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Abstract

The principle of maximum entropy (MaxEnt) constitutes a
powerful formalism for nonmonotonic reasoning based on
probabilistic conditionals. Conditionals are defeasible rules
which allow one to express that certain subclasses of some
broader concept behave exceptional. In the (common) proba-
bilistic semantics of conditional statements, these exceptions
are formalized only implicitly: The conditional (B|A)[p] ex-
presses that if A holds, then B is typically true, namely with
probability p, but without explicitly talking about the subclass
of A for which B does not hold. There is no possibility to ex-
press within the conditional that a subclass C of A is excluded
from the inference to B because one is unaware of the prob-
ability of B given C. In this paper, we apply the concept of
default negation to probabilistic MaxEnt reasoning in order
to formalize this kind of unawareness and propose a context-
based inference formalism. We exemplify the usefulness of
this inference relation, and show that it satisfies basic formal
properties of probabilistic reasoning.

Introduction
Probabilistic reasoning (Halpern 2003; Pearl 1988) com-
bines probability theory with classical logic in order to han-
dle uncertainty in knowledge. It is often based on rules of the
form “if A holds, then B follows with probability p” which
are called conditionals and are formally written as (B|A)[p].
Conditionals are interpreted by probability distributions that
assign each possible state of the real world a degree of belief.
Based on this methodology, it is possible to express and rea-
son about subclasses of individuals which behave differently
to some broader concept, like penguins that form an excep-
tional subclass of non-flying birds. In order to model these
exceptions by means of probability distributions, it is how-
ever necessary to state that they behave contrarily regarding
the considered property. Therefore, this approach lacks the
opportunity to treat a subclass as exceptional because one is
unsure about its compliance with the property.

In this paper, we propose a novel knowledge represen-
tation language PCLnot in which it is possible to exclude
certain subclasses from a conditional statement. Formally,
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this is done by enriching conditionals with default negated
propositions within their premises that act as disqualifiers
(cf. (Clark 1977; Gelfond and Lifschitz 2000) for an intro-
duction to the concept of default negation, also known as
negation as failure). Such a conditional is blocked when a
disqualifier D holds in a concrete context and remains un-
considered when drawing inferences. We further apply the
principle of maximum entropy (Paris 2006) to our approach
in order to select a meaningful probabilistic model which
leads to a novel inference relation |∼ME that is convenient
to handle unawareness.

PCLnot is a natural extension of qualitative conditionals
with default negation (Wilhelm et al. 2017) to the proba-
bilistic setting. Although conditionals, default negation, and
probabilities each are well-known concepts in nonmono-
tonic reasoning, to our knowledge, there is no work pub-
lished yet which combines all three of them. We illustrate the
usefulness of probabilistic conditionals with default nega-
tion for context-based reasoning with many examples that
prove their flexibility when dealing with implicit and explicit
exceptions at the same time. We further prove that drawing
inferences from such conditionals by using the inference re-
lation |∼ME satisfies a number of desired inference proper-
ties of probabilistic reasoning.

The rest of the paper is organized as follows. First, we
define the logical foundations and recall some basics about
conditionals, negation as failure, as well as probabilities with
the focus on how these concepts handle exceptions. After-
wards, we introduce the probabilistic conditional language
with default negation PCLnot(Σ) and define the nonmono-
tonic inference relation |∼ME between knowledge bases in
PCLnot(Σ) and query conditionals. We discuss the proper-
ties of |∼ME by means of examples and by a formal analysis
and conclude with an outlook.

Preliminaries
Let L(Σ) be a propositional language defined over a finite
set of atoms Σ. Propositions in L(Σ) are defined by using
the connectives ¬A (negation), A ∧ B (conjunction), and
A ∨B (disjunction) where A and B are propositions and
are interpreted by mappings I : L(Σ) → {0, 1} as usual.
The set of all such interpretations is denoted by I(Σ). An

The Thirty-Third  International  
FLAIRS Conference (FLAIRS-33) 

593



interpretation I is a model of a proposition A iff I(A) = 1.
A proposition A entails another proposition B, written
A |= B, iff every model of A is a model of B. The en-
tailment relation is extended to sets A,B of propositions:
A |= B iff A |= B for all A ∈ A, B ∈ B. If A and B
have the same models, they are logically equivalent, A ≡ B
in symbol. In order to shorten mathematical expressions, we
abbreviate ¬A with A, A∧B with AB, A∨B with A → B,
and A ∨A with �.

As propositions are incontrovertibly true or false, they
are well-suited for representing factual knowledge. When
uncertainty comes into play, however, they fail. There-
fore, many efforts were and are made to extend proposi-
tional logic with a view to handle uncertainty of any kind.
Major concepts in this research direction are condition-
als (Adams 1965), negation as failure (Clark 1977; Gel-
fond and Lifschitz 2000), and probabilities (Halpern 2003;
Pearl 1988) which we will combine within a unified lan-
guage in this paper.

Conditionals. A conditional (B|A) with A,B ∈ L(Σ) is
a formal representation of the statement “If A holds, then
typically B follows.” In other words, in the presence of A
the proposition B is more plausible than its negation B.
For a formal semantics of conditionals, a (partial) ordering
on the set of interpretations is needed so that it is possible
to compare interpretations, and hence propositions, with re-
spect to their plausibility. In this context, interpretations are
also called possible worlds, each describing a possible and
more or less plausible way the real world might be. In this
paper, possible worlds are represented as complete conjunc-
tions of literals, i.e. atoms or negated atoms. The set of all
possible worlds is denoted by Ω(Σ).

Conditionals provide the opportunity to formalize excep-
tions implicitly: “If A holds, then B typically follows” im-
plies that there might be an exceptional case in which B
does not follow from A. For example, birds are typically
able to fly, formalizable as (flies|bird), unless they have a
broken wing. The reason for the exception, here the broken
wing, however, cannot be formalized within the same condi-
tional but requires an additional one. The example could be
extended by the conditional (¬flies|bird ∧ brokenWing), for
instance.

With conditionals, those exceptions can be formalized
that have a property which is in conflict with the superclass
(here, ¬flies against flies). However, sometimes it is desired
to express unawareness about the properties of a certain sub-
class. For instance, this could be the case if one discovers a
new species of birds whose ability to fly is unknown. In this
case, one might want to waive one’s knowledge about the
flight behavior of birds in order to be unbiased. Hence, there
is the need to disregard a conditional in some cases which is
not possible when taking account of the common semantics
of conditionals.

Negation as Failure. In contrast to conditionals, the con-
cept of negation as failure, also known as default negation,
can be used to formalize exceptions explicitly. In logic pro-
gramming, the rule (B ← A,not C) with A,B,C ∈ L(Σ)
states that “If A holds and C cannot be proven, then

B follows.” Whether such a rule applies or not is tested
against a set of interpretations, e.g. the models of a set
of factual knowledge. Given such a set of interpretations
I′ ⊆ I(Σ), B can be inferred from (A,not C) iff A is true
in every interpretation in I′ and there is at least one inter-
pretation in I′ in which C is not true, i.e., a proof of C fails.
Note that this concept of negation differs from classical, also
called strong negation: (B ← A,¬C) applies only if C is
false in every interpretation in I′. Hence, not C does not
imply ¬C but the other way around ¬C implies not C.

To illustrate the usage of default negation, we take up
our example. The rule (flies ← bird,not newSpecies) ex-
presses that birds are able to fly unless they are of a new
species. In the latter case, the rule is blocked and does not
state anything. The drawback of default negated rules is that
all exceptions have to be noted down explicitly. This makes
programs that consist of rules of the above kind inflexible
against changes. For example, the fact that penguins form
another exceptional subclass of birds with respect to their
flight behavior cannot be formalized in another rule but the
existing rule has to be adjusted.

There have already been efforts to combine conditionals
and default negation in order to benefit from both ways of
handling exceptions. A semantics for conditionals with de-
fault negation can be found in (Wilhelm et al. 2017).

Probabilities. While conditionals and default negation are
qualitative concepts, probabilities add quantitative uncer-
tainty to propositions. A probabilistic proposition A[p] with
A ∈ L(Σ) and p ∈ [0, 1] states that “A holds with
probability p” and is interpreted by probability distribu-
tions over possible worlds. Semantically, such a probabil-
ity distribution P : Ω(Σ) → [0, 1] represents a reasoner’s
belief state and is a model of A[p] iff P(A) = p where
P(A) =

∑
ω|=A P(ω). Probabilistic propositions are im-

plicit formalizations of exceptions: If A[p] with p < 1 holds,
then there is at least one possible world with positive prob-
ability in which A is true. Hence, the reasoner with belief
A[p], p < 1, does not completely deny A either. The prob-
abilistic semantics of propositions can be easily extended to
conditionals: A probability distribution P : Ω(Σ) → [0, 1]
is a model of a probabilistic conditional (B|A)[p] with
A,B ∈ L(Σ) and p ∈ [0, 1] iff P(A) > 0 and P(B|A) = p.
It holds that A[p] = (A|�)[p].

There have also been some attempts on combining answer
set programming, which builds on rules with default nega-
tion, and probabilities (Baral, Gelfond, and Rushton 2009;
Cozman 2019). However, in these approaches the probabili-
ties are not applied to rules but to atoms. Hence, the proba-
bilities are not used to quantify rules with exceptions but to
include random events.

Principle of Maximum Entropy. Due to the vast num-
ber of probability distributions over Ω(Σ), reasoning over
all models of a set of probabilistic conditionals is often very
uninformative. For example, let a, b, c ∈ Σ, and consider
the set of conditionals Rex = {(c|a)[0.7], (c|b)[0.9]}, i.e., a
and b are evidence for c. Then, nothing can be said about
the likelihood of c in the presence of a and b. More pre-
cisely, for every p ∈ [0, 1] there is a model of Rex in which

594



(c|ab)[p] is true as well. At the same time, it is reasonable to
assume that the probability p of (c|ab)[p] is at least 0.7 (un-
less a and b weaken each other their strength of evidence for
c, which is possible but certainly not most obvious). Hence,
for reasoning tasks, it is useful to select a single model of
Rex. Of course, this model should reflect a reasoner’s belief
state appropriately when the set of conditionals constitutes
the reasoner’s beliefs. From a commonsense point of view,
the maximum entropy distribution (MaxEnt distribution) fits
best to the model selection task (Paris 2006). It is defined by

ME(R) = arg max
P|=R

−
∑

ω∈Ω(Σ)

P(ω) · logP(ω),

where the convention 0 · log 0 = 0 applies, and is the unique
model of R which adds as few information as possible. In
order to compute ME(R), one has to solve a nonlinear opti-
mization problem. We recommend (Boyd and Vandenberghe
2014) for the theoretical background of MaxEnt calculations
and the software tool SPIRIT (Rödder and Meyer 1996) for
practical applications. Note that ME(R) always exists if R
is consistent, i.e., there is a probability distribution that mod-
els all conditionals in R.

Probabilistic Conditionals
with Default Negation

We now define the probabilistic conditional language with
default negation PCLnot(Σ) which combines the benefits
of conditionals, negation as failure as well as probabilities.
For this, let A,B ∈ L(Σ) be propositions, let D ⊆ L(Σ)
be a set of propositions, and let p ∈ [0, 1]. A default
negated probabilistic conditional is an expression of the
form (B|A,not D)[p] with the meaning “If A holds, then
B follows with probability p unless any proposition D ∈ D
is provably true.” In the rest of the paper, we will call these
expressions conditionals for short. Elements in D are called
disqualifiers as their validity blocks the whole conditional.
The language PCLnot(Σ) consists of all conditionals that
can be built over Σ.

A conditional (B|A,not D)[p] without default negated
part, i.e. with D = ∅, is a classical probabilistic conditional
and simply written as (B|A)[p]. If, in addition, p = 1, then
the conditional becomes factual as it forces every possible
world in which AB is true to have zero probability (condi-
tionals of the form (B|A)[0] are equivalent to (B|A)[1] and,
thus, also factual but redundant). In order to have a clear sep-
aration between factual and uncertain knowledge, we write
factual conditionals (B|A)[1] in the form of material impli-
cations, A → B, or more general in form of propositions
P ≡ A → B. Hence, a set of propositions without anno-
tated probabilities F defines a subsets of possible worlds

ΩF (Σ) = {ω ∈ Ω(Σ) | ∀F ∈ F : ω |= F}
so that all remaining possible worlds in Ω(Σ) \ΩF (Σ) have
zero probability.

A knowledge base is a tuple R = (FR,BR) consisting
of a finite set of propositions FR which represent factual
knowledge and a finite set of conditionals BR with a proba-
bility p ∈ (0, 1) expressing the reasoner’s beliefs.

Example 1. Consider a reasoner who formalizes her knowl-
edge about birds. She knows that antarctic birds are birds
and that birds are typically able to fly. However, she is un-
sure about the flight capacity of antarctic birds because she
knows that there are living different species in the antarc-
tic in contrast to the rest of the world. Therefore, she wants
to exclude antarctic birds from her beliefs about the flight
capacity of birds. Her formalized knowledge could look like

Rbrd = ({A → B}, {(F |B,not {A})[0.95]})
with the abbreviations A = antarctic bird, B = bird, and
F = able to fly.

The formal semantics of probabilistic conditionals with
default negation, and more general of knowledge bases, is
based on probability distributions that are defined for reducts
of conditionals. The idea is to evaluate conditionals in the
light of a concrete context which is formalized by a proposi-
tion C. The reduct represents the reaonser’s beliefs that hold
in this context. If any disqualifier D ∈ D of a conditional
holds in the context C, i.e C |= D, the conditional is blocked
and therefore ignored when determining a probability distri-
bution as a model. If no disqualifier holds in the context,
then the conditional reduced by its default negated part is
considered. When considering a whole knowledge base, the
context is unified with the factual knowledge for the evalua-
tion of the default negated parts of the conditionals.

Definition 1. Let R = (FR,BR) be a knowledge base, and
let C be a proposition. The reduct RC = (FR,BC

R) is the
knowledge base that consists of the same set of facts FR as
in R and the set of beliefs

BC
R = {(B|A) | (B|A,not D) ∈ R and

∀D ∈ D : FR ∪ {C} �|= D}.
Hence, reducts are knowledge bases that are free of de-

fault negation and can be interpreted in the usual way.

Definition 2. Let R = (FR,BR) be a knowledge base, and
let C ∈ L(Σ). A probability distribution P : Ω(Σ) → [0, 1]
is a model of R in the context C iff P(ω) = 0 for
ω ∈ Ω(Σ) \ ΩF (Σ) and P(B|A) = p for (B|A)[p] ∈ BC

R.

We illustrate this concept of context-dependent models
based on Example 1.

Example 2. The knowledge base Rbrd from Example 1 has
two different reducts: RC

brd = ({A → B}, ∅) for any context
C with C |= A and RC′

brd = ({A → B}, {(F |B)[0.95]}) for
any context C ′ with C ′ �|= A. Each probability distribution
P on Ω(Σ) which satisfies P(AB) = 0 is a model of RC

brd.
Models P ′ of RC′

brd have to satisfy P ′(F |B) = 0.95 in addi-
tion. For example, in the context B, i.e., the individual under
consideration is a bird, each model states that the individual
is able to fly with probability 0.95. If the context is A, i.e., the
individual is an antarctic bird, there is no constraint on the
probability with which the individual is able to fly, instead.

In the next section, we discuss how inferences can be
drawn from knowledge bases in PCLnot.
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Context-Based Inferences
at Maximum Entropy

Let R be a knowledge base. Once a context C as well as a
model P of RC is fixed, one obtains the inference relation

R, C |∼P (B|A,not D)[p] iff P(B|A) = p

∨ ∃D ∈ D : FR ∪ {C} |= D.

Hence, a conditional is inferred from R if it is blocked by a
disqualifier or the conditional reduced by its default negated
part holds. In order to draw meaningful inferences from R,
it is necessary to select a reasonable context and model. For
the context, we suggest a query-dependent choice: If one
asks for the probability p of the conditional (B|A)[p], one
is interested in the likelihood of observing B in the pres-
ence of A. That is, one assumes that A is true which should
conform with the context. The model, instead, should reflect
the inference behavior of the reasoner. In general, it varies
from reasoner to reasoner and could also vary from context
to context. However, if nothing is known about the infer-
ence behavior of a particular reasoner or one is interested in
a commonsense point of view, the MaxEnt distribution is a
good choice for the model as mentioned in the preliminaries.
This leads to the nonmonotonic inference relation

R |∼ME (B|A,not D)[p] iff ME(RA)(B|A) = p

∨ ∃D ∈ D : FR ∪ {A} |= D.

As this inference relation particularly holds for probabilities
p ∈ {0, 1}, it follows that R |∼ME A iff ME(R�)(A) = 1
for propositions A, i.e., for factual knowledge. Conse-
quently, if FR |= A classical logically, then R |∼ME A.
One can show that R |∼ME (B|A,not D)[p] holds, too, if
(B|A,not D)[p] ∈ BR, i.e. |∼ME satisfies Direct Inference
(see the proof of Proposition 1).

Before we analyze the inference relation |∼ME in detail,
it remains to discuss for which knowledge bases it is well-
defined, i.e., for which knowledge bases R the MaxEnt dis-
tributions ME(RC) for all reducts RC of R exist. Fortu-
nately, this is easy to answer. Obviously, it holds that BC

R
is a subset of B�

R for any context C since classical entail-
ment is monotonous (∀D ∈ D : FR ∪ {C} �|= D implies
∀D ∈ D : FR ∪ {�} �|= D). Hence, if the MaxEnt distribu-
tion for R� exists, then it also exists for all other reducts of
R. Since ME(R�) exists iff R� is consistent, one only has
to check whether R� is consistent or not. Consequently, we
may call R consistent iff R� is consistent.

If the knowledge base R does not mention default nega-
tions at all, for any context C, the reduct RC equals the orig-
inal knowledge base R and the inference relation |∼ME is
the standard MaxEnt inference relation for probabilistic con-
ditional knowledge (cf., e.g., (Kern-Isberner 2001)). In the
following we investigate the properties of the inference re-
lation |∼ME in the case where default negations are present,
instead, both by means of examples and based on formal in-
ference properties.
Example 3. We recall that the knowledge base Rbrd from
Example 1 has the two reducts RC

brd = ({A → B}, ∅) for
C with C |= A and RC′

brd = ({A → B}, {(F |B)[0.95]})

Ri ME(Ri)(F |B) ME(Ri)(F |A)

Rbrd 0.95 0.5
R1 0.95 0.95
R2 0.670 0.5
R3 0.95 0.5

R3,b 0.95 0.5
Rbrd,b 0.95 0.366

Table 1: Comparison of the example knowledge bases with
respect to the inferences about the flight behavior of (antarc-
tic) birds that can be drawn from the knowledge bases.

for C ′ with C ′ �|= A. If one is interested in the likelihood
that an arbitrary bird is able to fly, one would assume that
the probability is 0.95. And, indeed, Rbrd |∼ME (F |B)[p] iff
p = 0.95 as one has to infer (F |B)[p] from the reduct RC′

brd

because {A → B,B} �|= A and RC′
brd explicitly states that

birds are able to fly with probability 0.95.
On the contrary, the likelihood that an antarctic bird is

able to fly should most probably be 0.5, as the reasoner with
knowledge base Rbrd has excluded antarctic birds from the
conditional that states that birds are typically able to fly. And
again, the supposed inference Rbrd |∼ME (F |A)[0.5] holds:
{A → B,A} |= A and, thus, the relevant reduct is RC

brd this
time. Further, ME(RC

brd)(F |A) = 0.5 holds, as the MaxEnt
distribution for a reduct with empty set of beliefs is the uni-
form distribution on ΩFRbrd

(Σ).

As a preliminary discussion of the differences between
explicit and implicit formalizations of exceptions, we now
investigate whether the same inferences as from Rbrd can be
drawn from knowledge bases without default negation. See
Table 1 for a brief overview.
Example 4. We consider the knowledge base

R1 = ({A → B}, {(F |B)[0.95]})
which is the same knowledge base as Rbrd aside from the
fact that the reasoner has ignored her undecidedness con-
cerning her valuation of the flight capability of antarctic
birds. Of course, one still infers (F |B)[0.95] from R1 with
respect to any model of R1 and, hence, also with respect
to the MaxEnt distribution. However, in contrast to Rbrd,
antarctic birds inherit the flight capability from birds, and
ME(R1)(F |A) = 0.95 holds, too, while for Rbrd the re-
spective probability is 0.5.
Example 5. Another way of dealing with the fact that one
does not believe that antarctic birds fly with the same proba-
bility than birds is to limit the scope of the conditional about
the flight behavior in Rbrd to birds that are not from the
antarctic at all. One obtains

R2 = ({A → B}, {(F |BA)[0.95]}).
Since antarctic birds are excluded from the conditional, one
obtains ME(R2)(F |B) = 0.5 as for Rbrd. However, the
likelihood that an arbitrary bird is able to fly decreases from
the intended probability 0.95 to ME(R2)(F |B) ≈ 0.670.
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Name of Property Property
Reflexivity R |∼ME A → A
Left Logical Equivalence R |∼ME (B|A,not D)[p] A ≡ C � R |∼ME (B|C,not D)[p]
Cut R |∼ME (B|AC,not D)[p], A |= C � R |∼ME (B|A,not D)[p]
Cautious Monotonicity R |∼ME (B|A,not D)[p], A |= C � R |∼ME (B|AC,not D)[p]
Right Weakening R |∼ME (B|A,not D)[p], R |∼ME B → C � R |∼ME (C|A,not D)[q] with q ≥ p
Or R |∼ME A → B, R |∼ME C → B � R |∼ME A ∨ C → B

Inclusion / Direct Inference (B|A,not D)[p] ∈ BR � R |∼ME (B|A,not D)[p]
Conditioning (B|A,not D)[p] ∈ BR, A ≡ C � R |∼ME (B|C,not D)[p]
Irrelevance R |∼ME (B|A,not D)[p],

no atom from R and (B|A,not D)[p] is in C � R |∼ME (B|AC,not D)[p]
Rational Monotonicity R |∼ME A → B, R �|∼ME A → C � R |∼ME AC → B
Inheritance of Logical Knowledge R |∼ME A → B, C |= A � R |∼ME C → B

Table 2: Inference properties that are satisfied by |∼ME . R is assumed to be a consistent knowledge base.

This is because there is no information about the flight ca-
pability of antarctic birds in R2 and the principle of max-
imum entropy tends to add missing information in a most
cautious way, i.e., unknown probabilities tend to 0.5, and
0.670 is some kind of mean of 0.5 (antarctic birds) and 0.95
(non-antarctic birds).
Example 6. The last and probably most adequate way of
imitating the conditional (F |B,not {A})[0.95] without de-
fault negation is to split the information about birds and
about antarctic birds into two separate conditionals:

R3 = ({A → B}, {(F |B)[0.95], (F |A)[0.5]}).
As both probabilities P(F |B) = 0.95 and P(F |A) = 0.5
are explicitly stated in the knowledge base R3, they can be
trivially inferred from R3 following the principle of maxi-
mum entropy, too. This strategy is in accordance with the
remark about handling explicit exceptions with conditionals
in the preliminaries.

The difference between Rbrd and R3 becomes visible if
additional knowledge comes into play that implicitly affects
the view on (antarctic) birds.
Example 7. Assume that a reasoner has acquired knowl-
edge about birds that goes beyond the knowledge stated in
Example 1. More precisely, she has studied the species of
penguins and now concludes that penguins are birds that
are not able to fly. Further, she believes that penguins are
typically antarctic birds and that penguins are quite rare.
Depending on how she deals with her beliefs about the flight
capability of birds and of antarctic birds (following the strat-
egy from Rbrd or R3), her knowledge could be formalized by

Rbrd,b = ({A → B,P → B,P → F},
{(P |B)[0.001], (A|P )[0.8], (F |B,not {A})[0.95]}) or

R3,b = ({A → B,P → B,P → F},
{(P |B)[0.001], (A|P )[0.8], (F |B)[0.95], (F |A)[0.5]}).

When asking for the probabilities of (F |B)[p] and (F |A)[q],
nothing changes if one takes the extended knowledge base
R3,b instead of R3 into account. As the queried proba-
bilities p and q are explicitly stated in R3,b, one obtains

ME(R3,b)(F |B) = 0.95 and ME(R3,b)(F |A) = 0.5. The
information about the flight behavior of penguins that par-
tially form a subclass of antarctic birds does not interfere
with the information about antarctic birds. In other words,
the probability of (F |A)[0.5] is strict and does not really
reflect the reasoner’s uncertainty about the flight behavior
of antarctic birds. In fact, it states that half of the antarctic
birds are able to fly and the other half is not.

In contrast to that, the view on antarctic birds based on
Rbrd,b is more flexible as it allows one to incorporate the
knowledge about the class of penguins into one’s opinion
about antarctic birds. One gets, ME(Rbrd,b)(F |B) = 0.95
and ME(Rbrd,b)(F |A) ≈ 0.366. Hence, the likelihood that
an antarctic bird is able to fly is lowered from 0.5 to 0.366
since penguins are typically antarctic birds that are not able
to fly.

To briefly summarize the benefit of probabilistic condi-
tionals with default negation, one can say that they allow one
to exclude subclasses from a conditional statement without
the need to give an explanation for the exclusion, while it
remains possible to make implicit statements about the ex-
ceptionality of the subclass.

We now investigate formal properties of |∼ME . The ratio-
nality postulates of System P proposed in (Kraus, Lehmann,
and Magidor 1990) are commonly regarded as quality cri-
teria for nonmonotonic inferences. In (Lukasiewicz 2005)
probabilistic versions of these postulates are formulated
which we adopt here in order to analyze |∼ME . To call
the postulates by name, they are Reflexivity, Left Logical
Equivalence, Cut, Cautious Monotonicity, Right Weaken-
ing, and Or. Their probabilistic versions that are consid-
ered here are specified in Table 2 and differ from those in
(Lukasiewicz 2005) in that we do not consider interval prob-
abilities. Further properties of inference relations that are
stated in (Lukasiewicz 2005) are Inclusion, Conditioning,
Irrelevance, Rational Monotonicity, and Inheritance of Log-
ical Knowledge that can also be found in Table 2.

Proposition 1. The inference relation |∼ME satisfies all in-
ference properties stated in Table 2, in particular the proba-
bilistic version of System P.
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Proof Sketch. First, one observes that the mentioned infer-
ence properties hold for MaxEnt reasoning without default
negation, i.e. if D = ∅. It immediately follows that Reflex-
ivity, Or, Rational Monotonicity, and Inheritance of Logical
Knowledge are satisfied. The remaining properties follow by
case analysis what we exemplarily discuss for the property
Conditioning. For this, note that A ≡ C implies RA = RC .
Hence, in plain words, reasoning remains in the same reduct
and either both (B|A,not D)[p] and (B|C,not D)[p] are
blocked or both are not. In the first case the property is triv-
ially satisfied and in the second case it is reduced to MaxEnt
reasoning without default negation. The proof of the other
properties is analogous as A |= C implies RA = RAC

and RA = RA is trivially true. With respect to Irrelevance,
RA = RAC holds due to the condition that no atom from R
and (B|A)[p] occurs in C.

A knowledge base is p-consistent (Finthammer 2016) iff
only factual knowledge leads to {0, 1}-probabilities, i.e.,
ME(RT )(ω) = 0 iff ω ∈ Ω(Σ) \ ΩF (Σ). For p-consis-
tent knowledge bases, |∼ME satisfies stronger versions of
Left Logical Equivalence, Cut, Cautious Monotonicity, and
Conditioning that are obtained by replacing A ≡ C by
R |∼ME AC ∨ AC and A |= C by R |∼ME A → C, re-
spectively. That is, AC ∨ AC and A ∨ C do not have to be
logically valid but it is sufficient that these propositions can
be inferred from the reasoner’s beliefs.

A further inference property that is stated in (Lukasiewicz
2005) is Inheritance of Probabilistic Knowledge:

R |∼ME (B|A,not D)[p], C → A

� R |∼ME (B|C,not D)[p].

However, compliance with this property is explicitly not de-
sired in nonmonotonic reasoning and not satisfied by |∼ME .
If Inheritance of Probabilistic Knowledge would hold, the
knowledge base ({P → B,P → F}, {(F |B)[0.95]}) stat-
ing that penguins are non-flying birds and birds typically do
fly with probability 0.95 would be inconsistent, for example.

To conclude, one can say that the inference relation |∼ME

satisfies a number of desired inference properties, albeit one
has to say that some of the inference properties could be
translated into the probabilistic setting in a more general
fashion. For example, Rational Monotonicity in the version
from (Lukasiewicz 2005) and in ours is trivially satisfied in
probabilistic frameworks. This leaves room for further for-
mal analysis of |∼ME .

Conclusion and Future Work
We combined the concepts of conditionals, negation as fail-
ure, and probabilities in order to define the language of prob-
abilistic conditionals with default negation PCLnot(Σ) that
has it advantages when it is necessary to handle both im-
plicit and explicit exceptions at the same time. We further
defined the context-based inference relation |∼ME follow-
ing the principle of maximum entropy with which it is pos-
sible to infer implicit knowledge from a knowledge base that
mentions facts and beliefs from PCLnot(Σ). We highlighted
the benefits of our approach by means of some illustrating

examples and proved that |∼ME satisfies a number of promi-
nent inference properties from nonmonotonic reasoning.

In future work, we want to test our approach on real data
and intensify the analysis of the differences between explicit
and implicit exceptions. A more detailed analysis of Exam-
ple 7 shows that the population sizes of classes and their ex-
ceptional subclasses play an important role in probabilistic
reasoning. Therefore, we also want to extend our approach
to probabilistic first order conditionals in order to incorpo-
rate domain sizes properly, e.g. in the context of the proba-
bilistic Description Logic ALCME (Baader et al. 2019).
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