The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

Impact of Augmenting GRU Networks with
Iterative and Direct Strategies for Traffic Speed Forecasting

Armando Fandango, R. Paul Wiegand, Liqgiang Ni, Samiul Hasan
University of Central Florida
Orlando FL, USA
armando@ucf.edu

Abstract

In this paper, we report experimental results from augment-
ing Recurrent Neural Networks (RNN) with multi-step-ahead
strategies for traffic speed prediction. For multi-step-ahead
time series forecasting, researchers have applied MIMO, re-
cursive, and direct strategies to machine learning methods in
other domains. We applied the recursive and direct strategies
to the GRU networks for predicting multi-step-ahead traffic
speed and compared the prediction errors with the GRU net-
work without these strategies (i.e. MIMO strategy). Based
on the results from the experiments, we found that the di-
rect strategy and the MIMO strategy produce models with
smaller error metrics as compared to the recursive strategy.
The direct strategy is computationally very expensive, thus
MIMO strategy, i.e. the GRU models without any strategy, is
our preferred recommendation.

Introduction

We have observed the emergence of deep learning based
methods, specifically Recurrent Neural Network (RNN) ar-
chitectures, for multi-step-ahead traffic flow predictions (Li,
Wu, and Yoshinaga 2019; Tian et al. 2018; Yang et al. 2019;
Luo et al. 2019; Rahman 2019; Rahman and Hasan 2018;
Fu, Zhang, and Li 2016; Shao and Soong 2016; Chen et al.
2016; Tian and Pan 2015; Dai et al. 2017; 2019). While such
research has generally indicated that adopting RNN archi-
tecture improves predictions for short-term traffic states, the
impact of combining iterative and direct strategies with the
RNN models has not been studied until recently (Fandango
and Kapoor 2018; Fandango and Wiegand 2018).

In many different domains, the researchers have com-
bined the direct and iterative strategies with classical ma-
chine learning models and derived varied conclusions,
sometimes contradictory ones (Koesdwiady, Khatib, and
Karray 2018; Koesdwiady and Karray 2018; Taieb and
Hyndman 2012; Hamzagebi, Akay, and Kutay 2009; Wen,
Torkkola, and Narayanaswamy 2017; An and Anh 2015;
Bontempi et al. 2013; Taieb et al. 2012; Taieb 2014; Tibbitt
et al. 2013). For example, while comparing direct and recur-
sive strategies, Chang et al. concluded recursive strategies
produced better forecasts (Chang, Chiang, and Chang 2007).
On the other hand, Hamzacebi et al. concluded that direct
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strategies produced better forecasts (Hamzagebi, Akay, and
Kutay 2009). These confusing conclusions and the lack of
availability of research augmenting the RNN architectures
with multi-step-ahead strategies motivates a strong desire to
explore this area further.

In this paper, we present our investigation of the following
question: Does augmenting the RNN architectures with iter-
ative or direct strategies for multi-step-ahead traffic speed
prediction reduce error metrics such as MSE, MAPE and
SMAPE?. This paper extends recent work that used a smaller
dataset (Fandango and Kapoor 2018; Fandango and Wie-
gand 2018) by adding a much larger data set from 88 de-
tectors and by adding additional statistical analysis of the
results.

Methods

Here we present a general description of the problem of
multi-step-ahead traffic prediction, as well as the recursive,
direct and MIMO strategies. In addition, we describe the re-
current neural network architecture we consider, gated re-
current unit architectures.

Multi-step-ahead Traffic Prediction

Traffic state prediction can be formally written as follows:
{.’L’t/;t/ =N+ 17 ceny N + h} = f({.’L't7t = 1, ,N})7

where:

e 1, is the observed characteristic of traffic state such as
speed or volume at time ¢ in a specific location in the
transportation network

o {xy;t =1,..., N} is the given sequence of observations

o {xy;t' = N+ 1,...,N + h} is the predicted sequence
for h number of future time steps; for multi-step-ahead
h > 2, for one-step-ahead h = 1

Multi-step-ahead Strategies

In a recursive strategy, a single one-step-ahead model is
trained on a fixed window of time steps (Algorithm 1), for-
mally written as follows:

Tip1 = fo {Te—wg1, 2}, 0),



Algorithm 1: train with recursive strategy

Algorithm 4: predict with direct strategy

Imput : {xi—1,..., =N}
Output: fy

1 Prepare data in rows of (features, label) pairs such
that features = {z_qy1, ..., ¢ }, label = {xs41 }

2 for all (features, label) pairs do

3 | find optimal 6 such that label < fo(features)

where 6 is the vector of model parameters and w is the win-
dow size or lag, i.e. number of past time steps to use as fea-
tures.

The trained model fy is used to predict the value x; 1,
and the predicted value is appended to the input window for
predicting the value at next time step. This is repeated until
the value x;, is predicted (Algorithm 2).

Algorithm 2: predict with recursive strategy

Input : fo, X = {@t_wi1,.., @t} h
Output: {zty1,...,Te4n}
1 for 0 € {1..h} do
2 L Tops < fol{Tt45—ws s Teg5-1})
3

append ;15 to X
Here, if w < h then the future forecasts start having only
predicted values as input, thus accelerating the accumulation
of prediction errors.
In the direct strategy, h number of one-step-ahead models
are trained on fixed window of time steps to forecast 6*"-
step-ahead (Algorithm 3), written as follows:

Tits = [5,05 {Zt—wt1s 2t} O5),
where 0 is the parameter vector of model #.

Algorithm 3: train with direct strategy

Input : {x¢—1,...,24=n},h
Output: {f50,;0 € {1..h}}

1 for 6 € {1..h} do
2 Prepare data in rows of (features, label) pairs such
that features = {=+—_ 41, ..., ¥+ }, label = {z1 45}
for all (features, label) pairs do
find optimal 6 such that
L label < fs5.9,(features)

F N

Each of the §*" trained model is used to predict the value
5t -step-ahead (Algorithm 4), and the predictions are ap-
pended together to return the forecast vector.

The multiple-input-multiple-output (MIMO) strategy is
the default strategy used if neither of the above strategies are
employed. In this strategy, a single multi-step-ahead model
is trained on a fixed window of time steps (Algorithm 5),
formally written as follows:

{Zt41s o Tegn} = fho {zt—wt1s e}, On),
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Input : {fs50,;0 € 1.h}, X ={x¢—wt1,..., T}, h
Output: {x4 1, ..., Te4n}

1 for § € {1..h} do

2 | woys < fs,0,(X)

3 concat all x, s to get the output

® ©®®6® ©
) = O—O—0—0
®© © 0 O-0

Figure 1: Recurrent Neural Network (RNN) Architecture

where 6}, is the parameter vector of the model.

Algorithm 5: train with MIMO strategy

Input : {z;—1,...,24=n}
Output: f}, o
1 Prepare data in rows of (features, labels) pairs such
that features = {z_q 41, ..., Tt }, labels =
{Tet1, - Tean}
2 for all (features, labels) pairs do
3 L find optimal 6 such that

labels < fn.o(features)
The trained model fj ¢ is used to predict the values
{xt41, ..., x¢1p } in one shot (Algorithm 6).

Algorithm 6: predict with MIMO strategy

Input : fj 9, X = {z1_wy1, s Ty}
Output: {x4y1,...,Te4n}

VATt Tgn } fh,a(X)

Gated Recurrent Unit (GRU) RNNs

Recurrent Neural Network (RNN) architectures (Elman
1990) build on top of feed-forward neural networks by pro-
viding a mechanism for using the output for current state as
input to next state within the same layer as shown in Fig. 1.
This kind of architecture is well-suited to time series data
because the inputs at next time step often depend on the pre-
vious time steps.

Deep RNN architectures suffer from the problem of van-
ishing and exploding gradients when more cells or hidden
layers are added. The gradients gradually diminish to zero,
or they become so large that they tend to approach oo (infin-
ity). Hence, many variants of RNN have been proposed in
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Figure 2: GRU Network Architecture

the literature such as Gated Recurrent Units (GRU). For the
experiments in this paper, GRU architecture was used since
it had shown accuracy comparable to LSTM but had better
compute and memory performance.

A Gated Recurrent Unit (GRU) is a simplified architec-
ture compared to LSTM (Cho et al. 2014). In GRU, fewer
gates and only one kind of working memory h is used, thus
making it computationally less expensive. The GRU cell has
two inputs: input x at time ¢ and memory h from time ¢t — 1
as shown in Fig. 2. The computations in a GRU cell are de-
scribed below.

e Update gate defines how much of the memory should be
saved and is computed as follows:

u(’) = o(w™ -+ w4+ 0™

e Reset gate determines if current state needs to be com-
bined with memory from previous state and is computed
as follows:

r,«() — O—(w(”ﬂ) Sz wh) . hi_1 + b(r))

e The output of reset gate is multiplied with output from
previous state. This multiplied value, together with cur-
rent input is then subjected to a non-linearity, mostly tanh
to produce the candidate memory. The candidate memory
is computed as follows:

h(-) = tanh(w(i”g) cxp +wh) (re - he—q) + b(m)

e From the candidate memory, previous state output and up-
date gate output, the final output is computed as follows:

he = (ug - he) + (1 — ) - hy—1)

Experiment and Results
The Dataset

The data for the experiments came from California Perfor-
mance Measurement System. In this data set, real-time av-
erage speed data, aggregated at 5-minute intervals, from 88
detectors located at different highways across the state of
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Figure 3: Location of all selected detectors in California
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Figure 4: Location of the selected detectors in San Luis
Obispo area of California

California was collected at the locations shown in Fig. 3 and
4.

Collection of data from a variety of highways, freeways,
and tollways ensures that we capture a diversity of differ-
ent kinds of patterns. The western areas of California were
selected because the roads in this district connect to differ-
ent commercial areas from Silicon Valley to San Diego, thus
making more data available for the purpose of research.



The data was filtered to include records only from years
2015 to 2018, from the third month to eighth month, and
from weekdays Monday to Friday. All sensor data was
scaled to be between 0 and 1, and transformed to window
size of 24 steps (i.e. 2 hours) as features and 12 steps (i.e. 1
hour) as labels. No data was smoothed with statistical meth-
ods such as de-trending, de-seasonalizing, and differencing
etc. because we wanted to avoid the effects that such pre-
processing can have on the predictions.

Experimental Setup

Since GRU architectures were found to perform best in pre-
liminary experiments, we focus our attention on GRU archi-
tecture in this paper. We consider GRU-based models with
all the three strategies. The models were built using Keras,
the popular high-level deep learning library that sits on top
of the TensorFlow framework from Google (Fandango 2017;
2018). As the primary goal was to test the effect of aug-
menting the network architecture with the strategies, the
best hyper parameter configuration from preliminary runs
was picked for all the three strategies. These best hyper-
parameters were obtained from the MIMO strategy.

A separate model was built for each station sensor iden-
tifier and strategy combination. For each model the experi-
ment was repeated 10 times, and the mean of these 10 results
was considered for further calculations. For the purpose of
building the model, the first 80% data was used for training
and the next 10% data was used for validation. The remain-
ing 10% data was used as test set for reporting the results.

Performance Metrics

Four different metrics are popular in the traffic speed pre-
diction community, hence, all of the following metrics were
computed on the test data (Barros, Araujo, and Rossetti
2015):

e Mean Square Error (MSE) = % Zi\’: L (e — ye)?
e Mean Absolute Error (MAE) = = S" | |4, — 4|

e Mean Absolute Percentage Error (MAPE) =
N At_ t
e Symmetric MAPE (SMAPE)=1% S~V | %

Experiment Results

From the results we observe that— except for a couple of
detectors out of the 88 — the recursive strategies almost al-
ways had the worst error for any of the error metric (Fig. 5).
Thus the prediction error of recursive strategies was almost
always higher as compared to direct and MIMO strategies.
The plots of the performance metrics for the test data are
shown in Fig. 5 and 6. MIMO strategies are basically RNN
networks that can be further tuned to give better results, and
these strategies performed reasonably well.

To confirm this visual inspection, a non-parametric Fried-
man rank-sum test was applied to the test data metrics to
find if the difference between the strategies was significant.
The Friedman test ranks the strategies from 1 to n for each
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Figure 5: Error measures for all three strategies
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Figure 6: Boxplots for all error measures and strategies

dataset separately. After the ranking, the test compares the
average rank of all strategies. The p-values of the Fried-
man test for MAE, MSE, MAPE, and SMAPE were 1.1e-27,
1.7e-27, 1.5e-25, 6.5e-28 respectively. The p-values of the
Friedman test for all the four metrics were less than 0.05,
thus the null hypothesis was rejected, and we conclude the
differences are significant.

Shaffer’s post-hoc test was applied to find out the if the
pairwise differences were significant. From the results of
Shaffer’s post-hoc test, there was not enough evidence to



reject the null hypothesis (that the strategies produce sim-
ilar error values) between the direct and MIMO strategies.
However, the direct strategy was 10 to 12 times more com-
putationally expensive because of the need to build 12 sep-
arate models and to run inference 12 times for each of the
prediction horizon time steps.

Conclusion and Future Work

In this paper we presented our results from augmenting
recurrent neural networks with two popular strategies for
multi-step-ahead predictions. Through our experiments we
observed that recurrent strategies do not perform as well as
MIMO and direct strategies.

In the recurrent strategy, first one-step-ahead is predicted
and then the predicted value is combined with the observed
data to predict the next time-step value. As we go farther
in our prediction horizon, the input data consists of more
predicted entries, thus the cumulative effect of the predicted
error increases the final error metric values. That is why out
of 88 datasets, the recurrent strategy had the lowest score for
only a couple of datasets.

The MIMO and direct strategies produced almost compa-
rable results, but direct strategies are computationally expen-
sive. For predicting 12 times ahead, a direct strategy is 10
to 12 times slower and consumes 12 times more resources
in order to build the 12 models. Thus we will focus our fu-
ture research on MIMO models. Our observation aligns with
similar findings in applying these strategies to classical ma-
chine learning models (Wen, Torkkola, and Narayanaswamy
2017; Taieb et al. 2012).

In the future we plan to experiment further on data from
detectors on Florida D5 highways such as SR-417, SR-408
and I[-4. We also plan to run these experiments with tunable
synthetic data sets such as Mackey-Glass chaotic time se-
ries. Further, we would like to learn the difference between
creating a global model for all the detectors vs. creating a
separate model for each detector. Finally, we want to exam-
ine the effectiveness of transfer learning so that the models
do not have to be trained fully on newly arrived data.
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