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Abstract

The detection of orchestrated and potentially manipulative
campaigns in social media is far more meaningful than an-
alyzing single account behaviour but also more challenging
in terms of pattern recognition, data processing, and com-
putational complexity. While supervised learning methods
need an enormous amount of reliable ground truth data to
find rather inflexible patterns, classical unsupervised learn-
ing techniques need a lot of computational power to handle
large amount of data. This makes them infeasible for real-
time analysis. In this work, we demonstrate the applicability
of text stream clustering for the real-time detection of coordi-
nated campaigns.

Introduction

Social media platforms have become central institutions for
social and private content sharing as well as network build-
ing. This may foster democratic principles such as open
sharing of opinions and freedom of speech. At the same
time, the tight coupling of global networks, information
propagation, and underlying technical infrastructures allow
for strategic manipulation of the public opinion. Automa-
tion and coordinated human campaigns can amplify topics
worldwide without being recognized as such by users or
even classical multipliers such as journalists or deciders like
politicians, who lack a global view on the networks. To make
it even more complicated, the amount of data and informa-
tion running through the networks is too large for human
analytical capabilities.

A lot of research has been put into computer-aided detec-
tion of automated content spreaders in the context of opin-
ion manipulation. While research started with the attempt to
detect automation of single accounts (Ferrara et al. 2016;
Varol et al. 2017a), recent approaches increasingly focus
on the detection of collaboration of multiple (not neces-
sarily automated orchestrated) actors (Cresci et al. 2019;
Grimme, Assenmacher, and Adam 2018) in campaigns. As
one of the first, Lee et al. discriminate these campaigns into
organic campaigns that arise from classic human interac-
tion in social media and non-organic campaigns that are pro-
moted by artificial mechanisms or purchased from (and then
supported by) the social platform (Lee et al. 2014).
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While the research in campaign detection started with a-
posteriori analysis of network topologies, the clustering of
content, and the temporal investigation of topic develop-
ment, this mainly aimed for the identification of features
for machine learning approaches. More recent detection ap-
proaches afterwards focused on the application of machine
learning in campaign detection to identify characteristic pat-
terns of organic and non-organic campaigns (Varol et al.
2017b). However, there are some major disadvantage of
these approaches: first, they have to be trained using la-
belled data. This data is usually not sufficiently available
leaving the approaches imprecise. Second, the learned pat-
terns can only capture the characteristics found in available
input and learning data and may become inflexible regarding
new kinds of orchestrated campaigns.

Only very recent work (Cresci et al. 2019; Chen and Sub-
ramanian 2018; Yang et al. 2019) addresses the application
of unsupervised detection methods like clustering and net-
work analysis as solutions to some of the issues. These ap-
proaches do not need initial training and can detect unknown
characteristics. However, as correctly pointed out in (Yang et
al. 2019), these methods are computationally too complex to
handle observed social media content in real-time.

In this paper, we argue and empirically show that unsuper-
vised stream clustering can solve the issue of analyzing real-
time data. Different to classical unsupervised techniques,
stream clustering approaches continuously update current
clusters without complete and expensive re-clustering of all
data. We apply and extend a new text stream clustering ap-
proach (Carnein, Assenmacher, and Trautmann 2017b) to
discover and observe topics and their importance in real time
social media discussions. The temporal patterns of the top-
ics can then be considered as indicators to support human
analysts in detecting organic and non-organic campaigns. In-
terestingly, the results match offline detected patterns from
earlier work (Lee et al. 2014).

Text Stream Clustering

The main goal of stream clustering in general is to apply
clustering in in an online fashion. The general assumption
that the data stream is potentially unbounded requires the
algorithm to iterate over the data only once (Silva et al. 2013;
Carnein, Assenmacher, and Trautmann 2017a).

Usually, stream clustering algorithms follow a two-step

The Thirty-Third  International  
FLAIRS Conference (FLAIRS-33) 

303



approach. During the online phase, observations are fetched
from a data stream and are directly processed into micro-
clusters. Micro-clusters are aggregations of multiple obser-
vations which are located in dense areas. Hence, it is not
necessary to store each observation but only a set of micro-
clusters is maintained which strives to represent the original
data. In a second step, the offline-phase, micro-clusters can
be again clustered on-demand by traditional clustering tech-
niques. This re-clustering phase can be triggered at any point
in time and is independent of the online phase. Therefore the
restriction that data should be only processed once does not
apply in this step. Originally micro-clusters were designed to
aggregate numeric data. However, the idea can be extended
to handle textual data as well (Aggarwal 2014).

A crucial concept that differentiates stream clustering ap-
proaches from incremental algorithms is the explicit notion
of time. In an online stream, the underlying data distribution
may change over time (known as concept drift). Therefore,
micro-clusters have some mechanisms to account for these
changes. Usually, an associated cluster weight is slowly de-
cayed, if a micro-cluster is not updated anymore. Ultimately,
a micro-cluster will be removed from the clustering, if the
weight falls below a certain threshold.

textClust: While a variety of different stream-clustering
algorithms were proposed for metric data, little research
is put into the development of text-based stream algo-
rithms. For our experiments, we employ the textClust al-
gorithm, presented in (Carnein, Assenmacher, and Traut-
mann 2017b)1. However, it should be stressed, that the met-
ric which is introduced in this paper to detect campaigns is
generalizable and can be applied on any stream clustering
algorithm that utilizes fading techniques to deal with con-
cept drift. The textClust algorithm produces micro-clusters
mc which are represented as 3-tuples:

mc = (w, t, TF )

The weight w of a micro-cluster reflects its relative impor-
tance. Each time a new observation is added to an existing
micro-cluster, the weight is increased by 1. To account for
concept-drift, the weight is exponentially decayed at each
time step using

f(w) = w ∗ 2−λ(tnow−t),

where λ denotes the fading factor, tnow the current time
and t the time the respective micro-cluster was last updated.
Every tgap timesteps a cleanup procedure is called and all
micro-clusters below a predefined threshold are removed
from the clustering result. The same applies for all tokens
within a respective micro-cluster.

The TF vector contains the term frequency of represen-
tative words as n-grams (for our experiments we employed
bi-grams). To calculate the distance between two micro-
clusters the cosine similarity between the micro-clusters
tfidf vectors is computed. Tfidf extends the traditional term

1An implementation of the algorithm in Python can be
found here: https://wiwi-gitlab.uni-muenster.de/
d_asse011/textclustpy

frequency by weighting down words that do appear in many
documents, since they are less important. To obtain the in-
verse document frequency, the terms over all micro-clusters
are used. When a new observation arrives, a new micro-
cluster is created and the distance to all other micro-clusters
is calculated. The closest micro-cluster to the newly created
one is selected for a merge, if it falls below a predefined ra-
dius threshold r. Otherwise the new micro-cluster is added
to the set of all clusters. The parameters r, λ and tgap are
parameters which have to be manually set by the user.

Adjusted Cosine Similarity: While the original textClust
algorithm utilizes the cosine-similarity for calculating the
distance between two micro-clusters, we choose a variant
which is frequently utilized in the area of Collaborative Fil-
tering: the adjusted cosine-similarity. Often, micro-clusters
that represent some kind of trend, i.e. which are updated fre-
quently, exhibit high token weights. A new observation that
arrives from the stream naturally consists of low weights,
because of its novelty. Although a trend micro-cluster and a
new micro-cluster might be similar in terms of tokens, the
overall weight distribution completely differs. To overcome
this issue, we take the average weight of each micro-cluster
into account, by computing each single token weight rela-
tive to the average weight. Let A and B represent two tfidf
vectors from two different micro-clusters, with their respec-
tive means being μA and μB . The adjusted cosine similarity
between both vectors is then defined as follows:

cos(α) =

∑
i(Ai − μA)(Bi − μB)√∑

i(Ai − μA)2 ·
√∑

i(Bi − μB)2

Micro-cluster monitoring to detect campaigns

Monitoring micro-clusters over time and by this means iden-
tifying suspicious cluster evolutions that differ from nor-
mal trending content and therefore indicating potential cam-
paigns, is one of the key goals of this work. Since a large
number of micro-clusters are created during clustering, man-
ual inspection of each individual one is often infeasible.
Therefore, it is necessary to automatically reduce the amount
of clusters of interest to a size that can be manually inspected
by human experts assisted by sophisticated indicators.

Per definition a micro-cluster represents a topic that has
been recently discussed in the text stream. The correspond-
ing token weights furthermore indicate how many text mes-
sages were merged into that respective micro-cluster. A
naive approach for monitoring the evolution of topics would
be to only observe those micro-clusters with the highest
cluster weights. While for plain trend detection, the ap-
proach might be valid, we are more interested in unusual pat-
terns that might indicate non-organic campaigns. Varol et al.,
already differentiated between organic and promoted trends
and showed that both exhibit some distinct temporal charac-
teristics. In our work we assume that unusual, and therefore
interesting micro-clusters show some detectable abnormal-
ities during their lifespan. Although a deeper investigation
of a suspicious micro-cluster has do be done manually af-
terwards, we define a selection criterion to detect candidate
micro-clusters automatically.
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Figure 1: Three of all 55 filtered micro-cluster developments. The dashed vertical line indicates the beginning of the broadcasted
tv-debate.

The change of the micro-cluster weight Δw = w − wlast

indicates how the weight of a micro-cluster changes within
tgap cluster updates (wlast indicates the cluster weight from
tgap timesteps before). The average weight change over all
k micro clusters μ =

∑
i Δwi

k and the corresponding stan-

dard deviation σ =
√

1
k−1

∑k
i=1(Δwi

− μ)2 at one specific
point in time can be used to identify clusters with unusual
temporal patterns. Since we cannot assume normally dis-
tributed changes, we utilize Chebyshev’s inequality to mem-
orize clusters that do exhbit cluster changes with small prob-
abilities (Mood, Graybill, and Boes 1974). Let X be a ran-
dom variable with expected value μ, standard deviation σ
and k any positive number. The inequality states that:

P (|X − μ| ≥ k ∗ σ) ≤ 1

k2

Concretely we choose a 6σ (k = 6) threshold to ensure
that only 2.7778% of observations are selected as special
and thus interesting. To conclude, the set I of clusters that
should be furthermore investigated is defined as follows:

I = {mc||Δw − μ| ≥ 6 · σ}
To implement the proposed changes, we extend a micro

cluster to a 4-tuple with an additional wlast component:

mc = (w,wlast, t, TF )

wlast cannot be directly calculated from w, since it is con-
stantly updated and we are interested in the change within
tgap timesteps and not in the change since the last update.

Case Study Evaluation

As already discussed before, evaluating our approach is
problematic because of missing labelled data. In this pre-
liminary work, we show within two example cases that our
approach of detecting campaigns works. First, we look at
Twitter conversations during the German Federal election
in 2017. During a television debate between Angela Merkel
and her competitor Martin Schulz, a coordinated hashtag in-
jection attack was observed and confirmed by media after-
wards. Using this well known attack, we evaluate whether

our approach is capable of identifying this coordinated cam-
paign from the stream of all 500,000 Tweets that were gath-
ered during the debate. Second, we look at a stream of
about 400,000 tweets containing the keyword trump be-
tween the 4th and the 8th of November, 2019. For both sce-
narios we use a standard parameter setting for textClust with
λ = 0.001, r = 0.6, tgap = 100, which perform well for
both cases. The data was captured from the Twitter Stream-
ing API by filtering for the most popular topic-related hash-
tags (#tv-duel and #trump). Preprocessing steps such
as lemmatization and stopword removal were applied to im-
prove the clustering results.

Known Campaign during German Election: By utiliz-
ing the micro-cluster change criterion, we reduced the total
amount of interesting clusters from 260,000 to 55, which
is a manageable size for manual inspection. Most impor-
tantly, the micro-cluster that reflects the hashtag injection
attack is among those filtered clusters. Within Figure 1 the
change of weights for three selected micro-clusters is dis-
played. The orange timeline reflects the hashtag injection at-
tack. We see that the micro-cluster first slowly gained some
weight because the topic started trending directly before the
debate. Then, the cluster’s importance drastically increased
and completely faded out afterwards within a few hundred
iterations. As reported in media, a group of about 380 trolls
tried to establish a new hashtag traitor-duel by in-
jecting it into tweets that contained the popular #tv-duel
hashtag. However, the attack was not successful because the
hashtag was not adapted by other users as the rapid fading
of the micro-cluster reflects. Another attack was observed
later at night (blue timeline). In this case, a single account
spammed messages.

Campaign Discovery in Live Stream: Analysing the live
stream about trump, we found mechanisms of content am-
plification by single and multiple accounts. The orange and
blue time series both depict spreading of content by single
accounts. In line with (Lee et al. 2014), we observe sharp
spikes which are frequently repeated until they are slowly
removed from the clustering. In both cases, single accounts
simply promoted statements about Trump (positive and neg-
ative). The green timeline on the other hand shows a dif-
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Figure 2: Non organic micro-cluster evolution with spiking cluster weights within the trump stream

ferent amplification approach. Herein, a large news outlet
(Reuters) posted a tweet that Trump’s ”conscience” rule for
healthcare workers was struck down by a U.S. judge. Af-
terwards, the tweet text was copied and posted by multiple
other accounts. All of these accounts posted a large number
of tweets in the past (μ = 15.000). We assume that these ac-
counts use the Twitter API to automatically redistribute con-
tent that supports specific political views (here anti-Trump).

Discussion and Future Work

Our experiments exemplarily show that the approach of uti-
lizing text stream clustering and focusing on unusual pat-
terns of micro-cluster changes can be used to reduce the
amount of data that has to be manually inspected for real
time insights into suspicious campaigns in a text data stream.
In contrast to approaches that only focus on account level,
we are able to identify coordinated strategies of multiple ac-
counts. This essentially enables us to identify the actors in a
top-down approach: after the suspicious campaign topic has
been identified, it is easy to subsequently identify the actors -
may it be single (amplifying) robots or a group of distributed
collaborating human actors.

Due to the inherent lack of benchmark campaign data for
text streams, we are currently not able to conduct in-depth
quantitative evaluation of the approach. Future research also
comprises automatic parameter configuration for the algo-
rithm and our metric. Ideally parameters would be automati-
cally adjusted while the data-stream is processed. Moreover,
the experiments show the capabilities of real time campaign
detection but leaves an evaluation of campaign to the user.
Here, automatic tools could be added to simplify the dis-
crimination of harmless and malicious campaigns.
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