ≈ X2 can be repre-
sented by the given coherent conditional prevision.

The model and the brain’s activity

In the section the given model is investigated to describe the
human decision-making that is influenced by conscious and
unconscious aspects.

For Matte Blanco (Matte Blanco 1975), the conscious and
unconscious are two different modes of being, asymmetric
and in becoming the first, symmetric and static the second.
The author produced a description of the structure and func-
tioning of the unconscious with the purpose to account for
the non-logical aspects of human thought. He drew a dis-
tinction between the logical conscious thought, structured on
the categories of time and space and ruled by the Aristotle’s
principle of non-contradiction, which he defined “asymmet-
rical thought”, and the unconscious thought, which he de-
fined “symmetrical thought”, based upon the principle of
symmetry and the principle of generalization. According to
the author, both types of thoughts combine in the different
experiences of human thinking thus yielding to a bi-logic
asset. Emotions are the way to reach the unconscious, they
function the same way as the unconscious and are the means
to decode it.

Coherent lower conditional prevision could be used to
represent the partial strict preference order which is the re-
sult of the conscious thought and coherent upper condi-
tional prevision could represent the equivalence assigned by
the unconscious thought. According to this interpretation by
Theorem 3 we could conclude that if two random variables
are indifferent with respect to the unconscious thought then
one of them cannot be preferable to the other with respect to
the conscious thought; by Theorem 4 we could obtain that if
a random variable is preferable to another one with respect
to the conscious mind then they cannot be indifferent with
respect to the unconscious thought.

Pathological situations can be obtained when two ran-
dom variables are indifferent with respect to the unconscious
thought but one of them if preferable to the other one with
respect to the conscious thought. They can be captured by
the model because in this case the lower conditional previ-
sion should be greater than the upper prevision.

The updating model based on Hausdorff outer and inner
measure can represent respectively the awareness process of
the unconscious and conscious thought which depend on un-
expected events in all cases.
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