
Uncertainty Quantification in Multimodal Ensembles of Deep Learners

Katherine E. Brown, Farzana Ahamed Bhuiyan, Douglas A. Talbert
{kebrown46, fbhuiyan42}@students.tntech.edu, dtalbert@tntech.edu

Department of Computer Science
Tennessee Technological University

1 William Jones Drive
Cookeville, TN 38505

Abstract

Uncertainty quantification in deep learning is an active area
of research that examines two primary types of uncertainty
in deep learning: epistemic uncertainty and aleatoric uncer-
tainty. Epistemic uncertainty is caused by not having enough
data to adequately learn. This creates volatility in the param-
eters and predictions and causes uncertainty. High epistemic
uncertainty can indicate that the model’s prediction is based
on a pattern with which is it not familiar. Aleatoric uncer-
tainty measures the uncertainty due to noise in the data. Two
additional active areas of research are multimodal learning
and malware analysis. Multimodal learning takes into con-
sideration distinct expressions of features such as different
representations (e.g., audio and visual data) or different sam-
pling techniques. Multimodal learning has recently been used
in malware analysis to combine multiple types of features. In
this work, we present and analyze a novel technique to mea-
sure epistemic uncertainty from deep ensembles of modali-
ties. Our results suggest that deep ensembles of modalities
provide higher accuracy and lower uncertainty that the con-
stituent single modalities and than the comparable hierarchi-
cal multimodal deep learner.

Introduction

Uncertainty in deep learning has received significant atten-
tion in recent years. There has been work in measuring
uncertainty in deep neural networks (Gal and Ghahramani
2016; Kendall and Gal 2017; Lakshminarayanan and others
2017). There has also been work in utilizing uncertainty in
domain-specific tasks. Uncertainty quantification has been
used to identify inputs for which a human expert is needed to
verify or refute an algorithm’s prediction (Leibig and others
2017; Brown and Talbert 2019). Uncertainty quantification
has also been applied to self-driving cars for self-detection
of potentially dangerous situations (Michelmore and others
2018)

This paper uses the domain of malware detection to ex-
plore uncertainty in multimodal deep learning. Malware can
cause damage to devices or leak the private information
stored on them. The Android platform provides both a large
pool of potential victims and ease of propagation. In May

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2019, The Verge reports 2.5 billion active Android devices
with most of these devices connected some other device at
some point in their lifetime (Brandom 2019). Thus, it is im-
portant to effectively detect Android malware. Hierarchical
multimodal learning has been applied to this task before, but
in this work we also present an approach using ensembles
of deep learners using different modalities. Additionally, we
assess uncertainty quantification in both approaches.

In this work, we apply deep ensembles of modalities to
malware detection. We compare these to hierarchical mul-
timodal neural networks and neural networks from single
modalities. Further, we measure and assess the associated
uncertainty.

Background and Related Work

In this section, we present background and related work into
uncertainty quantification in deep learning, machine learn-
ing ensembles, and multimodal learning. To our knowledge,
this is the first work describing uncertainty quantification in
a hierarchical multimodal neural network.

Uncertainty Quantification in Deep Learning

Uncertainty in deep learning can be divided into two cate-
gories: epistemic uncertainty and aleatoric uncertainty. Epis-
temic uncertainty results from an inability to model the pro-
vided data effectively (Kendall and Gal 2017). Typically,
this results from not having enough training data available
to allow the network to learn an effective generalization or
to converge its parameters. As a result, epistemic uncertainty
will be high for data that the model has not encountered and
can be reduced by training the model on more data. Epis-
temic uncertainty is also referred to as model uncertainty
since the uncertainty is inherent in the model itself (Kendall
and Gal 2017). Aleatoric uncertainty, however, arises from
noise in the data itself.

Epistemic uncertainty can be measured with a technique
that uses active dropout layers during training and testing of
the model (Gal and Ghahramani 2016). These dropout layers
are placed between the weight layers of the neural network.
We refer to these dropout layers as “persistent dropout.” In
general, dropout deactivates neurons in a specific layer with
some probability (Srivastava and others 2014). In training,

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

422

this provides a regularization effect. When kept active dur-
ing testing, it places a distribution over the weights in the
neural network (Gal and Ghahramani 2016). Measuring un-
certainty of an input requires T > 1 forward passes through
the neural network to create a probability distribution. The
standard deviation of this distribution captures the degree of
uncertainty associated with the input. If the predictions have
a high variance or standard deviation, then the model is un-
certain as to what the final prediction of the data point should
be.

Ensembles of deep neural networks have been used to
generate uncertainty predictions (Lakshminarayanan and
others 2017). The technique consists of training an ensem-
ble of deep neural networks to make multiple predictions on
both the predicted class and the uncertainty value. Each net-
work architecture is randomly generated to help reduce the
correlation between models, and the final prediction and un-
certainty value are ascertained through averaging the outputs
of the model. This is combined with training the ensembles
with adversarial examples to increase the robustness of the
models. The authors do not explicitly indicate if their tech-
nique measures epistemic or aleatoric uncertainty (or both).

Ensemble Learning

Ensemble learning consists of combining multiple classi-
fiers to create a stronger overall classifier (Opitz and Maclin
1999). Ensemble learning comes in three forms: bagging,
boosting, and stacking. The reader is referred to (Opitz and
Maclin 1999) for information about bagging and boosting.
The technique we employ is stacking. Stacking is a tech-
nique that combine classifiers by using the outputs of the in-
dividual models of the ensemble as inputs to a final machine
learning model (Opitz and Maclin 1999; Wolpert 1992).
This final machine learning model learns how to process
the predictions of the models in the ensemble. This allows
the ensemble to learn conditions under which different base
classifiers should have more influence.

The idea of creating an ensemble of neural networks is
not new (Hansen and Salamon 1990). Historically, research
focused on generating predictive networks with good per-
formance that make different mistakes (Opitz and Shavlik
1996b; 1996a; Zhou and others 2001). Ensembles of neural
networks have also been used for malware detection. Yan et
al. (Yan, Qi, and Rao 2018) utilized an ensemble of deep
learning techniques to classify software as benign or mal-
ware. This technique used a Long Short-Term Memory Net-
work (LSTM) (Gers and others 1999) and a Convolutional
Neural Network (CNN) (Krizhevsky and others 2012) with
a Logistic Regression model (Kleinbaum and others 2002)
learning the final prediction from the output of the deep
learning technique.

Logistic Regression

Logistic regression is a classical machine learning tech-
nique that utilizes linear models for classification purposes
(McCullagh and Nelder 1989). A general linear regression
model can predict any positive or negative real value that
could far exceed the bounds of the classification task. This,

along with the discrete nature of classification tasks, make
linear regression inadequate for classification.

To remedy this, the logistic regression model uses the
sigmoid function to keep the output of the model in [0, 1].
This allows predictions to be interpreted as a probability.
For multi-class classification, a one-vs-all approach can be
applied to ascertain probabilities for each class.

Thus, for input vector x with x1, x2, ..., xn ∈ x, the
learned model takes the form

f(x) =
1

1 + eα1x1+α2x2+...+αnxn
,

learning constant coefficients α1, α2, ..., αn.

Multimodal Learning

In the context of machine learning, a modality is collec-
tion of data that represents a distinct way of expressing a
phenomenon (Ramachandram and Taylor 2017). For exam-
ple, a modality can be defined by the representation of the
data (e.g., text, audio, and video) (Liu and others 2018). In
the context of our multimodal malware analysis, a modality
is defined by the type of data collected, such as API calls
or strings present in the Android APK file (Kim and oth-
ers 2018). It is assumed that features in the same modality
are related in some way. For example, we consider all the
strings in the source code as its own modality; however, we
do not consider text in the application’s manifest XML file
as stings. Instead, these strings are their own modality, since
the text originated elsewhere.

In traditional multimodal learning, the individual modali-
ties consist of data that are describing the same phenomenon
but require completely different processing techniques (e.g.,
image and text data) (Almaadeed and others 2015; Tzirakis
and others 2017; Poria and others 2016). In our case, a
modality is a collection of data describing one aspect of the
malware analysis problem. Utilizing modalities allows for
the incorporation of domain knowledge, with each modality
given its own hierarchical representation in a neural network
(Kim and others 2018). This can allow more features to be
learned from each modality and provided to a deep neural
network, thus increasing the representation capacity of the
network(Liu and others 2018). Second, this can increase the
efficiency of the network. Each modality can be trained indi-
vidually before being combined for classification (Kim and
others 2018). It may be the case that using a fully connected
neural network is not possible given the size of the feature
space and the physical limitations of computing hardware.
However, using a multimodal approach can reduce the toll
on physical hardware while allowing use of all features.

Uncertainty Quantification in Deep

Multimodal Neural Networks

Deep Multimodal Neural Network

The multimodal neural network (MMNN) implemented is
inspired by (Kim and others 2018), who had success with
this architecture. The MMNN has two primary stages: the
feature extraction stage and the classification stage. The fea-
ture extraction stage consists of a separate neural network

423

Figure 1: Diagram of Multimodal Architecture

Stage Layer Size Activation

Feature Extraction

Input Layer N/A N/A
Hidden Layer 5000 ReLU
Hidden Layer 2500 ReLU
Hidden Layer 1000 ReLU

Classification

Hidden Layer 500 ReLU
Hidden Layer 100 ReLU
Hidden Layer 10 ReLU
Output Layer 1 Sigmoid

Table 1: Architecture used to for Feature Extraction and
Classification. This architecture is also used to pre-train the
individual feature extractors

for each modality. The outputs of the last layer of each
of the feature extractors are then combined to become the
first layer of the multimodal classification stage. Although
there are multiple encoding strategies for multimodal neu-
ral networks (e.g. (Chao and others 2015; Wang and oth-
ers 2017)), we chose to follow the successful work of Kim
et al. (Kim and others 2018) for this domain. A compari-
son of various encoding methods is beyond the scope of this
work. The number of layers that process the feature extrac-
tion before concatenation is arbitrary; however, this archi-
tecture has been utilized previously in the literature to great
success (Kim and others 2018). The classification layer then
processes these extracted features into a final classification.
Figure 1 and Table 1 give the architecture and parameters
settings for the architecture.

Due to the size of the entire neural network, it is difficult
to train the entire feature extraction stage and the classifica-
tion stage concurrently. Thus, as a first step, for each modal-
ity, we train a unimodal neural network to pre-train the fea-
ture extractor stage. The architecture of the unimodal mod-
els trained are given in Table 1. The feature extraction stages
of the unimodal models are combined to form the MMNN.
Then, only the classification stage of the MMNN is trained.

Extracting Uncertainty Information

To extract the uncertainty from the multimodal model, we
place persistent dropout layers before every hidden layer of

the feature extraction stage. Then, once the feature extrac-
tors for the individual modalities have been combined, per-
sistent dropout layers are placed before every hidden layer of
the classification stage. We found that a dropout probability
to 0.5 yielded the best accuracy. This means that each neu-
ron in a dropout layer will have a probability of p = 0.5 of
being set to 0 (Srivastava and others 2014). During the test-
ing phase of the neural network, each datum was sampled
through the network T = 100 times.

Dropout-Based Uncertainty Quantification in

Deep Ensembles

Deep Ensemble

Our deep ensemble, referred to as “the ensemble” in the up-
coming sections, combines using dropout to measure epis-
temic uncertainty (Gal and Ghahramani 2016) with the gen-
eral framework of (Lakshminarayanan and others 2017).
First, for each of the modalities, we train individual deep
neural networks using the architecture given in Table 1. Per-
sistent dropout is placed before every hidden layer with the
exception of before the first hidden layer.

To combine the models together into an ensemble, let p
be a vector of predicted probabilities from each of the uni-
modal models. Thus, for each pi ∈ p, pi ∈ [0, 1]. Then,
pj ∈ p corresponds to the probability that the sampled da-
tum has probability pj of being an element of the positive
class when sampled from the unimodal neural network re-
sponsible for modality j. The vector p is then provided as
input to a logistic regression stacker to provide a final pre-
diction. The logistic regression stacker is trained with the
predictions of the unimodal models on training data and the
labels of those data points.

Extracting Uncertainty Information

When an input x is provided to the model for prediction,
each individual model of the ensemble is sampled T = 100
times. An ensemble prediction is generated for each of these
T = 100 executions. From these ensemble predictions, a
probability distribution is created from the predicted prob-
abilities. We take the standard deviation of this probabil-
ity distribution to ascertain an uncertainty value. Instead of
predicting a variance from each model, which is consistent
with aleatoric uncertainty (Kendall and Gal 2017) (Laksh-
minarayanan and others 2017), we used dropout to measure
epistemic uncertainty. We chose to ascertain our uncertainty
value by using the standard deviation of the ensemble pre-
dictions to correspond to measuring epistemic uncertainty
from dropout.

Experimental Methodology

Dataset

For our experiments, we have a binary classification problem
that can be formally described as follows: let our dataset be
denoted as D = {D1,D2, ...,DM}, where M is the num-
ber of modalities in our dataset. Further, for each modal-
ity m ∈ {1, 2, ...,M}, it is the case that Dm = {(xi, yi)}
for i ∈ {1, 2, ..., N}, where N is the number of instances

424

Modality Number of Features

Function Opcodes 2396
Manifest 140
Method API 974
Method Opcodess 4,968
String 39,512
Total 47,990

Table 2: Breakdown of features per modality

Class Number Percent

Malicious 1257 60.93%
Benign 806 39.07%

Table 3: Breakdown of class labels of this dataset

in Dm. Further, the number of instances is the same for
each modality. Since this is a binary classification problem,
yi ∈ {0, 1}. For modalities Di and Dj where i �= j, it is as-
sumed that the feature sets are mutually exclusive. Further,
for each modality i ∈ {1, 2, ...,M}, the dataset Di can be
split into Di

train and Di
test where Di

train ∪ Di
test = Di and

Di
train∩Di

test = ∅. Further, for Di and Dj where i �= j, it is
the case that Di

train and Dj
train contain the same instances.

All modalities are trained and tested on the same instances.
The dataset that we utilize in our experiments contains

M = 5 modalities detailing various features extracted from
Android APKs (Kim and others 2018). The dataset totals
2,063 instances across a total of 47,990 features. We ran
multiple experiments with this data and found that the Func-
tion Opcodes, String, and Manifest modalities outperformed
all 5 modalties together. This led to a total of 42,048 fea-
tures across the three chosen modalities. Feature breakdown
by modality is given in Table 2. The class distribution is
given in Table 3. Information regarding the modalities can
be found in (Kim and others 2018).

Multimodal Neural Network

For performance evaluation, we trained each unimodal
model and combined classification layers for 400 epochs,
with early stopping enabled when a local maximum of the
binary accuracy on the validation data was achieved after 50
epochs pass with no improvements. We use binary cross-
entropy as the loss function and optimize using ADAM
(Kingma and Ba 2014). We evaluated metrics for three exe-
cutions of 10-fold stratified cross-validation. Statistical sig-
nificance was calculated using values from each fold of
cross-validation.

Ensemble Setup

The ensemble chosen was a stacking predictor created from
the unimodal models used to pre-train the feature extraction
stage of the multimodal neural network and a logistic regres-
sion model. We train and test the unimodal models with the
same data as the multimodal neural network, and as such,
when evaluated, each unimodal model is sampled T = 100
times with input data. All components of the ensemble are

trained with the same hyperparameters as those for multi-
modal neural network. The logistic regression model is from
the Scikit-learn library (Pedregosa and others 2011) and is
trained using grid search to optimize the parameters.

Evaluation of Uncertainty Quantification

To evaluate the uncertainty quantification of the models, we
use several metrics. First, we directly compare the average
uncertainty values between models of individual folds. Each
fold is equally split, and each model evaluated is trained and
tested on the same instances. Thus, it is possible to directly
compare the impact of each model on uncertainty.

The second evaluation technique of the uncertainty quan-
tification is to compare how well the models extrapolate
from training data to testing data. Average training uncer-
tainty is calculated by averaging the uncertainty ascertained
from the training data across all folds. Average testing un-
certainty is calculated by averaging the uncertainty ascer-
tained from the testing data across all folds. A measure of
epistemic uncertainty should result in a larger testing uncer-
tainty than training uncertainty (Gal and Ghahramani 2016).
This is because epistemic uncertainty should increase when
the model encounters data not seen in training. The model
should be fairly confident in its predictions for the training
data, since the model repeatedly processes the training data
during training; however, in a situation when the model en-
counters unseen data, the epistemic uncertainty should be
higher, since the model is relying on its own ability to infer-
ence rather than memory about seen data.

Experimental Environment

The models were created using the Keras deep learning li-
brary with Tensorflow backend (Chollet and others 2015;
Abadi and others 2015). The models were trained and eval-
uated on a high performance computing cluster with an Intel
Xeon E5-2680v4 CPU and an Nvidia Tesla K80 with 12GB
graphics memory.

Results

Model Performance

In Table 4, it is evident that the ensemble is the most accu-
rate of all the models tested. We use a paired T-test across
each fold to verify statistical significance of the claim that
the ensemble is the most accurate technique to at least 95%
confidence. P-values are given in Table 5.

Model Accuracy F1 Score AUC
Function Opcodes 0.6078 0.7555 0.4996
Manifest 0.9711 0.9766 0.9662
String 0.9439 0.9576 0.9365
MMNN 0.9471 0.9579 0.9855
Ensemble 0.9814 0.9849 0.9910

Table 4: Accuracy, F1-Score, and Area Under the Receiver
Operating Curve of each model. Best in bold.

425

Model P-Value

Function Opcodes 1.72E-45
Manifest 1.68E-08
String 4.45E-03
MMNN 2.28E-02

Table 5: P-values resulting from comparing the accuracy of
the ensemble to the accuracy of the either a single modality
or the mutli-modal neural network n = 30

Reducing Uncertainty

Table 6 contains the average uncertainty of the multimodal
neural network and the ensemble model. Numerically, un-
certainty is lowest in the ensemble and the highest in
MMNN. A paired T-test on the uncertainty of each fold indi-
cates that the ensemble reduces uncertainty from the String
modality and the multimodal neural network with a confi-
dence of 99%. Exact p-values are shown in Table 7.

Model Average Uncertainty

Function Opcodes 0.0190799
Manifest 0.018638
String 0.0551729
MMNN 0.0892703
Ensemble 0.0182969

Table 6: Average Uncertainty of each model. Best in bold.

Model P-Value

Function Opcodes 0.3512
Manifest 0.3926
String 4.33E-06
MMNN 8.88E-09

Table 7: P-values resulting from comparing the uncertainty
of the ensemble to the accuracy of the either a single modal-
ity or the mutli-modal neural network

Extrapolation

Finally, we measured the potency of the uncertainty metrics
between the multimodal and ensemble models by evaluating
how much epistemic uncertainty varies from training uncer-
tainty to testing uncertainty. Ideally, epistemic uncertainty
in a model should be greater on testing data than on training
data. This is an indicator that the uncertainty metric can suc-
cessfully detect that the model has not been trained on given
input.

To evaluate this, we took the average per-fold difference
of training uncertainty and testing uncertainty for the mul-
timodal network and the ensemble. These values are given
in Table 8. It is evident that the ensemble model has a
greatest uncertainty difference of all the models. Using the
paired T-test on the individual folds as before, these differ-
ences are statistically significant with a confidence of at least
95%. Thus, our technique for measuring epistemic uncer-
tainty appears to be more effective in ensembles of modali-

ties rather than in MMNNs. Unfortunately, the Function Op-
code modality does not experience the desired difference be-
tween test and train uncertainty. Undoubtedly, this results
from the model’s inability to infer from the function opcode
data, as shown in Table 8.

Model Extrapolation Value

Function Opcodes -0.0008459
Manifest 0.0052349
String 0.0018848
MMNN 0.0033502
Ensemble 0.006425651

Table 8: Difference Between Average Test Uncertainty and
Average Training Uncertainty for each model. Higher is bet-
ter. Best in bold.

Model P-Value

Function Opcodes 1.02E-08
Manifest 0.0475
String 3.21E-03
MMNN 0.0205

Table 9: P-values resulting from comparing the extrapolation
values of the ensemble to the other models using a paired T-
test. n = 30

Discussion

As evidenced in Table 4 and Table 5, our ensemble of modal-
ities outperforms both the unimodal and hierarchical model
(MMNN) with statistical significance. It is important to note
that utilizing persistent dropout may reduce the accuracy of
a model, since important neurons may be removed. Despite
the usage of persistent dropout, however, our ensemble was
able to achieve very high accuracy on this dataset.

The ensemble also had the lowest average uncertainty of
the methods we examined; however, this result was statisti-
cally significant only for the String modality and the hierar-
chical multimodal network. This is likely because of the rel-
atively large difference in uncertainty values. It is interesting
to note that the Function Opcodes modality had relatively
low uncertainty yet much lower accuracy. It is important
to note that the accuracy of the Function Opcodes modal-
ity aligns with the percent of malicious instances. Thus, the
low uncertainty results from the small amount of variation
in predictions for instances.

Finally, the ensemble technique had a much higher differ-
ence between average testing uncertainty and average train-
ing uncertainty. Higher values of epistemic uncertainty typ-
ically imply that the model has not encountered some in-
stance and might need human assistance in determining the
final classification. It can be important that a model recog-
nizes these instances effectively. As shown in Table 6 and
Table 7, our ensemble technique had a higher extrapolation
value than the other models. This means that the uncertainty
value is more likely to detect unseen examples.

426

Conclusion and Future Work

In this work, we presented a epistemic uncertainty mea-
sure for ensembles of deep neural networks and hierarchical
multimodal networks. Although the ensemble model does
not statistically significantly reduce uncertainty over that in
some of the individual modalities, this technique is able
to improve accuracy over the both individual models from
which it comprised and a hierarchical multimodal technique.
Further, we show that this ensemble-based technique more
clearly detects unseen examples compared to the other tech-
niques.

In the future, we would like to apply this technique to
other domains such as medical informatics and to addi-
tional datasets. Further, we would like to compare our un-
certainty quantification approach in deep ensembles to other
ensemble-based approaches. This work focused on an en-
semble compromised of neural networks with deep architec-
tures. Thus, studying the applicability of this work to shal-
low architectures is a possible future direction. Finally, we
would like to combine both epistemic and aleatoric uncer-
tainties in an ensemble-based technique.

References

Abadi, M., et al. 2015. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems. Software available from tensor-
flow.org.
Almaadeed, N., et al. 2015. Speaker identification using mul-
timodal neural networks and wavelet analysis. IET Biometrics
4(1):18–28.
Brandom, R. 2019. There are now 2.5 billion active android
devices. The Verge.
Brown, K., and Talbert, D. 2019. Estimating uncertainty in deep
image classification. In Proceedings of the American Medical
Informatics Association Annual Symposium.
Chao, L., et al. 2015. Long short term memory recurrent neural
network based multimodal dimensional emotion recognition. In
Proceedings of the 5th International Workshop on Audio/Visual
Emotion Challenge, 65–72.
Chollet, F., et al. 2015. Keras.
Gal, Y., and Ghahramani, Z. 2016. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learning.
In international conference on machine learning, 1050–1059.
Gers, F. A., et al. 1999. Learning to forget: Continual prediction
with lstm. Ninth International Conference on Artificial Neural
Networks ICANN 99.
Hansen, L. K., and Salamon, P. 1990. Neural network en-
sembles. IEEE Transactions on Pattern Analysis & Machine
Intelligence (10):993–1001.
Kendall, A., and Gal, Y. 2017. What uncertainties do we need
in bayesian deep learning for computer vision? In Advances in
neural information processing systems, 5574–5584.
Kim, T., et al. 2018. A multimodal deep learning method for
android malware detection using various features. IEEE Trans-
actions on Information Forensics and Security 14(3):773–788.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization.
Kleinbaum, D. G., et al. 2002. Logistic regression. Springer.

Krizhevsky, A., et al. 2012. Imagenet classification with deep
convolutional neural networks. In Advances in neural informa-
tion processing systems, 1097–1105.
Lakshminarayanan, B., et al. 2017. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In Advances
in Neural Information Processing Systems, 6402–6413.
Leibig, C., et al. 2017. Leveraging uncertainty information
from deep neural networks for disease detection. Scientific re-
ports 7(1):17816.
Liu, K., et al. 2018. Learn to combine modalities in multimodal
deep learning. arXiv preprint arXiv:1805.11730.
McCullagh, P., and Nelder, J. A. 1989. Generalized linear mod-
els.
Michelmore, R., et al. 2018. Evaluating uncertainty quantifica-
tion in end-to-end autonomous driving control. arXiv preprint
arXiv:1811.06817.
Opitz, D., and Maclin, R. 1999. Popular ensemble methods:
An empirical study. Journal of artificial intelligence research
11:169–198.
Opitz, D. W., and Shavlik, J. W. 1996a. Actively searching
for an effective neural network ensemble. Connection Science
8(3-4):337–354.
Opitz, D. W., and Shavlik, J. W. 1996b. Generating accurate and
diverse members of a neural-network ensemble. In Advances in
neural information processing systems, 535–541.
Pedregosa, F., et al. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12:2825–2830.
Poria, S., et al. 2016. Convolutional mkl based multimodal
emotion recognition and sentiment analysis. In 2016 IEEE
16th international conference on data mining (ICDM), 439–
448. IEEE.
Ramachandram, D., and Taylor, G. W. 2017. Deep multimodal
learning: A survey on recent advances and trends. IEEE Signal
Processing Magazine 34(6):96–108.
Srivastava, N., et al. 2014. Dropout: a simple way to pre-
vent neural networks from overfitting. The Journal of Machine
Learning Research 15(1):1929–1958.
Tzirakis, P., et al. 2017. End-to-end multimodal emotion recog-
nition using deep neural networks. IEEE Journal of Selected
Topics in Signal Processing 11(8):1301–1309.
Wang, X., et al. 2017. Multimodal transfer: A hierarchical deep
convolutional neural network for fast artistic style transfer. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 5239–5247.
Wolpert, D. H. 1992. Stacked generalization. Neural networks
5(2):241–259.
Yan, J.; Qi, Y.; and Rao, Q. 2018. Detecting malware with an
ensemble method based on deep neural network. Security and
Communication Networks 2018.
Zhou, Z., et al. 2001. Genetic algorithm based selective neural
network ensemble. In IJCAI-01: proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, Seat-
tle, Washington.

427

