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Abstract

Probability kinematics is a leading paradigm in probabilistic
belief change. It is based on the idea that conditional beliefs
should be independent from changes of their antecedents’
probabilities. In this paper, we propose a re-interpretation of
this paradigm for Spohn’s ranking functions which we call
Generalized Ranking Kinematics as a new principle for it-
erated belief revision of ranking functions by sets of condi-
tional beliefs. This general setting also covers iterated revi-
sion by propositional beliefs. We then present c-revisions as
belief change methodology that satisfies Generalized Rank-
ing Kinematics.

1 Introduction

In multi-agent systems, it is crucial for agents working to-
gether to process information from different contexts inde-
pendently. Each agent collects evidence from a different part
of the world, which leads to new information about the spe-
cific subcontexts. Jeffrey introduced in 1965 (Jeffrey 1965)
a probabilistic revision method called Jeffrey’s Rule which
is able to deal with information coming from contexts that
complement each other. Jeffrey’s Rule is a generalization
of Bayesian conditionalization. The key to revising prob-
abilistic beliefs with new evidence from different subcon-
texts is Probability Kinematics, which is an important is-
sue in probabilisitic belief revision in general and especially
for Jeffrey’s rule. Briefly it says that conditional probabil-
ities should not change if the probabilities of the condi-
tions change. Spohn (Spohn 2014) generalized the notion of
Jeffrey’s Rule to ordinal conditional functions (OCFs). He
introduces two interchangeable forms of conditionalization
based on evidence or new information, where the former one
leads to a strengthening of beliefs and the latter one displays
a quantified belief revision.

Shore and Johnson (Shore and Johnson 1980) introduced
Subset Independence as a crucial property of inductive in-
ference in a probabilistic framework. Subset Independence
is a generalization of Probability Kinematics using a set of
conditionals with antecedents implying exclusive and ex-
haustive cases. In this paper we present a property for revi-
sion by conditionals in the framework of ranking functions
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which we call Generalized Ranking Kinematics (GRK) that
can be seen as an analog to Subset Independence for qualita-
tive belief revision. This new property of Generalized Rank-
ing Kinematics that we introduce in this paper connects Jef-
frey’s Rule to the axioms of inductive inference introduced
by Shore and Johnson and can be seen as an extension of
Spohn’s work on transferring Jeffrey’s rule to the framework
of ranking functions. Our main contributions are as follows:

• We transfer the notion of Subset Independence to the
framework of ranking functions by introducing a strong
and a weak version of Generalized Ranking Kinematics
applying to revision by sets of conditionals and allowing
for reducing revisions to local contexts.

• We present an algorithm to compute the finest splitting of
contexts for an arbitrary finite set of conditionals.

• We prove that c-revisions satisfy Generalized Ranking
Kinematics.

The rest of the paper is organized as follows. In Section
2 we present relevant formal preliminaries. Section 3 dis-
cusses aspects of probabilistic belief revision and related
work. Generalized Ranking Kinematics is introduced in Sec-
tion 4 in the framework of ranking functions. In Section 5,
we present c-revisions as a concrete example of a revision
method which fulfills Generalized Ranking Kinematics. Fi-
nally, Section 6 contains conclusions.

2 Formal Preliminaries

Let L be a finitely generated propositional language over
an alphabet Σ with atoms a, b, c, . . . and with formulas
A,B,C, . . .. For conciseness of notation, we will omit the
logical and-connector, writing AB instead of A ∧ B, and
overlining formulas will indicate negation, i.e. A means ¬A.
We call formulas Ai (i = 1, . . . , n) exclusive iff AiAj ≡ ⊥
for i �= j, and exhaustive iff A1 ∨ . . . ∨ An ≡ �. The set
of all propositional interpretations over Σ is denoted by ΩΣ.
As the signature will be fixed throughout the paper, we will
usually omit the subscript and simply write Ω. ω � A means
that the propositional formula A ∈ L holds in the possible
world ω ∈ Ω; then ω is called a model of A, and the set
of all models of A is denoted by Mod(A). For propositions
A,B ∈ L, A � B holds iff Mod(A) ⊆ Mod(B), as usual.
By slight abuse of notation, we will use ω both for the model
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and the corresponding conjunction of all positive or negated
atoms. This will allow us to ease notation a lot. Since ω � A
means the same for both readings of ω, no confusion will
arise.

L is extended to a conditional language (L|L) by intro-
ducing a conditional operator |: (L|L) = {(B|A)|A,B ∈
L}. (L|L) is a flat conditional language, no nesting of
conditionals is allowed. Conditionals are usually consid-
ered within richer semantic structures such as epistemic
states. We briefly describe a well-known representation of
epistemic states: Ordinal Conditional Functions (OCF, also
called ranking functions) κ : Ω → N∪ {∞} with κ−1(0) �=
∅ express degrees of plausibility and were firstly introduced
by Spohn (Spohn 1988). We have κ(A) := min{κ(ω)|ω �
A}. Hence, due to κ−1(0) �= ∅, at least one of κ(A), κ(A)
must be 0. A proposition A is believed if κ(A) > 0 and
conditionals are assigned a degree of plausibility by setting
κ(B|A) = κ(AB) − κ(A). Conditionals are accepted in
an epistemic state represented by κ, written as κ � (B|A),
iff κ(AB) < κ(AB). An OCF can be conditionalized by a
proposition A through κ(ω|A) = κ(ω) − κ(A) for ω � A.
κ(·|A) is an OCF on Mod(A). Instead of writing κ(·|A)
we will use the shorter notation κ|A. The conditionalized
OCF κ|A is only defined on the set Mod(A) and not for the
worlds ω �∈ Mod(A). OCF’s can be considered as a qual-
itative counterpart of probability distributions. For any set
M , M = M1∪̇M2 means that M is a union of disjoint sets
M1,M2.

3 Probability Kinematics in Belief Revision

and Related Work

In a probabilistic framework, Bayesian conditionalization is
a well-known method to guarantee the success postulate for
the revision of an epistemic state with new information A.
We obtain the posterior probability distribution by condi-
tionalizing the prior with A (for P (A) > 0):

P ∗A(ω) = P (ω|A) =

{
P (ω)
P (A) , ω � A

0, ω � A
for ω ∈ Ω. (1)

Jeffrey introduced a generalization of the Bayesian condi-
tionalization in 1965 (Jeffrey 1965), where the new infor-
mation consists of assigning new probabilities P ∗(Ai) = yi
to a set of exclusive and exhaustive formulas A1, . . . , An so
that

∑n
i=1 P

∗(Ai) = 1. Jeffrey’s rule is based on a strong
assumption which is called Probability Kinematics: The new
information P ∗(Ai) = yi does not change the conditional
probability given Ai:

P ∗(B|Ai) = P (B|Ai) (2)

Jeffrey’s rule results from the law of total probability:

P ∗(B) =
n∑

i=1

P (B|Ai)P
∗(Ai). (3)

Jeffrey’s rule displays a multiple probabilistic revi-
sion method for a set of probabilistic facts S =
{A1[x1], . . . , An[xn]} such that P ∗ S � S . Here, a proba-
bility distribution P satisfies a probabilistic fact Ai[xi], P �

Ai[xi] iff P (Ai) = xi. Similiarly, for a probabilistic con-
ditional (Bi|Ai)[xi], P � (Bi|Ai)[xi] iff P (Bi|Ai) = xi.
There have been several proposals to generalize Jeffrey’s
rule. For example, Wagner (cf. (Wagner 1992)) uses an arbi-
trary set of propositions Ai. Smets generalized Jeffrey’s rule
to belief functions (see (Smets 2013)), and Benferhat et al.
analyse the expressive power of possibilistic counterparts to
Jeffrey’s rule for modeling belief revision (Benferhat et al.
2010).

Shore and Johnson (Shore and Johnson 1980) proposed a
far-reaching generalization of Probability Kinematics under
the name Subset Independence:
Definition 1 (Subset Independence for Probability Distribu-
tions). Let A1, . . . , An be exhaustive and exclusive formu-
las. Let P be a probability distribution and R = R1 ∪ . . .∪
Rn be a set of probabilistic conditionals with subsets Ri

whose premises imply Ai, and S = {A1[x1], . . . , An[xn]}
with

∑n
i=1 xi = 1. The revision operator ∗ satisfies Subset

Independence iff

(P ∗ (R∪ S))(·|Ai) = P (·|Ai) ∗ Ri. (4)

For explanation and motivations see (Shore and Johnson
1980). The Probability Kinematics assumption that is crucial
for Jeffrey’s rule follows immediately from Subset Indepen-
dence if we take the new information R to be the empty set.
Let ∗ be a revision operator satisfying Subset Independence
then (P ∗ S)(·|Ai) = P (·|Ai), so for every B ∈ L we have
(P ∗ S)(B|Ai) = P (B|Ai) which is (2). In the next sec-
tion we want to close the gap between the generalization of
Probability Kinematics in a quantitative framework and the
qualititative version of Jeffrey’s rule by transferring the no-
tion of Subset Independence to the OCF framework. Note
that our framework goes far beyond the classical AGM be-
lief revision theory (Alchourrón, Gärdenfors, and Makinson
1985) and the approach of iterated revision by Darwiche and
Pearl (Darwiche and Pearl 1997) because it deals with re-
vision by sets of conditionals, but is fully compatible with
these seminal frameworks.

4 Generalized Ranking Kinematics for OCFs

In this section we will transfer the idea of Probability Kine-
matics (2) for probability distributions to the framework of
ranking functions by re-interpreting the property of Subset
Independence for the OCF framework. We distinguish be-
tween a strong and a weak version here.
Definition 2 (Generalized Ranking Kinematics (GRK) for
OCF). Let A1, . . . , An be exhaustive and exclusive formu-
las. Let κ be an ordinal conditional function and R =
R1 ∪ . . . ∪ Rn be a set of conditionals, with subsets Ri

whose premises imply Ai, and S =
∨

j∈J Aj with ∅ �= J ⊆
{1, . . . , n}. The revision operator ∗ satisfies strong General-
ized Ranking Kinematics iff

(GRKstrong) κ ∗ (R∪ {S})(·|Ai) = κ(·|Ai) ∗ Ri. (5)

We can also define a weak Generalized Ranking Kinematics
for OCFs:

(GRKweak) κ ∗ R(·|Ai) = κ(·|Ai) ∗ Ri. (6)
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Generalized Ranking Kinematics expresses two strong ir-
relevance assertions: Firstly, if we condition the revised OCF
by a case Ai, then only the conditionals talking about this
case are relevant. Secondly, the plausibility of a case Ai

is not relevant for revising the respectively conditionalized
OCF. In the probabilistic case S is not a formula but the set
which assigns posterior probabilities to the formulas Ai, for
OCFs we just take into account that some of the Ai’s are
more plausible than others and revise with the disjunction of
them. Note that exclusivity is the crucial property of the Ai’s
because exhaustiveness can always be obtained by taking the
negation of

∨
Ai also as a case.

We give an example to illustrate Generalized Ranking
Kinematics:
Example 1. An agent has a new friend and they make plans
for the weekend, but the new friend is not sure yet if he is
really free on Saturday. So, if the friend has to work dur-
ing the weekend the agent will go to the gym alone. If the
friend does not have to work and the weather is sunny, they
will go to the park, else they will go to the cinema together.
We formalize this situation: Let Σ = {w, g, s, p, c} be the
signature, where:

w: the agent’s friend has to work;
g: the agent goes to the gym;
s: the weather is sunny;
p: the agents go to the park;
c: the agents go to the cinema.

The weekend plans of the agent depend on whether the
friend has to work or not, which means we have (at least)
two exclusive scenarios which we can revise independently.

In the following we will investigate the preconditions of
the strong and weak version of Generalized Ranking Kine-
matics in more detail. We shall at first explain the notion of
premise splitting which is the main precondition for Subset
Independence: The premises must imply formulas Ai which
are exclusive and exhaustive. This means the agent is able
to distinguish between different cases. During the revision
the agent learns something about the consequences result-
ing from these cases. The definition of premise splitting is
as follows:
Definition 3 (Premise splitting). Let R =
{(B1|X1), . . . , (Bm|Xm)} be a set of conditionals. A
premise splitting PR of R is a set PR = {A1, . . . , An}
of exclusive and exhaustive formulas A1, . . . An, such that
every premise Xk (k = 1, . . . ,m) implies exactly one Ai.

We continue example 1 to explain the notion of premise
splitting:
Example 2. The following set of conditionals models the
agent’s weekend plans: R = {(g|w), (p|ws), (c|w s)}. Ev-
ery premise in R is implied by one of the exclusive and
exhaustive formulas A1 = w, A2 = ws and A3 = w s,
which leads us to the following premise splitting PR =
{w,ws,w s}. This illustrates how sets of conditionals that
fulfill the conditions of Generalized Ranking Kinematics
model exclusive and exhaustive cases, meaning that they de-
scribe the agent’s actions for every possible scenario.

A premise splitting induces a partitioning of the set of
conditonals R = {(B1|X1), . . . , (Bm|Xm)}. We can de-
fine subsets Ri of R by: (B|X) ∈ Ri iff X � Ai. The
subsets are disjoint since the Ai’s are exclusive, i.e. R =
R1∪̇ · · · ∪̇Rn.

We can find a premise splitting for each set of conditionals
R by using simply the trivial premise splitting PR = {�}.
But in order to maximise the benefits of Subset Indepen-
dence resp. Generalized Ranking Kinematics, the premise
splitting should be as fine as possible, meaning that the sub-
sets Ri should be as small as possible and as many as possi-
ble.

Definition 4 (Refinement and specificity). Let R be a
set of conditionals. For two premise splittings P1

R =
{A1, . . . , An} and P2

R = {B1, . . . , Bn′} of R, we say that
P1
R is a refinement of P2

R iff every Bj is implied by some
Ai:

P1
R � P2

R iff ∀ Bj ∈ P2
R, ∃Ai ∈ P1

R s.t. Ai � Bj .

This means that the Ai’s are more specific than the Bj’s.
Two premise splittings P1

R and P1
R are equivalent iff

P1
R � P2

R and P2
R � P1

R
We continue Example 1 to illustrate the refinement-

relation defined above:

Example 3. For R = {(g|w), (p|ws), (c|w s)} (see Exam-
ple 1), we could also use B1 = w and B2 = w as ex-
haustive and exclusive formulas to define a premise splitting
P ′R = {w,w}. Then PR � P ′R, since w � w and ws � w.

A premise splitting which refines every other splitting for
a set of conditionals R is called its finest premise splitting.
The following theorem shows that for every R the finest
premise splitting is unique up to semantic equivalences and
permutations. To prove the theorem, we need to define a re-
lation on the set of premises of R, we denote this set by
Prem(R) = {X ∈ L|(B|X) ∈ R}. We start by defining
X ∼ Y iff XY �≡ ⊥ for X,Y ∈ Prem(R). ∼ is reflex-
ive and symmetric, so the transitive closure ∼∗ of ∼ is an
equivalence relation on the elements of Prem(R).

Theorem 1. For a set of conditionals R there is a (unique)
finest premise splitting (up to semantic equivalences and
permutations).

Proof. Let Prem(R) = {X ∈ L|(B|X) ∈ R}, and ∼∗

be the equivalence relation defined above. Then Prem(R) =⋃
i=1,...,n[Xi], where [Xi] are the equivalence classes of ∼∗. Let

Ai =
∨
[Xi] for i = 1, . . . , n and A0 = ¬(A1 ∨ . . . ∨ An) ≡

A1 . . . An, then PR = {A0, A1, . . . , An} defines a premise split-
ting because for i �= j it holds that:

AiAj ≡ ( ∨

X̃∈[Xi],Ỹ ∈[Xj ]

(X̃Ỹ )
) ≡ ⊥,

and A0 ∨ A1 ∨ . . . ∨ An ≡ (A1 . . . An) ∨ A1 . . . ∨ An ≡ 	. It
is clear that for every premise X ∈ Prem(R) =

⋃
i=1,...,n[Xi],

there is one Ai =
∨
[Xi] which is implied by X , and that PR

is unique up to permutation and semantic equivalences. But we
still need to show that PR refines every other premise splitting:
Let P ′

R = {B1, . . . , Bn′} be another premise splitting of R. For

589



X,Y ∈ Prem(R) it holds that, if X � Bi and Y � Bj with
i �= j, then XY ≡ ⊥. This means that for X,Y ∈ Prem(R)
with XY �≡ ⊥, there is i ∈ {1, . . . , n′} with X � Bi and
Y � Bi, which means [X] � Bi. Hence, ∃j ∈ 1, . . . , n with∨

X̃∈[Xj ]
X̃ = Aj � Bi and PR refines P ′

R.

To compute the finest premise splitting for a finite arbi-
trary set of conditionals R we present Algorithm 1.

Algorithm 1 Finest premise splitting
Input: Finite set of conditionals R
Output: Unique finest premise splitting of R
1: Prem ← Prem(R)
2: PR = ∅
3: while Prem �= ∅ do
4: Choose X ∈ Prem
5: if there are Y ∈ Prem, Y �= X , with XY �≡ ⊥ then
6: build [X] = {Y ∈ Prem|XY �≡ ⊥}
7: A ← ∨

[X]
8: Prem ← (Prem \ [X]) ∪ {A}
9: else

10: A ← X
11: PR ← PR ∪ {A}
12: Prem ← Prem \ {A}
13: end if
14: end while
15: if

∨PR �≡ 	 then

16: A0 =
∧

Ai∈PR Ai

17: PR = PR ∪ {A0}
18: end if
19: return PR

Theorem 2. Algorithm 1 terminates and is correct in the
sense that it computes the unique finest premise splitting for
a finite set of conditionals R.

This theorem follows immediately from the constructive
proof of Theorem 1 by observing that the transitive closure
of ∼ is obtained by considering disjunctions in line 7 and
adding these to the set of premises Prem in line 8. For
premises X1, X2, X3 with X1X2 �≡ ⊥ and X1X3 �≡ ⊥, it
might be the case that X2X3 ≡ ⊥, but (X1 ∨X2)X3 �≡ ⊥.
The running time of Algorithm 1 is determined by the SAT-
Test in line 5 and 6. In the worst case the equivalence classes
determined in the while-loop are singletons and we obtain
O(s2), where s represents the runtime of the SAT-Test.

The following example illustrates the algorithm:

Example 4. Let Σ = {a, b, c, d} be the signature for a set
of conditionals R = {(c|ab), (d|abc), (e|ab), (b|a), (d|ae)}.
We now want to compute the unique finest premise split-
ting using the Algorithm 1: We initialize Prem =
{ab, abc, ab, a, ae} and PR = ∅. In the first iteration,
X = ab with A1 = ab and therefore, PR = {ab} and
Prem = {abc, ab, a, ae}. For the second iteration, X =
abc with [X] = {abc, ab}, hence A2 = ab and Prem =
{ab, a, ae}. In the next iteration, X = ab and XY ≡ ⊥
for all other Y ∈ Prem, therefore PR = {ab, ab}. Then,
X = a with [X] = {a, ae} and A3 = a and therefore,
Prem = {a}. In the last iteration, X = a = A3, and

PR = {ab, ab, a}. We have ab ∨ ab ∨ a ≡ �, thus the
algorithm terminates and returns PR = {ab, ab, a} which
determines a partitioning of R. For the GRK property we
split R = {(c|ab)}∪̇{(d|abc), (e|ab)}∪̇{(b|a), (d|ae)} =
R1∪̇R2∪̇R3.

In this section we have shown that for every arbitrary set
of conditionals R, we can find a unique finest premise split-
ting which fulfills the preconditions of GRK. In the next sec-
tion we will give a concrete example for a revision method
which fulfills both strong and weak versions of Generalized
Ranking Kinematics within the framework of ordinal condi-
tional functions.

5 GRK for C-Revisions

In a nutshell, Generalized Ranking Kinematics means that
if the new information that the agents receive can be split
into different cases, then it should be possible to revise with
these different subsets independently on the conditionalized
prior epistemic state. In a purely quantitative framework,
the principle of maximum entropy is a revision method
which fulfills this property for probability distributions. In
this section, we will focus on the OCF framework and
use c-revisions introduced by Kern-Isberner in 2001 (Kern-
Isberner 2001) as a proof of concept to illustrate how GRK
can be implemented for iterated belief revision.

c-revisions provide a highly general framework for revis-
ing OCFs by sets of conditionals. For our purposes it will be
sufficient to use a simplified version of c-revisions.
Definition 5 (c-revisions for OCFs). Let κ be an
OCF specifying a prior epistemic state, and let R =
{(B1|X1), . . . , (Bm|Xm)} be the set of conditionals which
represent the new information. Then a c-revision of κ by R
is given by an OCF of the form

κ ∗ R(ω) = κ∗(ω) = κ0 + κ(ω) +
∑

1�i�m

ω�XiBi

ν−i (7)

with non-negative integers νi satisfying

ν−i > min
ω�XiBi

{
κ(ω) +

∑
j �=i

ω�XjBj

ν−j
}

− min
ω�XiBi

{
κ(ω) +

∑
j �=i

ω�XjBj

ν−j
}
. (8)

The vector (ν−1 , . . . , ν−m) characterizes (defines) each c-
revision κ∗ of κ by R.

The ν−i can be considered as impact factors of the sin-
gle conditionals (Bi|Xi) for falsifying the conditionals in R
which have to be chosen so as to ensure success by (8). κ0

in (7) is a normalization factor. In the following lemma, we
will further characterize κ0, which will help us to understand
the proof of Theorem 3.
Lemma 1. Let R = {(B1|X1), . . . , (Bm|Xm)}, and let
κ ∗ R = κ∗ be a c-revision of κ by R satisfying (7) and (8).
Then κ0 = −min

ω∈Ω
{κ(ω) +∑

1�i�m, ω�XiBi
ν−i }.
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This follows immediately from κ∗(�) = 0. Since (7) and
(8) provide a general schema for revision operators, many
c-revisions are possible. Nevertheless, it might be useful to
impose further constraints on the parameters ν−i . One op-
tion is to take minimal ν−i satisfying (8) ensuring that the
resulting OCF ranks worlds as plausible as possible.
Definition 6 (Minimal c-revisions (Kern-Isberner and Hu-
vermann 2017)). A minimal c-revision of κ by R is a c-
revision κ∗ defined by (ν−1 , . . . , ν−m) such that the vector
(ν−1 , . . . , ν−m) is Pareto-minimal, i.e., no other c-revision of
κ by R which is characterized by (ν̃−1 , . . . , ν̃−m) exists with
ν̃−i � ν−i , for all i, and ν̃−i < ν−i for at least one i,
1 � i � m.

Each c-revision is an iterated revision in the sense of Dar-
wiche and Pearl (Darwiche and Pearl 1997), and it also sat-
isfies the Generalized Ranking Kinematics:
Theorem 3. Let R = R1∪̇ . . . ∪̇Rn be a set of condition-
als, with subsets Ri = {(Bj,i|AiCj,i)}j=1,...,ni (ni = |Ri|)
for i = 1, . . . , n such that {A1, . . . , An} is a premise split-
ting. Let S =

∨
k∈J Ak with ∅ �= J ⊆ {1, . . . , n}. Then c-

revisions satisfy (GRKstrong) and (GRKweak) in the fol-
lowing sense:

1. If (λ−1,1, . . . , λ
−
n1,1

, λ−1,2, . . ., λ
−
n2,2

, . . . , λ−1,n, . . . , λ
−
nn,n,

λ−S ) defines a c-revision κ∗ (R∪{S}), then each subvec-
tor (λ−1,i, . . . , λ

−
ni,i

) defines a c-revision κ|Ai
∗ Ri such

that κ ∗ (R∪ {S})|Ai
= κ|Ai

∗ Ri.
2. If (ν−1,1, . . . , ν

−
n1,1

, ν−1,2, . . . , ν
−
n2,2

, . . . , ν−1,n, . . . , ν
−
nn,n)

defines a c-revision κ ∗ R, then each subvector
(ν−1,i, . . . , ν

−
ni,i

) defines a c-revision κ|Ai
∗ R such that

(κ ∗ R)|Ai
= κ|Ai

∗ Ri.
3. Conversely, if (ν−1,i, . . . , ν

−
ni,i

) defines a c-revision
κ|Ai

∗ Ri for each i = 1, . . . , n, then the vector
(ν−1,1, . . . , ν

−
n1,1

, ν−1,2, . . . , ν
−
n2,2

, . . . , ν−1,n, . . . , ν
−
nn,n)

defines a c-revision κ ∗ R.

Proof. Let κ∗1 = κ ∗ (R ∪ {S}), κ∗2 = κ ∗ R and κ∗3 =
κ|Ai

∗ Ri for some i ∈ {1, . . . , n}.
We investigate: 1. κ∗1|Ai

vs. κ∗3, 2. κ∗2|Ai
vs. κ∗3 and 3.

κ∗3 vs. κ∗2.
For all ω ∈ Ω, ω � Ai for exactly one i. If ω � Ai then all

conditionals from Rj (j �= i), are not applicable and hence
irrelevant. Therefore, it holds that:

κ∗1(ω) = κ ∗ (R∪ {S})(ω) = κ1,0 + κ(ω)+∑
1�i�n

∑
1�j�ni

ω�AiCj,iBj,i

λ−j,i +
{
λ−S ω �� S

0 otherwise,
(9)

and for i ∈ {1, . . . , n}:

λ−j,i > min
ω�AiCj,iBj,i

{κ(ω) +
∑
l �=j

ω�AiCl,iBl,i

λ−l,i}

− min
ω�AiCj,iBj,i

{κ(ω) +
∑
l �=j

ω�AiCl,iBl,i

λ−l,i} (10)

λ−S occurs only if i ∈ J and either is cancelled out, or does
not appear at all. Furthermore, for ω � Ai:

κ∗1|Ai
(ω) = κ(ω) +

∑
1�j�ni

ω�AiCj,iBj,i

λ−j,i

− min
ω̃�Ai

{κ(ω̃) +
∑

1�j�ni

ω̃�AiCj,iBj,i

λ−j,i

︸ ︷︷ ︸
(∗)

} (11)

For each Ai, all models ω � Ai either satisfy S or S, so
λ−S occurs in both parts of the calculation above or in none
of them, and therefore is cancelled out. Also κ0 is cancelled
out.

The definitions of κ∗2 resp. κ∗2|Ai
and the corresponding

impact factors ν−j,i follow the same schema as the definitions
of κ∗1 resp. κ∗1|Ai

without the penalty term for λ−S . It holds
that λ−j,i and ν−j,i fulfill the same inequalities. We now turn
to κ∗3:

κ∗3(ω) = κ|Ai
∗ Ri

= κ(ω) +
∑

1�j�ni

ω�AiCj,iBj,i

μ−j,i + κ3,0 − κ(Ai)︸ ︷︷ ︸
(∗∗)

(12)

with

μ−j,i > min
ω�AiCj,iBj,i

{κ(ω) +
∑
l �=j

ω�AiCl,iBl,i

μ−l,i}

− min
ω�AiCj,iBj,i

{κ(ω) +
∑
l �=j

ω�AiCl,iBl,i

μ−l,i} (13)

We have (10)=(13), and Lemma 1 yields

κ3,0 = − min
ω̃�Ai

{κ(ω̃)+
∑

1�j�ni,ω�AiCji
Bji

μ−j,i} = (∗)+κ(Ai),

so (∗) = (∗∗). Therefore the first two statements of the the-
orem are proved. The third statement follows immediately
because the impact factors ν−j,i for each subvector fulfill the
success condition of κ∗2. Note that these benefits are due to
the specific schema of irrelevance and cancellations among
the respective conditional impacts.

S represents new evidence affecting the epistemic state
of an agent. For R = ∅, (GRKstrong) induces that we
strengthen the beliefs of the cases Ai in S, without chang-
ing the respective conditional beliefs. This corresponds to
Spohn’s law of generalized conditionalization (Spohn 2014)
which is the analogon of Jeffrey’s rule in the framework of
ranking functions.

We give an example of (GRKweak) for c-revisions..
Example 5. Let Σ = {a, b, c, d} and R1 =
{(c|ab), (d|abc)}, R2 = {(d|ab)}, R3 = {(d|a), (cd|a)}
such that R = R1 ∪R2 ∪R3 and PR = {ab, ab, a} as the
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ω ∈ Ω κ κ ∗ R (κ ∗ R)min (κ ∗ R)min
|Ai

abcd 5 -1 + 5 4 0
abcd 2 -1 + 2 + α−

2 5 1
abcd 3 -1 + 3 + α−

1 5 1
abcd 4 -1 + 4 + α−

1 6 2
abcd 3 -1 + 3 2 2
abcd 0 -1 + 0 + β−

1 1 1
abcd 1 -1 + 1 0 0
abcd 2 -1+ 2 + β−

1 3 3
abcd 4 -1 + 4 3 0
abcd 1 -1 + 1 + γ−

1 + γ−
2 4 1

abcd 2 -1 + 2 + γ−
2 5 2

abcd 3 -1 + 3 +γ−
1 + γ−

2 6 3
abcd 6 -1 + 6 5 2
abcd 3 -1 + 3 + γ−

1 + γ−
2 6 3

abcd 4 -1 + 4 + γ−
2 7 4

abcd 5 -1 + 5 + γ−
1 + γ−

2 8 5
κ0 -1

Table 1: The table displays the OCF κ and the c-revised (and con-
ditionalized) OCF κ ∗ R resp. (κ ∗ R)|Ai

both as a schema and
with pareto-minimal impact factors.

finest premise splitting. The OCF κ can be found in table 1,
along with a schematic c-revised κ ∗ R and the c-revised
OCF with (Pareto-)minimal parameters α−1 = 3, α−2 =
4, β−1 = 2, γ−1 = 0, γ−2 = 4 belonging to the condition-
als in R1,R2,R3, respectively. In table 2 the c-revisions
with conditionalized κ|Ai

are displayed, we chose again the
(Pareto-)minimal parameters (κ ∗ R|Ai

)min. If we compare
the conditionalized version with the c-revisions from table 2,
it is clear that κ|Ai

∗ Ri = κ ∗ R|Ai
.

6 Conclusion

Generalized Ranking Kinematics (GRK) aims to capture
the intuition that information concerning exclusive cases
should be revised independently. Jeffrey (Jeffrey 1965) im-
plemented this idea in the probabilistic framework for sets of
propositions. Shore and Johnson (Shore and Johnson 1980)
extended this notion for sets of conditionals and showed that
the ability to differentiate between different contexts is cru-
cial for inductive inference in the probabilistic framework.
In this paper we have shown that Shore and Johnsons’ ideas
are applicable to ranking functions. The key to our approach
is to split the premises of the set of conditionals R. We pro-
vided an algorithm to compute the premise splitting for an
arbitrary finite set of conditionals and proved that we obtain
the finest premise splitting, which maximises the benefits of
GRK. The main motivation for studying the concept of Prob-
ability Kinematics resp. Subset Independence was to set up
local contexts for revision with sets of conditionals for the
framework of ranking functions. GRK allows us to set up
local contexts also for qualitative revision.

In (Kern-Isberner 2001) c-revisions were devised as a
qualitative counterpart to probabilistic revision via the prin-
ciple of minimum cross-entropy (MinCEnt) and thus in-
herit many qualities of that revision operator. As we have
mentioned above GRK is inspired by Subset Independence

ω ∈ Ω κ|Ai
(κ∗1

|A1
)min (κ∗2

|A2
)min (κ∗3

|A3
)min

abcd 3 0
abcd 0 1
abcd 1 1
abcd 2 2
abcd 3 2
abcd 0 1
abcd 1 0
abcd 2 3
abcd 3 0
abcd 0 1
abcd 1 2
abcd 2 3
abcd 5 2
abcd 2 3
abcd 3 4
abcd 4 5
κ0 -3 -1 -3

Table 2: Conditionalized OCF κ|Ai
and the firstly conditionalized

and then c-revised OCFs κ|Ai
∗ Ri with i = 1, 2, 3, notated as

κ∗i
|Ai

. We use the Pareto-minimal impact factors.

which is one of the characterizing axioms of MinCEnt, ac-
cording to Shore and Johnsons (Shore and Johnson 1980).
As shown in this paper, c-revisions fulfill GRK and hence
allow us to implement this powerful principle for qualitative
iterated revision.
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