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Abstract

Logical argumentation is a well-known approach to mod-
elling nonmonotonic reasoning with conflicting information.
In this paper we provide a proof-theoretic study of properties
of logical argumentation frameworks. Given some desider-
ata in terms of rationality postulates, we consider the condi-
tions that an argumentation framework should fulfill for the
desiderata to hold. The rationality behind this approach is to
assist designers to “plug-in” pre-defined formalisms accord-
ing to actual needs. This work extends related research on the
subject in several ways: more postulates are characterized,
a more abstract notion of arguments is considered, and it is
shown how the nature of the attack rules (subset attacks ver-
sus direct attacks) affects the properties of the whole setting.

1 Introduction

Logical argumentation is a common AI-based method for
making inferences in the presence of arguments and counter-
arguments. Its setting, called an argumentation framework,
consists of two ingredients:
• arguments, which are pairs 〈Γ, ψ〉 of a set of formulas (the
argument’s support Γ) and a formula (the argument’s conclu-
sion ψ) in some propositional language, such that ψ follows
from Γ according to some underlying logic, and
• attacks, which are instances of a binary relation on the set
of arguments, relating arguments and counter-arguments.
Given such a framework, an argumentation semantics (Dung
1995) determines what arguments can be mutually accepted,
and so what conclusions can be drawn from this setting.

The nature of an argumentation framework thus depends
on several factors, among which are the language of the as-
sertions, the underlying (base) logic of the arguments, the
kinds of attacks between the arguments, and the semantics
of the framework. Now, the fact that there are so many pos-
sibilities to define logical argumentation frameworks raises
the question how to choose the most appropriate framework
for specific needs. The purpose of this work is to put some
order in this ‘jungle’ of argumentation frameworks and to
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provide some guidelines on how to construct robust frame-
works. A common way to do so is by checking the satisfi-
ability of rationality postulates, namely: to consider formal
properties that the intended framework should satisfy.

The essence of this work is, therefore, the investigation
of the interplay between the basic ingredients of logical ar-
gumentation frameworks on one hand, and the properties of
the framework on the other hand. This allows us to assemble
logical argumentation frameworks according to the desired
properties that they should have.

This paper extends and provides a different perspective to
earlier works on the subject (e.g., (Gorogiannis and Hunter
2011; Amgoud and Besnard 2013; Amgoud 2014)) in sev-
eral senses. Firstly, more postulates are considered1 and
their compatibility (i.e., their mutual satisfaction) is shown.
Secondly, we provide new results on how the nature of
the attack rules (subset attacks versus direct attacks) af-
fects the properties of the framework. We also avoid some
problematic conditions on the attacks (see Note 4). Finally,
several assumptions that are taken elsewhere are lifted in
our case. For instance, in (Amgoud and Besnard 2013;
Amgoud 2014) it is assumed that the supports of the argu-
ments are minimal and consistent, and in (Gorogiannis and
Hunter 2011) it is further assumed that the base logic is clas-
sical logic. None of these assumptions is made here.2

2 Logical Argumentation

We shall assume that the underlying language L is proposi-
tional. Sets of formulas are denoted by S, T , finite sets of
formulas are denoted by Γ,Δ,Π,Θ, formulas are denoted
by φ, ψ, δ, γ, and atomic formulas are denoted by p, q, r, all
of which can be primed or indexed.

Definition 1 A logic for a language L is a pair L = 〈L,�〉,
where � is a consequence relation, i.e., it is: reflexive (S � φ
if φ ∈ S), monotonic (if S ′ � φ and S ′ ⊆ S , then S � φ),
and transitive (if S � φ and S ′, φ � ψ then S,S ′ � ψ).

A logic L is often assumed to be non-trivial (S � φ for
some S �= ∅ and φ), structural (if S � φ then {θ(ψ) | ψ ∈

1Exhaustiveness, for example, is not characterized elsewhere.
2See (Arieli and Straßer 2015) for a discussion on the advan-

tages of avoiding these assumptions.
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S} � θ(φ) for every substitution θ), and compact (if S � φ
then Γ � φ for some finite Γ ⊆ S).

In what follows, we shall assume that L contains at least
a �-negation operator (¬), satisfying p �� ¬p and ¬p �� p
(for atomic p), and a �-conjunction operator (∧), for which
S � ψ ∧ φ iff S � ψ and S � φ.3 Also, we denote by

∧
Γ

the conjunction of all the formulas in Γ.

Definition 2 Let L = 〈L,�〉 be a logic and let S be a set of
L-formulas. The �-closure of S is the set CNL(S) = {φ |
S � φ}. We say that S is �-consistent, if there are no for-
mulas φ1, . . . , φn ∈ S for which � ¬(φ1 ∧ · · · ∧ φn).

Given a logic L, an argument corresponds to the well-
known proof-theoretic notion of a sequent (Gentzen 1934).

Definition 3 Let L = 〈L,�〉 be a logic and let S be a set of
formulas in L.
• An L-sequent (sequent for short) is an expression of the

form Γ⇒Δ, where Γ and Δ are finite sets of formulas in
L and ⇒ is a symbol that does not appear in L.

• An L-argument (argument for short) is an L-sequent of
the form Γ ⇒ ψ,4 where Γ � ψ. We say that Γ is the
support set of Γ ⇒ ψ (also denoted by Supp(Γ ⇒ ψ))
and that ψ is its conclusion (also denoted Conc(Γ⇒ ψ)).
For a set S of arguments, we let Supps(S) =

⋃
{Supp(a) |

a ∈ S} and Concs(S) = {Conc(a) | a ∈ S}.
• An L-argument based on S is an L-argument Γ ⇒ ψ,

where Γ ⊆ S . We denote by ArgL(S) the set of all the
L-arguments based on S .

Note 1 It is sometimes assumed that the argument’s support
is �-consistent and/or that none of its subsets �-entails the
arguments’ conclusion (see, e.g., (Besnard and Hunter 2009;
Amgoud and Besnard 2013)). As our goal here is to keep
the discussion as general as possible, we do not make such
restrictions. We refer to (Arieli and Straßer 2015) for further
justifications of this choice.

Formal systems for constructing sequents (and so argu-
ments) for a logic L = 〈L,�〉 are called sequent calculi
(Gentzen 1934), denoted here by C. A sequent is provable
(or derivable) in C if there is a derivation for it in C. In
what follows we shall assume that the calculus C is sound
and complete for its logic (i.e., Γ ⇒ ψ is provable in C iff
Γ � ψ). Note that this implies, in particular, that for a given
set S , all the elements in ArgL(S) are C-provable.

Just as arguments are constructed by inference rules in C,
conflicts (attacks) between arguments are represented by (at-
tack) rules. Such rules consist of an attacking argument (the
first condition of the rule), an attacked argument (the last
condition of the rule), conditions for the attack (the other
conditions of the rule) and a conclusion (the eliminated at-
tacked sequent). The outcome of an application of such a
rule is that the attacked sequent is ‘eliminated’ (or ‘invali-
dated’; see below the exact meaning of this). The elimina-
tion of a sequent a = Γ⇒ φ is denoted by Γ �⇒ φ.

3By the definition of ∧ and since L is a logic, φ ∧ ψ � φ;
φ∧ψ � ψ and φ, ψ � φ∧ψ, so S∪{φ, ψ} � γ iff S∪{φ∧ψ} � γ.

4Set signs in arguments are omitted.

Definition 4 Below are some attack rules. In all of them we
assume that Γ2 �= ∅ (see also (Arieli and Straßer 2015) and
(Straßer and Arieli 2019) for many other rules):

• Defeat (Def):
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 �⇒ ψ2

• Direct Defeat (DDef):
Γ ⇒ ψ ψ ⇒ ¬γ Γ′, γ ⇒ ψ′

Γ′, γ �⇒ ψ′

• Undercut (Ucut):
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ2 ¬

∧
Γ2 ⇒ ψ1 Γ2,Γ

′
2 ⇒ ψ2

Γ2,Γ
′
2 �⇒ ψ2

• Direct Undercut (DUcut):
Γ ⇒ ψ ψ ⇒ ¬γ ¬γ ⇒ ψ Γ′, γ ⇒ ψ′

Γ′, γ �⇒ ψ′

• Consistency Ucut (ConUcut):
⇒ ¬

∧
Γ2 Γ2,Γ

′
2 ⇒ ψ

Γ2,Γ
′
2 �⇒ ψ

The rules above indicate when the attacker challenges the
attacked argument. For instance, when {p,¬p} ⊆ S and
classical logic (CL) is the core logic, the sequents p ⇒ p
and ¬p⇒ ¬p attack each other according to Defeat (as well
as according to Direct Defeat and (Direct) Undercut).

An argumentation framework is now defined as follows:

Definition 5 A (sequent-based) argumentation framework
(AF) for a set of formulas S , based on a logic L and a set A
of attack rules, is a pair AFL,A(S) = 〈ArgL(S),A〉, where
A ⊆ ArgL(S) × ArgL(S) and (a1, a2) ∈ A iff there is an
R ∈ A such that a1 R-attacks a2.5 The subscripts L and/or
A will be omitted when they are clear from the context or
arbitrary.

Example 1 Let AFCL(S) = 〈ArgCL(S),A〉 be an AF for
S = {p, q,¬p ∨ ¬q, r}, classical logic (CL) as the base
logic, and A is obtained from the attack rules in A, where
{ConUcut} ⊆ A ⊆ {DDef,DUcut,ConUcut}. The fol-
lowing sequents are in ArgCL(S):

a1 = r ⇒ r a7 = p, q ⇒ p ∧ q
a2 = p⇒ p a8 = ¬p ∨ ¬q, q ⇒ ¬p
a3 = q ⇒ q a9 = ¬p ∨ ¬q, p⇒ ¬q
a4 = ¬p ∨ ¬q ⇒ ¬p ∨ ¬q a� =
a5 = p⇒ ¬((¬p ∨ ¬q) ∧ q) ⇒ ¬(p ∧ q ∧ (¬p ∨ ¬q))
a6 = q ⇒ ¬((¬p ∨ ¬q) ∧ p) a⊥ = p, q,¬p ∨ ¬q ⇒ ¬r

Figure 1 is a graphical representation of part of the argumen-
tation framework with direct defeat and consistency under-
cut as the attack rules.

Given an argumentation framework AFL,A(S), Dung-
style semantics (Dung 1995) can be applied to it, to deter-
mine what combinations of arguments (called extensions)
can collectively be accepted from AFL,A(S).
Definition 6 Let AFL,A(S) = 〈ArgL(S),A〉 be an argu-
mentation framework and let S ⊆ ArgL(S) be a set of argu-
ments. It is said that:

5The attacking and the attacked arguments must be elements of
ArgL(S), to prevent “irrelevant attacks”, in which, e.g., ¬p ⇒ ¬p
attacks p⇒ p although S = {p}.
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Figure 1: Part of the framework from Example 1.

• S attacks a if there is an a′ ∈ S such that (a′, a) ∈ A;
• S defends a if S attacks every attacker of a;
• S is conflict-free if for no a1, a2 ∈ S, (a1, a2) ∈ A;
• S is admissible if it is conflict-free and defends all of its

elements.

An admissible set that contains all the arguments that it de-
fends is called a complete (cmp) extension of AFL,A(S).
The following extensions are regarded the completeness-
based semantics of AFL,A(S):
• the grounded (grd) extension of AFL,A(S) is the ⊆-

minimal complete extension of ArgL(S);
• a preferred (prf) extension of AFL,A(S) is a ⊆-maximal

complete extension of ArgL(S);
• a stable (stb) extension of AFL,A(S) is a conflict-free set

in ArgL(S) that attacks every argument not in it.

We denote by Extsem(AFL,A(S)) the set of all the exten-
sions of AFL,A(S) for some sem∈{cmp, grd, prf, stb}. The
subscript is omitted when it is clear from the context.

Note 2 As shown in (Dung 1995), the grounded extension
is unique for a given framework, and every stable exten-
sion is preferred. Other extensions and their properties are
discussed, e.g., in (Baroni, Caminada, and Giacomin 2018;
Baroni and Giacomin 2009).

Example 2 Let AFCL,{Ucut}(S) be an argumentation
framework for S = {p,¬p, q}, based on CL and Under-
cut. Then q ⇒ q belongs to every complete extension of the
framework, since ⇒ p ∨ ¬p counter-attacks any attacker of
q ⇒ q that belongs to ArgCL(S).6

Example 3 Consider again the argumentation framework
of Figure 1. In this figure, the grounded extension con-
sists only of the arguments a1 and a�, and the pre-
ferred/stable extensions are (supersets of the sets) E1 =
{a�, a1, a2, a3, a5, a6, a7}, E2 = {a�, a1, a2, a4, a5, a9},
and E3 = {a�, a1, a3, a4, a6, a8}.

6Since any attacker of q ⇒ q has an inconsistent support set.

[Ref]
φ⇒ φ

[Cut]
Γ1 ⇒ ψ,Π1 Γ2, ψ ⇒ Δ2

Γ1,Γ2 ⇒ Π1,Δ2

[LMon]
Γ ⇒ Δ
Γ, φ⇒ Δ

[RMon]
Γ ⇒ Π
Γ ⇒ Π, φ

[¬⇒]
Γ ⇒ Π, ϕ
¬ϕ,Γ ⇒ Π

[⇒¬] ϕ,Γ ⇒ Π
Γ ⇒ Π,¬ϕ

[∧⇒]
Γ, ϕ, ψ ⇒ Δ
Γ, ϕ ∧ ψ ⇒ Δ

[⇒∧] Γ1 ⇒ Π1, ϕ Γ2 ⇒ Π2, ψ
Γ1,Γ2 ⇒ Π1,Π2, ϕ ∧ ψ

Figure 2: Rules that are part of (or admissible in) the calculus
C (in case that C is single-conclusionedΠ,Π1 andΠ2 should
be empty and Δ, Δ1 and Δ2 contain at most one formula).

3 Evaluation of Argumentation Frameworks

The definition of (sequent-based) argumentation frame-
works leaves plenty of choices to be made in their construc-
tion, as the base logic L, the attack rules A, and the under-
lying semantics sem may vary from one case to another. In
what follows we check how these choices affect the proper-
ties of the frameworks that are obtained. For this, we con-
sider several desirable properties (rationality postulates) and
then check in what setting they are satisfied.

Interestingly, despite the diversity of logics and their se-
quent calculi covered in this work, for our results not much
needs to be assumed about the actual content of the calculi.
In fact, we only need to assume that the rules of the basic
calculus from Figure 2 are part of (or admissible in) C.

Example 4 Gentzen’s calculus LK for classical logic, its
single-conclusion variation LJ for intuitionistic logic, as
well as their extensions to modal logics, are some well-
known calculi for base logics that are covered by our study.

The next simple lemmas will be needed in what follows.

Lemma 1 For a formula φ and a finite set of formulas Γ,
the sequents φ⇒ ¬¬φ, and Γ⇒

∧
Γ are C-derivable.

Lemma 2 If Γ ⇒ ¬
∧
Δ is C-derivable, also Δ ⇒ ¬

∧
Γ;

Γ⇒¬
∧
(Δ∪Δ′); Γ,Δ⇒; and Γ,Δ\{δ}⇒¬δ (for δ ∈ Δ)

are C-derivable.

Lemma 3 For every φ, ψ ∈ L the sequent φ,¬φ ⇒ ψ is
C-derivable (thus L is explosive: φ,¬φ � ψ).

Definition 7 Let S be a set of formulas and a an argument.
The following notations will be useful in the sequel:
• FreeL(S) is the set of formulas in S that are not in any

⊆-minimally �-inconsistent subset of S; MCSL(S) is the
set of the ⊆-maximally �-consistent subsets of S .7

• An argument a′ is a subargument of a iff Supp(a′) ⊆
Supp(a). The set of subarguments of a is denoted Sub(a).
7A �-consistent subset T of S is a maximal �-consistent subset

of S if every subset T ′ of S such that T � T ′ is �-inconsistent.
A �-inconsistent subset T of S is a minimal �-inconsistent subset
of S if every subset T ′ of S such that T ′ � T is �-consistent. We
shall usually omit the prefix � when it is known or arbitrary.
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Next, we consider rationality postulates for (logical) argu-
mentation frameworks. Postulates that have been considered
in the literature (see (Amgoud 2014; Caminada and Amgoud
2007)) are denoted below by ◦, others are denoted by •.

Definition 8 Let AFL,A(S) = 〈ArgL(S),A〉 be an ar-
gumentation framework, sem a semantics for AFL,A(S),
E ∈ Extsem(AFL,A(S)), and a ∈ ArgL(S). Below are some
properties that AFL,A(S) may have:8

◦ closure of extensions: CNL(Concs(E)) = Concs(E).
• closure under support: if Supp(a) ⊆ Supps(E), a ∈ E .
◦ sub-argument closure: if a ∈ E then Sub(a) ⊆ E .
◦ (conclusion) consistency: Concs(E) is consistent.
◦ support consistency:9 Supps(E) is consistent.
• maximal consistency: Extsem(AFL,A(S)) = {ArgL(T ) |

T ∈ MCSL(S)}.
◦ exhaustiveness: if Supp(a) ∪ {Conc(a)} ⊆ Concs(E),

then a ∈ E .
• strong exhaustiveness: if Supp(a) ⊆ Concs(E), a ∈ E .
• support inclusion: Supps(E) ⊆ Concs(E).
◦ free precedence: ArgL(Free(S)) ⊆ E .
• stability: Extstb(AFL,A(S)) �= ∅.
• strong stability: Extstb(AFL,A(S)) = Extprf(AFL,A(S)).
• limited free precedence (respectively, limited exhaustive-

ness, limited strong exhaustiveness) is free precedence
(respectively, exhaustiveness, strong exhaustiveness), re-
stricted to extensions E with

⋃
Supps(E) �= ∅.

Note 3 It holds that: (a) sub-argument closure follows from
closure under support, (b) exhaustiveness follows from
strong exhaustiveness, (c) stability follows from strong sta-
bility (since Extprf(AFL,A(S)) �= ∅), (d) stability follows
from maximal consistency for stb (since MCSL(S) �= ∅),
and (e) a limited version of a postulate follows from the non-
limited version of the same postulate.10

In what follows we shall consider the postulates for three
types of argumentation frameworks: AF sub

L,A(S), AF dir
L,A(S)

and AF con
L,A (S). Each type is based on a logic L with a sound

and complete sequent calculus C, in which the rules in Fig-
ure 2 are admissible. The attack rules for these types are
given in Definition 4. The three categories differ in the at-
tack rules that are allowed in them:

Definition 9

• AF sub
L,A(S) denotes frameworks where at least one attack

is Undercut or Defeat (i.e., A ∩ {Def,Ucut} �= ∅) and so
an argument can be attacked on a subset of its support,

• AF dir
L,A(S) denotes frameworks with a non-empty set of

direct attack rules (i.e., ∅ �= A ⊆ {DDef,DUcut}), and

8Each of these properties is defined with respect to sem. In what
follows sem will be clear for the context.

9Called “strong consistency” in (Amgoud 2014).
10Further conditions for relating some postulates in Definition 8

are considered in (Amgoud 2014).

• AF con
L,A (S) denotes frameworks that in addition to the

rules of the previous item also contain ConUcut (i.e.,
{ConUcut} � A ⊆ {ConUcut,DDef,DUcut}).

Note that any framework for which A\{ConUcut} �= ∅ falls
in one of the 3 categories and these categories are disjoint.

The following theorem and table summarize the main re-
sults of this paper.

Theorem 1 Let L = 〈L,�〉 be a logic with a correspond-
ing sound and complete calculus C, in which the rules of the
basic calculus from Figure 2 are admissible. Let AF sub

L,A(S),
AF dir

L,A(S), and AF con
L,A (S) be defined as in Definition 9. Ta-

ble 1 lists what rationality postulates are satisfied by what
frameworks of the types above, and with respect to which
semantics sem ∈ {cmp, grd, prf, stb}.11

AF
dirL
,A (S

)

AF
con

L
,A (S

)

AF
subL
,A (S

)

Closure of extensions � � −
Closure under support � � −
Sub-argument closure � � �
Support inclusion � � �
Consistency � � −
Support consistency � � −
Maximal consistency prf, stb prf, stb −
Exhaustiveness prf, stb � −
Limited exhaustiveness � � −
Strong exhaustiveness prf, stb � −
Limited strong exhaust. � � −
Free precedence prf, stb � �
Limited free precedence � � �
Stability � � �
Strong stability � � �

Table 1: Postulates satisfaction. Cells with �indicate no
conditions for the postulate, otherwise specific semantics
with respect to which the postulate holds are indicated. Cells
with − mean that the postulate does not hold.

Table 1 contains 45 cases to consider (15 postulates for
three types of frameworks), and each case is further divided
to the different semantics. Due to space restrictions we con-
sider below the closure and the consistency postulates only
(the first seven rows in Table 1), leaving the other cases to
an extended version of the paper. In what follows E denotes
a sem-extension for some sem ∈ {cmp, grd, prf, stb}.

Lemma 4 Frameworks of type AF dir
L,A(S) or AF con

L,A (S)
satisfy support consistency: Supps(E) is consistent.

Proof. Assume for a contradiction that there is a ⊆-minimal
Θ = {φ1, . . . , φn} ⊆ Supps(E) for which � ¬

∧
Θ. By the

11The columns of AF dir
L,A(S) and AF con

L,A (S) show that all the
postulates are compatible (that is, they can be satisfied together).
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completeness of C, the sequent ⇒ ¬
∧
Θ is provable in C,

and by Lemma 2, a = φ1, . . . , φn−1 ⇒ ¬φn is also prov-
able. By the minimality ofΘ and the soundness of C, a is not
ConUcut-attacked. Since for each φi ∈ Θ there is ai ∈ E s.t.
φi ∈ Supp(ai), any attacker of a is an attacker of some ai ∈
E . Since E is admissible, a is defended by E and by the com-
pleteness of E , a ∈ E . This contradicts the conflict-freeness
of E , since a attacks an (both by DDef and DUcut). �
Example 5 As we show next, support consistency does not
hold for frameworks of type AF sub

L,A(S), thus in Lemma 4 it
is essential to consider direct attacks. A similar remark, and
the following counter-example, hold for Lemmas 5, 8, and 9.

Let S = {p, q,¬p ∨ ¬q, r} with CL as in Example 1, but
now with Defeat or Undercut rather than their direct ver-
sions. A representation of this setting with Defeat attacks is
like Figure 1, but now there are also attacks from a2 and
from a5 to a8, from a3 and from a6 to a9, and from a4 to a7.
Note that E = ArgCL({p}) ∪ ArgCL({q}) ∪ ArgCL({¬p ∨
¬q}) is a stable (and hence also preferred) extension,
yet Concs(E) and Supps(E) are not consistent, neither is
CNCL(Concs(E)) ⊆ Concs(E) nor ArgCL(Supps(E)) ⊆ E .

Note 4 The conditionArgL(Supps(E)) = E (for every sem-
extension E) is frequently assumed in, e.g., (Amgoud 2014).
Yet, this condition is not easily verified, and as Example 5
shows, it is rather strict, since the frameworks in AF sub

L,A(S)
do not satisfy it. We thus do not assume it for our results.

Lemma 5 Frameworks of type AF dir
L,A(S) or AF con

L,A (S) are
closed under supports: If a ∈ ArgL(S) and Supp(a) ⊆
Supps(E), then a ∈ E .

Proof. Assume that for a ∈ ArgL(S), Supp(a) ⊆ Supps(E).
If a is not attacked then obviously a ∈ E . Suppose that some
b ∈ ArgL(S) attacks a. By Lemma 4, a is not ConUcut-
attacked. Thus, b either DUcut- or DDef-attacks a, and so
there is a φ ∈ Supp(a) for which Conc(b)⇒ ¬φ is derivable
in C. Since Supp(a) ⊆ Supps(E), there is a c ∈ E for which
φ ∈ Supp(c) and so b also attacks c. Since E is complete,
it defends c, thus E must attack b. It follows that a is also
defended by E , and by the completeness of E , a ∈ E . �

By Lemma 5 and Lemma 3, we have:

Corollary 1 Frameworks of type AF dir
L,A(S) or AF con

L,A (S)
are closed under sub-arguments: for all a∈E , Sub(a)⊆E .

Closure under sub-arguments holds also for AF sub
L,A(S):

Lemma 6 Frameworks of type AF sub
L,A(S) are closed under

sub-arguments: for all a∈E , Sub(a)⊆E .

Proof. Let a ∈ E and b ∈ Sub(a). Suppose that c attacks b.
Note that every attacker of b is an attacker of a.12 Thus, b is
defended by E and by the completeness of E , b ∈ E . �
Lemma 7 All the three types of frameworks satisfy support
inclusion: Supps(E) ⊆ Concs(E).

12Indeed, the only non-trivial case is Defeat. In this case, let a =
Δ,Δ′ ⇒ δ′, b = Δ ⇒ δ and c = Γ ⇒ γ where γ ⇒ ¬

∧
Δ. By

Lemma 2, γ ⇒ ¬
∧
(Δ ∪Δ′) is C-derivable. Thus, c attacks a.

Proof. Let φ ∈ Supps(E). Then φ ∈ Supp(b) for some b ∈
E . By Reflexivity, a = φ ⇒ φ ∈ ArgL(S) ∩ Sub(b). By
Corollary 1 (for AF dir

L,A(S) or AF con
L,A (S)) and Lemma 6 (for

AF sub
L,A(S)), a ∈ E . Thus φ ∈ Concs(E). �

Lemma 8 Frameworks of type AF dir
L,A(S) or AF con

L,A (S)
satisfy closure of extensions: CNL(Concs(E)) = Concs(E).
Proof. To see that Concs(E) ⊆ CNL(Concs(E)) sup-
pose that φ ∈ Concs(E). By the reflexivity of �, φ ∈
CNL(Concs(E)).

For the converse, suppose that φ ∈ CNL(Concs(E)). Then
there are a1, . . . , an ∈ E with Γi = Supp(ai) and φi =
Conc(ai) (1 ≤ i ≤ n) such that φ1, . . . , φn � φ. (Note that
n is finite by the compactness of L (Definition 1)). By the
completeness of C, φ1, . . . , φn ⇒ φ is C-derivable, and by
[Cut] so is a =

⋃n
i=1 Γi ⇒ φ. By Lemma 5, a ∈ E . �

As shown in Example 5, closure of extensions does not
hold for frameworks of type AF sub

L,A(S).

Lemma 9 Frameworks of type AF dir
L,A(S) or AF con

L,A (S)
satisfy consistency: Concs(E) is consistent.

Proof. Assume for a contradiction that Concs(E) is inconsis-
tent and hence there is a ⊆-minimal Θ = {φ1, . . . , φn} ⊆
Concs(E) for which � ¬

∧
Θ. By the completeness of C,

⇒ ¬
∧
Θ is derivable, and by Lemma 2 so is Θ⇒. For each

φi ∈ Θ there is an ai ∈ E for which φi = Conc(ai). By
[Cut], a = Supp(a1), . . . , Supp(an) ⇒ is derivable. Note
that there is some i ∈ {1, . . . , n} such that Supp(ai) �= ∅,
since otherwise, by [LMon] any sequent would be derivable
in C. By the soundness of C and the non-triviality of L this
is impossible. Suppose, without loss of generality, that γ ∈
Supp(a1). By [⇒¬], a = Supp(a1)\{γ}, . . . , Supp(an)⇒
¬γ is derivable in C. By Lemma 5, a ∈ E . But a attacks a1,
a contradiction to the conflict-freeness of E . �

As shown in Example 5, consistency does not hold for
frameworks of type AF sub

L,A(S).
(Strong) stability and maximal consistency for prf and stb

follow from the next lemma.

Lemma 10 For AF = AF dir
L,A(S) or AF = AF con

L,A (S),
we have that: Extprf(AF) = {ArgL(T ) | T ∈ MCSL(S)}
= Extstb(AF).
Proof. We first show that for T ∈ MCSL(S), ArgL(T ) ∈
Extstb(AF). Let T ∈ MCSL(S). Suppose that there are
a, b ∈ ArgL(T ) such that a attacks b. If b is ConUcut-
attacked by a then Supp(b) is inconsistent, in contradiction
to T being consistent. Thus, Conc(a)⇒ ¬φ is derivable for
φ ∈ Supp(b). By [Cut] with a, Supp(a) ⇒ ¬φ is derivable.
By Lemma 2, ⇒ ¬

∧
(Supp(a) ∪ {φ}) is derivable. Since

C is sound, � ¬
∧
(Supp(a) ∪ {φ}), which contradicts the

consistency of T . Thus, ArgL(T ) is conflict-free.
Let now b ∈ ArgL(S) \ ArgL(T ). Thus, there is a φ ∈

Supp(b) \ T and {φ} ∪ T is inconsistent. By simple manip-
ulations and the adequacy of C there is a c = Δ ⇒ ¬φ ∈
ArgL(T ) that attacks b. Thus, ArgL(T ) is stable.

Let E ∈ Extprf(AF). By Lemmas 5, 7, 8, and 9, E =
ArgL(T ) for some consistent T ⊆ S . Suppose that there is
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a superset T ′ ⊃ T that is a consistent subset of S . Then
ArgL(T ′) is stable (thus admissible), in contradiction to the
⊆-maximality of E . So T ∈ MCSL(S) and E is stable (as
shown above). �

For frameworks of type AF sub
L,A(S) we have strong stabil-

ity (but not maximal consistency – see Example 5):

Lemma 11 Frameworks of type AF sub
L,A(S) satisfy strong

stability, that is: Extprf(AF) = Extstb(AF).
Proof. By (Dung 1995), every stable extension is preferred,
thus we only need to show the “⊆”-direction. Let for this
E ∈ Extprf(AF). If E �∈ Extstb(AF) then there is a
a = Δ ⇒ δ ∈ ArgL(S) \ E and E does not attack a.
We show towards a contradiction that E ′ = E ∪ Sub(a)
is admissible. Note first that since E does not attack a it
also does not attack any argument in Sub(a) and no argu-
ment in Sub(a) attacks an argument in E . So E ′ is conflict-
free. Suppose that b attacks some a′ ∈ Sub(a). Thus,
Conc(b) ⇒ ¬

∧
Δ′ is C-derivable for some Δ′ ⊆ Supp(a′).

By [Cut], Supp(b) ⇒ ¬
∧
Δ′ is C-derivable. By Lemma 2,

Δ′ ⇒ ¬
∧
Supp(b) is C-derivable and so E ′ attacks b. But

then E ′ is admissible which is a contradiction to our assump-
tion. Thus, E ∈ Extstb(AF). �

4 Concluding Examples
To conclude, we consider some further examples, this time
based on non-classical core logics, that further motivate our
study and illustrate the results in the previous section.
Example 6 Consider again the framework in Example 2,
but this time where the base logic is intuitionistic logic (IL).
For this, one has to replace the sequent calculus accordingly,
e.g., trade LK by its single-conclusion counterpart LJ (see
(Gentzen 1934, page 192)). Clearly, this has far-reaching
consequences on the arguments that can be constructed from
the premises S = {p,¬p, q}. Yet, this change does not af-
fect the properties of the extensions of the underlying frame-
work. For instance, in Example 2 we have argued that q ⇒ q
belongs to every complete extension of the (original) frame-
work, since it is defended by ⇒ p ∨ ¬p. Now, while the
latter is not derivable in LJ anymore, we still can derive
⇒ ¬(p ∧ ¬p), which in turn defends q ⇒ q against an at-
tack from p,¬p ⇒ ¬q. Moreover, in this case we have that
MCSIL(S) = {{p, q}, {¬p, q}} and Extprf(AF IL(S)) =
{ArgIL({p, q}),ArgIL({¬p, q})} = Extstb(AF IL(S)), thus
properties such as strong stability remain valid despite the
change of the base logic.

The next example (a variation of (Straßer and Arieli 2019,
Example 3)) demonstrates the use of the modal logic S4 as
the core logic of a framework and that, indeed, the resulting
extensions satisfy the postulates as described in Table 1.
Example 7 Let S = {p, q, p ⊃ �r, q ⊃ �¬r}. Some of
the arguments in ArgS4(S) are the following:
a1 = p⇒ p a4 = q, q ⊃ �¬r ⇒ �¬r
a2 = q ⇒ q a5 = p, p ⊃ �r, q ⊃ �¬r ⇒ ¬q
a3 = p, p ⊃ �r ⇒ �r a6 = p, q, p ⊃ �r ⇒ ¬(q ⊃ �¬r)
a7 = p, q, q ⊃ �¬r ⇒ ¬(p ⊃ �r)
a8 = q, p ⊃ �r, q ⊃ �¬r ⇒ ¬p

a1

a2

a3a4

a8

a5

a7a6

Figure 3: A representation of the framework of Example 7.

Figure 3 is a graphical representation of (part of) the
framework for on the above setting with direct defeat.

The preferred extensions are: ArgS4({p, q, p ⊃ �r}),
ArgS4({p, q, q ⊃ �¬r}), ArgS4({p, p ⊃ �r, q ⊃ �¬r})
and ArgS4({q, p ⊃ �r, q ⊃ �¬r}). These extensions are
also the stable extensions. Also, MCSS4(S) = {{p, q, p ⊃
�r}, {p, q, q ⊃ �¬r}, {p, p ⊃ �r, q ⊃ �¬r}, {q, p ⊃
�r, q ⊃ �¬r}}. This corresponds to Lemmas 4, 9 and 10.
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