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Abstract

Writing style is a combination of consistent decisions at dif-
ferent levels of language production including lexical, syn-
tactic, and structural associated to a specific author (or au-
thor groups). While lexical-based models have been widely
explored in style-based text classification, relying on content
makes the model less scalable when dealing with heteroge-
neous data comprised of various topics. On the other hand,
syntactic models which are content-independent, are more ro-
bust against topic variance. In this paper, we introduce a syn-
tactic recurrent neural network to encode the syntactic pat-
terns of a document in a hierarchical structure. The model
first learns the syntactic representation of sentences from the
sequence of part-of-speech tags. Subsequently, the syntactic
representations of sentences are aggregated into document
representation using recurrent neural networks. Our experi-
mental results on PAN 2012 dataset for authorship attribution
task shows that syntactic neural network outperforms the lex-
ical model with the identical architecture by approximately
14% in terms of accuracy.

Introduction

Individuals express their thoughts in different ways due to
many factors including the conventions of language, edu-
cational background, intended audience, etc. In written lan-
guage, the combination of consistent conscious or uncon-
scious decisions in language production, known as writing
style, has been studied widely. Early work on computational
stylometry was introduced in the 1960s by Mosteller and
Wallace on federalist papers (Mosteller and Wallace 1964).
The unprecedented availability of digital data in recent years
along with the advancements in machine learning techniques
has led to an increase in scholarly attention to the field of
Computational stylometry (Koppel, Schler, and Argamon
2009; Neal et al. 2017).

Stylistic features are generally content-independent
which means that they are mainly consistent across differ-
ent documents written by a specific author or author groups.
Lexical, syntactic, and structural features are three main
families of stylistic features. Lexical features represent au-
thor’s character and word use preferences, while syntactic
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features capture the syntactic patterns of sentences in a doc-
ument. Structural features reveal information about how an
author organizes the structure of a document.

One of the basic problems which is rarely addressed in
the literature is the interaction of style and content. While
content words can be predictive features of authorial writ-
ing style due to the fact that they carry information about
author’s lexical choice, excluding content words as features
is a fundamental step for avoiding topic detection rather
than style detection (Daelemans 2013). Syntactic and struc-
tural features are content-independent which makes them ro-
bust against divergence of topics. The frequency of func-
tion words, punctuation, and part-of-speech n-grams are
the most frequently used syntactic features. The number
of words/sentences/paragraphs in a document and averaged
word/sentence/paragraph length are instances of structural
features. These count-based features are mostly used as the
inputs to the conventional machine learning techniques.

The adopted approaches in deep neural networks for
style-based text classification mainly focus on lexical fea-
tures despite the fact that lexical-based language models
have very limited scalability when dealing with datasets con-
taining diverse topics and genre (Sundararajan and Woodard
2018). While previously proposed deep neural network ap-
proaches focus on lexical level, we introduce a syntactic re-
current neural network which hierarchically learns and en-
codes the syntactic structure of documents. First, the syn-
tactic representations of sentences are learned from the se-
quence of part-of-speech (POS) tags and then they are aggre-
gated into document representations using recurrent neural
networks. Afterwards, we use attention mechanism to high-
light the sentences which contribute more to the detection of
authorial writing style.

Related Work

Syntax for Style Detection

Style-based text classification was primarily proposed by
Argamon-Engelson et al. (Argamon-Engelson, Koppel, and
Avneri 1998). The authors used basic stylistic features (the
frequency of function words and POS trigrams) to clas-
sify news documents based on the corresponding publisher
(newspaper or magazine) as well as text genre (editorial or
news item). Syntactic n-grams are shown to achieve promis-
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ing results in different stylometric tasks (Krause 2014;
Posadas-Durán et al. 2015; Sundararajan and Woodard
2018; Kreutz and Daelemans 2018). In particular, Raghavan
et al. investigated the use of syntactic information by propos-
ing a probabilistic context-free grammar for the authorship
attribution purpose, and used it as a language model for clas-
sification (Raghavan, Kovashka, and Mooney 2010).

Neural Network in Stylometry

With the recent advances in deep learning, there exists a
large body of work in the literature which employs deep
neural networks for stylometry and authorship attribution.
For instance, Ge et al. used a feed-forward neural network
language model on an authorship attribution task. The out-
put achieves promising results compared to the n-gram base-
line (Ge, Sun, and Smith 2016). Bagnall et al. have em-
ployed a recurrent neural network with a shared recurrent
state which outperforms other proposed methods in PAN
2015 task (Bagnall 2016).

Shrestha et al. applied CNN based on character n-gram to
identify the authors of tweets. Given that each tweet is short
in nature, their approach shows that a sequence of charac-
ter n-grams as an input to CNN allows the architecture to
capture the character-level interactions, which afterwards is
aggregated to learn higher-level patterns for modeling the
style (Shrestha et al. 2017). Hitchler et al. propose a CNN
based on pretrained embedding word vector concatenated
with one-hot encoding of POS tags; however, they have not
shown any ablation study to report the contribution of POS
tags on the final performance results (Hitschler, van den
Berg, and Rehbein 2017).

The Proposed Model: Syntactic Neural Model

We introduce a syntactic neural model to encode the syntac-
tic patterns of a document in a hierarchical structure. First,
we represent each sentence as a sequence of POS tags. Each
POS tag is embedded into a low dimensional vector which
is fed into a POS encoder which learns the syntactic repre-
sentation of sentences. Subsequently, the learned sentence
representations are aggregated into the document represen-
tation. Moreover, we use attention mechanism to highlight
the sentences which contribute more to the prediction of la-
bels. Afterwards we use a softmax classifier to compute the
probability distribution over class labels. The overall archi-
tecture of the network is shown in figure 1. In the following
sections, we elaborate on the main components of the model.

POS Embedding

We assume that each document is a sequence of M sen-
tences and each sentence is a sequence of N words, where
M and N are model hyperparameters and the best values
of which are explored through the hyperparameter tuning
phase. Given a sentence, we convert each word into the
corresponding POS tag in the sentence and afterwards
we embed each POS tag into a low dimensional vector
Pi ∈ R

dp using a trainable lookup table θP ∈ R
|T |×dp ,

where T is the set of all possible POS tags in the language.
We use NLTK part-of-speech tagger (Bird, Klein, and Loper

2009) for the tagging purpose and use the set of 47 POS
tags1 in our model as follows.

T = { CC, CD, DT, EX, FW, IN, JJ, JJR, JJS, LS, MD, NN,
NNS, NNP, NNPS, PDT, POS, PRP, PRP$, RB, RBR, RBS, RP,
SYM, TO, UH, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WP$,
WRB, ‘,’, ‘:’, ‘...’, ‘;’, ‘?’, ‘!’, ‘.’, ‘$’, ‘(’, ‘)’, “‘ ’, ‘” ’}

One of the advantages of using POS tags instead of words
is its low dimensional lookup table compared to the word
embeddings, where the size of vocabulary in large datasets
usually surpasses 50K words. On the other hand, the size of
POS embedding lookup table is significantly smaller, fixed,
and independent of the dataset which makes the proposed
model less likely to have out-of-vocabulary words.

POS Encoder

POS encoder learns the syntactic representation of sentences
from the output of POS embedding layer. In order to in-
vestigate the effect of short-term and long-term dependen-
cies of POS tags in the sentence, we exploit both CNNs and
LSTMs.

Short-term Dependencies Let Si = [P1;P2; ...;PN ] be
the vector representation of sentence i and W ∈ R

rdp be
the convolutional filter with receptive field size of r. We ap-
ply a single layer of convolving filters with varying window
sizes as the of rectified linear unit function (ReLU) with
a bias term b, followed by a temporal max-pooling layer
which returns only the maximum value of each feature map
Cr

i ∈ R
N−r+1. Consequently, each sentence is represented

by its most important syntactic n-grams, independent of their
position in the sentence. Variable receptive field sizes Z are
used to compute vectors for different n-grams in parallel and
they are concatenated into a final feature vector hi ∈ R

K af-
terwards, where K is the total number of filters:

Cr
ij = relu(WTSj:j+r−1 + b), j ∈ [1, N − r + 1],

Ĉr
i = max{Cr

i },
hi = ⊕Ĉr

i , ∀r ∈ Z

Long-term Dependencies Let Si = [P1;P2; ...;PN ] be
the vector representation of sentence i. As an alternative to
CNN, we use a bidirectional LSTM to encode each sentence.
The forward LSTM reads the sentence Si from P1 to PN and
the backward LSTM reads the sentence from PN to P1. The
feature vector hp

t ∈ R
2dl is the concatenation of the forward

LSTM and the backward LSTM, where dl is the dimension-
ality of the hidden state. The final vector representation of
sentence i, hs

i ∈ R
2dl is computed as the unweighted sum

of the learned vector representation of POS tags in the sen-
tence. This allows us to represent a sentence by its overall
syntactic pattern.

−→
hp
t = LSTM(Pt), t ∈ [1, N ],

1https://github.com/nltk/nltk/blob/develop/nltk/app/
chunkparser app.py
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Figure 1: The Overall Architecture of Syntactic Neural Model

←−
hp
t = LSTM(Pt), t ∈ [N, 1],

hp
t = [

−→
hp
t ;
←−
hp
t ]

hs
i =

∑

t∈[1,N ]

hp
t

Sentence Encoder

Sentence encoder learns the syntactic representation of a
document from the sequence of sentence representations
outputted from the POS encoder. We use a bidirectional
LSTM to encode the sentences of which the outputted vector
is calculated as follows.

−→
hd
i = LSTM(hs

i ), i ∈ [1,M ],

←−
hd
i = LSTM(hs

i ), i ∈ [M, 1],

hd
i = [

−→
hd
i ;
←−
hd
i ]

Needless to say, not all sentences are equally informative
about the authorial style of a document. Therefore, we incor-
porate an attention mechanism to reveal the sentences that
contribute more to detection of the writing style. We define
a sentence level vector us and use it to measure the impor-
tance of the sentence i as follows:

ui = tanh(Wsh
d
i + bs)

αi =
exp(uT

i us)∑
i exp(u

T
i us)

V =
∑

i

αih
d
i

Where us is a learnable vector and is randomly initialized
during the training process and, V is the vector representa-
tion of document which is the weighted sum of vector rep-
resentations of all sentences.

Classification

The learned vector representations of documents are fed into
a softmax classifier to compute the probability distribution
of class labels. Suppose Vk is the vector representation of
document k learned by the attention layer. The prediction ỹk
is the output of softmax layer and is computed as:

ỹk = softmax(WcVk + bc)

Where Wc, and bc are learnable weight and learnable bias
respectively and ỹi is a C dimensional vector (C is the num-
ber of classes). We use cross-entropy loss to measure the
discrepancy of predictions and true labels yk. The model pa-
rameters are optimized to minimize the cross-entropy loss
over all the documents in the training corpus. Hence, the reg-
ularized loss function over N documents denoted by J(θ) is:

J(θ) = − 1

N

N∑

i=1

C∑

k=1

yiklogỹik + λ||θ||

Experimental Results

Dataset

We evaluate our proposed method on a commonly used
benchmark dataset from PAN 2012 authorship attribution
shared task2. We chose Task I dataset which corresponds to
the authorship attribution among a closed set of 14 authors.
The training set comprises 28 novel-length documents (two
per candidate author), ranging from 32,000 words up to ap-
proximately 180,000 words. The test set consists of 14 nov-
els (one per candidate author) with the length ranging from
42,000 words up to 190,000 words. Table 1 reports the word
count and the averaged sentence length of documents in both
train and test set for each candidate author(The numbers are
rounded down).

In order to generate enough train/test samples, we have
schematized the novels into the segments with a M num-
ber of sentences (sequence length). The best value of M

2https://pan.webis.de/clef12/pan12-web/
authorship-attribution.html
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Training Data I Training Data II Test Data
Word Count Sentence Length Word Count Sentence Length Word Count Sentence Length

Candidate 01 73,449 17 76,602 19 70,112 20
Candidate 02 180,660 13 117,024 14 82,317 13
Candidate 03 158,306 17 121,301 19 151,049 15
Candidate 04 84,080 14 79,413 18 93,055 14
Candidate 05 109,857 18 141,086 15 96,663 15
Candidate 06 61,644 19 46,549 16 42,808 16
Candidate 07 71,106 16 70,563 18 84,996 21
Candidate 08 106,024 18 113,475 15 94,700 13
Candidate 09 66,840 15 41,093 15 194,547 15
Candidate 10 86,681 14 35,699 16 60,998 16
Candidate 11 53,960 19 48,037 13 80,330 24
Candidate 12 49,543 25 64,495 26 50,636 27
Candidate 13 32,900 21 153,994 32 77,780 27
Candidate 14 89,908 23 71,058 22 52,633 35

Table 1: Corpus Statistics.

is explored through the hyperparameter tuning phase. Ac-
cordingly, the performance measures include segment-level
categorical accuracy as well as document-level categorical
accuracy. In the latter, we use majority voting to label a doc-
ument based on the segment-level predictions.

Baselines

For our baselines, we employ standard syntactic n-gram
model as a syntactic approach and word n-gram model as
a lexical approach. For both models, we have used Support
Vector Machine (SVM) classifier with linear kernel. More-
over, in order to compare the performance of syntactic recur-
rent neural network to the lexical based approaches, we fed
the sequence of words to a neural network with the identical
architecture. We use 300-dimensional pretrained Glove em-
beddings (Pennington, Socher, and Manning 2014) for the
embedding layer in the network.

Hyperparameter Tuning

In this part, we examine the effect of different hyperparam-
eters on the performance of the proposed model. All the
performance metrics are the mean of segment-level accu-
racy (on the test set) calculated over 10 runs with 0.9/0.1
train/validation split. We use Nadam optimizer (Sutskever et
al. 2013) to optimize the cross-entropy loss over 30 epochs
of training.

CNN for POS encoding Figure 2 illustrates the perfor-
mance of syntactic recurrent neural network when CNN is
used as POS encoder, across different receptive field sizes
and number of layers while other parameters are kept con-
stant. We observe that, increasing the number of convolu-
tional layers generally lessens the performance. Moreover,
in one convolutional layer, the accuracy generally increases
by increasing the size of receptive fields. This can be due
to the fact that receptive fields with the higher sizes capture
longer syntactic sequences which are more informative.

In our experiments, we also observed that having parallel
convolutional layers with different receptive field sizes im-
prove the performance. Therefore, in the final model, we use

Figure 2: The performance of syntactic model across differ-
ent receptive field sizes and number of layers(n layers)

one layer of multiple convolutional filters with the receptive
field sizes of 3 and 5.

LSTM for POS encoding Figure 3 demonstrates the ac-
curacy of the proposed model when LSTM is employed
as POS encoder, across different values of sentence length
(N ) and sequence length (M : the number of sentences in
each segment). We observe from the figure that increasing
the sequence length boosts the performance and the model
achieves higher accuracy on the segments with 100 sen-
tences (74.40%) than the segments with only 20 sentences
(60.02%). This observation confirms that the investigation of
writing style in short documents is more challenging (Neal
et al. 2017).

As shown in Table 1, the average sentence length in the
dataset ranges from 13 to 35. Therefore, we have examined
the sentence length of 10, 20, 30, and 40 (the performance of
the model is identical when the sentence length is 30 and 40,
so we have not included the latter results in the figure). We
observe that increasing the length of sentences to 30 words
improves the performance primarily because decreasing the
sentence length ignores several words in the sentence which
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Figure 3: The performance of syntactic model across differ-
ent sentence lengths and sequence lengths

leads to notable information loss. To sum up, the syntactic
neural network accepts segments as the inputs where each
segment contains 100 sentences and the length of each sen-
tence is 30.

Results

We report both segment-level and document-level accuracy.
As mentioned before, each document (novel) has been di-
vided into the segments of 100 sentences. Therefore, each
segment in a novel has classified independently and after-
wards the label of each document is calculated as the major-
ity voting of its constituent segments. Table 2 reports the per-
formance results of baselines and the proposed model (with
both CNN and LSTM as POS encoder) on the PAN 2012
dataset. According to the segment-level accuracy, the per-
formance of all models has dropped significantly on the test
set mainly because of insufficient training data. We expect
that if the models are trained on enough writing samples per
author, the test results would be closer to the validation re-
sults.

Unsurprisingly, the syntactic CNN-LSTM model outper-
forms the conventional POS n-gram model (POS N-gram-
SVM) by 9.1% improvement in segment-level accuracy and
7.15% improvement in document-level accuracy. This is pri-
marily because syntactic CNN-LSTM not only represents a
sentence by its important syntactic n-grams but also learns
how these sentences are structured in a document. On the
other hand, the POS N-gram-SVM model only captures the
frequency of different n-grams in the document.

Syntactic v.s. Lexical According to Table 2, both syn-
tactic recurrent neural networks (CNN-LSTM and LSTM-
LSTM) outperform the lexical models by achieving the
highest document-level accuracy (100.00%). Syntactic re-
current neural networks have correctly classified all the 14
novels in the test set while lexical LSTM-LSTM achieves
the highest document-level accuracy (85.71%) in the lexical
models by correctly classifying 12 novels.

In segment-level classification, syntactic recurrent neural

Figure 4: The performance of syntactic models when trained
on different number of segments per novel

networks outperform the lexical models in the test time with
14% higher accuracy; however, the lexical models achieve
higher validation accuracy. This observation may imply the
lower generalization capability of lexical models compared
to the syntactic models in the style-based text classification.

Short-Term v.s. Long-Term According to the results in
table 2, syntactic CNN-LSTM model slightly outperforms
syntactic LSTM-LSTM by approximately 4% in segment-
level accuracy. The primary difference between the two
models is the way they represent a sentence. In syntactic
CNN-LSTM, each sentence is represented by its important
syntactic n-gram independent of their position in the sen-
tence. However, syntactic LSTM-LSTM mainly captures the
overall syntactic pattern of a sentence by summing up all the
learned vector representations of POS tags in the sentence.

Short Documents v.s. Long Documents We have con-
ducted a controlled study on the effect of document length
on the performance of both CNN-LSTM and LSTM-LSTM
models. For this purpose, we have trained each model on
only a specific fraction of each training document and af-
terwards tested the trained model on the whole test set. We
keep the number of model parameters in both models ap-
proximately equal to eliminate the effect of data limitation
on the training process. Figure 4 demonstrates the perfor-
mance results of models when trained on the first n% of
segments in each document. For example when n is equal
to 10, it means the models are trained on only the first 10%
of segments in the documents rather than the whole.

We observe that when the smaller portion of segments (<
30%) are used for training, LSTM-LSTM models achieve
higher test accuracy than CNN-LSTM models in both syn-
tactic and lexical settings. On the other hand, CNN-LSTM
models slightly outperform LSTM-LSTM models when the
number of segments used for training in each document
increases. In other words, LSTM-LSTM models appear to
be quicker in capturing authorial writing style than CNN-
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Model Segment-Level Accuracy (%) Document-Level Accuracy(%)
Validation Test

Word N-grams-SVM 90.71 58.35 78.57 (11/14 novels)
Lexical CNN-LSTM 98.88 64.12 78.57 (11/14 novels)

LSTM-LSTM 96.83 63.92 85.71 (12/14 novels)
POS N-grams-SVM 89.60 69.66 92.85 (13/14 novels)

Syntactic CNN-LSTM 93.22 78.76 100.00 (14/14 novels)
LSTM-LSTM 95.00 74.40 100.00 (14/14 novels)

Table 2: The performance results of models on PAN 2012 dataset for authorship attribution task.

LSTM models. This property, in particular, makes them a
preferred potential model when investigating authorial writ-
ing style in a dataset of short documents.

Conclusion and Future Work

In this paper, we introduced a syntactic neural model in order
to encode the syntactic patterns of documents in a hierarchi-
cal structure and afterwards used the learned syntactic repre-
sentation of document for style-based text classification. We
investigated both long-term and short-term dependencies of
part-of-speech tags in sentences. According to our experi-
mental results on PAN 2012 dataset, syntactic models out-
perform lexical-based models by 14% in terms of segment-
level accuracy. Moreover, we observed that LSTM-based
POS encoders are quicker in capturing the authorial writ-
ing style than CNN-based POS encoders which this property
makes them a preferable model when investigating authorial
writing style in a dataset of short documents.
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