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Abstract

Neural Machine Translation (NMT) relies heavily on word
embeddings, which are continuous representations of words
in a vector space, obtained from large monolingual data and,
independently, from bilingual data for NMT model training.
Word embeddings have proven to be invaluable for perfor-
mance improvements in natural language analysis tasks that
otherwise suffer from data scarcity. This paper defines a new
cost function—demonstrated on Farsi-Spanish low-resource
attention-based NMT—that encodes word similarity as dis-
tances within a word embedding space. The novelty of this
cost function is that it encourages our attentional NMT model
to generate words that are close to their references in the em-
bedding space. This approach encourages the decoder to se-
lect acceptably similar words when potential candidates are
found to be Out-Of-Vocabulary (OOV). Experimental results
demonstrate improvements of our attentional NMT model
over a community-standard NMT baseline model.

Introduction

Recent years have witnessed considerable improvements
in Neural Machine Translation (NMT) performance based
on encoder-decoder architectures (Sequence-to-Sequence).
NMT exploits Convolutional Neural Networks (CNNs)
(Gehring et al. 2017), Recurrent Neural Networks (RNNs)
(Sutskever, Vinyals, and Le 2014; Cho et al. 2014; Wu et
al. 2016), or Transformers (Vaswani et al. 2017) to learn
mappings between source sentences and their corresponding
target translations. In addition, attention-based mechanisms
(Bahdanau, Cho, and Bengio 2015; Luong, Pham, and Man-
ning 2015) help soft-align the encoded source words with
the predictions, further improving the translation.

NMT performance suffers in low-resource conditions
where sufficient parallel texts cannot be obtained. The com-
putational cost of the output layer in NMT systems in-
creases with the target language vocabulary size. One might
consider limiting vocabulary size, ignoring low-frequency
words to reduce computational costs, but this decreases
translation quality due to the large number of Out-Of-
Vocabulary (OOV) words. This trade-off is frequently ad-
dressed by using a cost function that supports NMT model
training, e.g., softmax cross-entropy (Chousa, Sudoh, and
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Nakamora 2018). Consider the optimization of parameters
to generate a reference word say. The probability of say is
close to 1, whereas the probabilities of other words are closer
to 0, regardless of their meanings. This is true even for words
similar to say, such as tell, i.e., an occurrence of tell is pe-
nalized as heavily as much more dissimilar words.

We hypothesize that attentional NMT performance sub-
stantially improves through the introduction of a new word
embedding cost function that assigns a smaller penalty to
similar words than to dissimilar words, e.g., assignment of
a lower penalty to tell, for a reference word say, than to
dissimilar words such as look. To date, the performance of
NMT systems relies heavily on availability of large, parallel,
domain-specific data. Because translation of OOV words is
central to the success of NMT, low-resource languages are
particularly challenging due to the lack of advanced linguis-
tic tools and extreme sparcity of parallel training data.

The impact of an improved word-embedding cost func-
tion is high when one considers OOV words that emerge
under such sparse training-data conditions. The typical ap-
proach is to optimize parameters by penalizing occurrences
of other words, and to produce a special OOV symbol as part
of the output. Our approach overcomes adverse effects asso-
ciated with production of uninterpretable OOV symbols, en-
abling generation of similar words in place of such symbols.
Our cost function encourages the NMT decoder to generate
words close to their references in the embedding space; this
helps the decoder to choose similar acceptable words when
the best candidates are not included in the vocabulary.

In summary, our work is designed to address the low-
resource NMT bottleneck, where defining a large vocabu-
lary is nearly impossible. We undertake side-by-side anal-
yses with state-of-the-art approaches that have comparably
small vocabulary sizes. Results suggest our method works
well against systems with similarly limited vocabulary—on
the order of 1K, a standard size for low-resource conditions
(Chousa, Sudoh, and Nakamora 2018).

The next section presents language issues associated with
our case study. The relevant mathematical bases for our at-
tention NMT is then presented, followed by a description of
our word embedding cost function, experiments and results.
We discuss the upshot of our experiments and contrast other
approaches to our own, and then conclude with future work.
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Language Issues
Below we highlight issues specific to languages that exacer-
bate the low-resource problem.

Farsi Language Issues

Farsi suffers from a shortage of digitally available paral-
lel and monolingual texts. Many characteristics of Farsi are
shared only by Arabic, so it is difficult to leverage linguistic
knowledge about other languages to fill the data gap. Farsi
makes no use of articles (a, an, the) and does not distinguish
between capital and lower-case letters. Symbols and abbre-
viations are rarely used. Farsi is written in Arabic script, so
it uses diacritic marks to indicate vowels, which are gen-
erally omitted except in infant writing or in texts for lan-
guage learning. Sentence structure is different from that of
English, with parts of speech (e.g., nouns, subjects, adverbs
and verbs) placed in different locations in the sentence, or
even omitted. Farsi words may have many different accepted
spellings, and translators may invent new words, thus yield-
ing Out-Of-Vocabulary (OOV) words.

Spanish Language Issues

Spanish is a high-resource language, but still differs from
other languages enough to make it difficult to leverage lin-
guistic knowledge to fill data gaps. Spanish language punc-
tuation is very close to, but not the same as, that of English.
For example, in Spanish, exclamation and interrogative sen-
tences are preceded by inverted question and exclamation
marks. Also, in a Spanish conversation, a change in speakers
is indicated by a dash, whereas in English, each speaker’s re-
mark is placed in separate paragraphs. Formal and informal
translations diverge considerably. Unlike English, inflection,
declination and grammatical gender are important features,
and it is quite common to drop the subject of a sentence.

Farsi-Spanish Divergences

A number of divergences (Dorr 1994; Dorr et al. 2002)
between low-resource (e.g., Farsi) and high-resource (e.g.,
Spanish) languages pose many translation challenges. In
Farsi, the modifier precedes the word it modifies, and in
Spanish the modifier follows the head word (although it
may precede the head word under certain conditions). In
Farsi, the sentences follow a “Subject”, “Object”, “Verb”
(SOV) order, and in Spanish, the sentences follow the “Sub-
ject”, “Verb”, “Object” (SVO) order (Ahmadnia, Serrano,
and Haffari 2017). Such distinctions are exceedingly preva-
lent and thus pose many challenges for machine translation.

Attention-based Neural Machine Translation
Following (Bahdanau, Cho, and Bengio 2015), we adopt
attention-based an encoder-decoder that selectively focuses
on sub-parts of the sentence during translation. An encoder
transforms a source sentence x = x1, x2, ..., xJ to an in-
ternal representation h = h1, h2, ..., hJ . A a decoder trans-
forms h to the target sentences y = y1, y2, ..., yI . Source-to-
target translation is achieved by finding the best target lan-
guage sentence ŷ that maximizes the conditional probability:

ŷ = argmax
y

P (y|x) (1)

Conditional probability of the target sentence is:

P (y|x) =
I∏

i=1

P (yi|y<i, x) (2)

We adopt a standard implementation of encoder/decoder
as Recurrent Neural Networks (RNNs). The encoder con-
verts source words into a sequence of vectors, and the de-
coder generates target words one-by-one based on the con-
ditional probability shown (Equation 2). Specifically, the en-
coder takes a sequence of source words as inputs and returns
forward hidden vectors

−→
hj(1 ≤ j ≤ J) of the forward-RNN:
−→
hj = f(

−−→
hj−1, x) (3)

Similarly, backward hidden vectors
←−
hj(1 ≤ j ≤ J) of the

backward-RNN are obtained, in the reverse order.
←−
hj = f(

←−−
hj−1, x) (4)

These forward and backward vectors are concatenated to
make source vectors hj(1 ≤ j ≤ J) based on Equation (5):

hj =
[−→
hj ;
←−
hj

]
(5)

The decoder takes source vectors as inputs and returns
target words, starting with the initial hidden vector hJ (con-
catenated source vector). Target words are generated in a re-
current manner using the decoder’s hidden state and an out-
put context. The conditional output probability of a target
language word yi is defined as follows:

P (yi|y<i, x) = softmax (f(di, yi−1, ci)) (6)

where f is a non-linear function and di is a the hidden state
of the decoder at step i:

di = g(di−1, yi−1, ci) (7)

Here, g is a non-linear function that takes its previous state
vector and previous output word as inputs and updates its
state vector. ci is a context vector to retrieve source inputs
in the form of a weighted sum of the source vectors hj ,
first taking as input the hidden state di at the top layer of
a stacking Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997).

The goal is to derive a context vector ci that captures rel-
evant source information and enables prediction of the cur-
rent target word yi. While s variety of models may be used
to derive a range of different context vectors ci, our choice
for ci is formulated as follows:

ci =
J∑

j=1

αt,jhj (8)

where hj is the annotation of source word xj and αt,j is a
weight for the jth source vector at time step t to generate yi:

αt,j =
exp (score (di, hj))∑J

j′=1 exp (score (di, hj′))
(9)
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The score function above may be defined in variety of ways
as discussed by (Luong, Pham, and Manning 2015). We use
dot attention for this score function calculated as follows:

score(di, hj) = dTi hj (10)

This scalar product score ensures that the decoder puts more
weight (attention) on source vectors that are close to its state
vector di.

Word Embedding Cost Function

Word embeddings—continuous representations of words in
a vector space—are obtained for NMT by leveraging a large
monolingual dataset and (independently) a bilingual dataset.
To learn meaningful word embeddings, one must devise a
cost function that is to be minimized. This section presents
a new cost function for Farsi-Spanish low-resource NMT
model that assigns a small penalty to word pairs according
to their degree of similarity (i.e., a small penalty for similar
words and a large penalty to dissimilar words).

This cost function is defined as a weighted average of dis-
tances between word vectors of a reference word and others
in the target language vocabulary; the weights are given by
generation probabilities in the softmax layer (Chousa, Su-
doh, and Nakamora 2018). Thus, the cost function explic-
itly penalizes word generation of dissimilar words with high
probabilities and also encourages similar words to have high
probabilities. This is beneficial in low-resource situations
where many words emerge as OOVs in translation outputs.
NMT models optimized by this cost function enable gener-
ation of similar in-vocabulary words, thus avoiding standard
back-off approach of generating special OOV symbols.

Softmax cross-entropy cost is a commonly used cost func-
tion for multi-label classification and NMT word generation:

Cent = −
I∑

i=1

J∑
j=1

yij logPθ(yij |y<i, X) (11)

where yij is jth element of the one-hot vector corresponding
to ith words of the target sentence.

However, this standard cost function penalizes all words
other than the reference word, even for similar words. To
avoid this issue, a new cost function, which we call word em-
bedding cost, is defined as a weighted average of distances
to a reference word in continuous vector space:

Cemb =
I∑

i=0

N∑
n=0

P (yi|y<i, X)d[E(Vn)), E(yi)] (12)

where Vn is nth word in the target language vocabulary,
E notation refers to embedding, E(yi) denotes a vector of
word yi, and d calculates the distance between two word
vectors:

d(s, t) = ||s− t|| (13)
Word embedding cost is defined as a weighted average of

distances to a reference word in continuous vector space.
Weights are based on word output probabilities in Equa-
tion (6). Vectors of entire vocabulary are compared to each
vector. Code-execution took one week, comparable to that

of other approaches that use a cost function (Ahmadnia,
Kordjamshidi, and Haffari 2018). This approach reduces
<UNK> tokens in translation, the outcome of which is
trained by this approach to produce explicit <UNK> tokens.

Experiments and Results

Our experiments use parallel Farsi-Spanish sentences ex-
tracted from the OpenSubtitles20181 collection (Tiedemann
2012) containing 1M sentences for training as well as 10K
and 20K sentences for validation and test steps, respectively.
The Spanish word embeddings (for the target language) are
trained employing Wikipedia dumps2 with Gensim3. We uti-
lize word2vec (Mikolov et al. 2013) as a training method to
obtain word embeddings. We use OpenNMT-py4 model (Ke-
lin et al. 2017) on top of PyTorch, based on a bi-directional
2-layer LSTM encoder-decoder with attention (Bahdanau,
Cho, and Bengio 2015) (the decoders use global dot atten-
tion to the source vectors).

Training uses a batch size of 64 and Stochastic Gradient
Descent (SGD) (Robbins and Monro 1951) with an initial
learning rate of 0.01. We set the size of word embeddings
as well as hidden layers to 500. We also set dropout to 0.1.
We use a maximum sentence length of 50 and shuffle mini-
batches as we proceed.

Similar to prior work (Jean et al. 2015), we select the
best parameters with the smallest validation cost. Also, we
employ BLEU (Papineni et al. 2001) as well as METEOR
(Denkowski and Lavie 2014) as our evaluation metrics.

In the first set of experiments, we investigated the effects
of different training strategies using cross-entropy as well as
word embeddings cost functions. The goal is to determine
the best practice among these strategies in attentional NMT
training. We compared the baseline cost function (Cent) to
the word embeddings cost function (Cemb)5, as well as a
combination of these functions (Ccom). We select one spe-
cific cost (e.g., cross-entropy cost and embedding cost):

Ccom = Cent + Cemb (14)

We add some trainable linear weights for the cost:

Ccom = α Cent + (1− α) Cemb (15)

We also investigated pre-training6 with Cent followed by
training with Cemb. Using Cemb alone (without pre-training)
does not work well, as the training process is likely to be
trapped in a weak local minimum. We set the size of the
target vocabulary to 20K. Since the performance of NMT
systems often suffers in low-resource scenarios where suffi-
ciently large-scale parallel corpora cannot be obtained, pre-
trained word embeddings have proven to be invaluable for
improving performance in natural language analysis tasks,

1http://opus.nlpl.eu/OpenSubtitles-v2018.php
2https://dumps.wikipedia.org
3https://radimrehurek.com/gensim
4https://github.com/OpenNMT/OpenNMT-py
5Cemb is subject to local minimum issues, which is a standard

problem in NMT.
6Pre-trained embeddings used for distance calculation have a

larger vocabulary so they can be used for OOV words.
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Vocab Cost Pre-train BLEU METEOR

20,000 Cent None 28.88 35.65
20,000 Ccom None 30.12 36.61
20,000 Ccom Cent 30.10 36.44
20,000 Cemb Cent 31.24 36.56

Table 1: Translation results applying 20K target vocabulary.

Vocab Cost Pre-train BLEU METEOR

1,000 Cent None 15.29 19.71
1,000 Ccom None 15.55 20.05
1,000 Ccom Cent 15.79 19.93
1,000 Cemb Cent 15.84 21.45

Table 2: Translation results applying 1K target vocabulary.

Vocab Cost Pre-train BLEU METEOR

20,000 Cent None 31.97 55.21
20,000 Ccom None 32.12 55.96
20,000 Ccom Cent 34.56 57.08
20,000 Cemb Cent 34.82 57.11

Table 3: Translation results applying 20K target vocabulary.

which often suffer from paucity of data. However, their util-
ity for NMT has not been extensively explored. We examine
pre-training with the baseline cost followed by training with
our proposed cost. Using Cemb without pre-training does not
work due to the aforementioned local minimum.

In the second set of experiments, we test a small target
vocabulary to investigate the robustness in a small-size vo-
cabulary condition. We set the size of the target vocabulary
to 1K. Tables 1 and 2 show the results:

As seen in Tables 1 and 2, all methods using Cemb

resulted in higher BLEU and METEOR scores than the
baseline using only Cent. These results confirm that the
word embeddings cost function is effective with a relatively
small target vocabulary (small-size vocabulary condition).
The method that uses only Cemb after baseline pre-training
showed significant improvements of +1.74 points in ME-
TEOR. These results suggest that the Cemb method works
well with a limited vocabulary condition.

We also investigated the results in another language pair
(as a high-resource scenario) to examine whether the advan-
tage of our new cost function (Cemb) depends on a specific
language. So, we conducted the same experiments using
the WMT’187 Spanish-English dataset with the target lan-
guage vocabulary size of 20K. Table 3 shows the results for
Spanish-to-English which can be compared with the Farsi-
Spanish results shown in Tables 1 and 2.

The results are similar but with a greater improvement
due to the use of Cemb with pre-training. As experiment
with Farsi-Spanish parallel corpus, all methods using Cemb

improve translation accuracy on BLEU and METEOR met-
rics, especially using only Cemb after Cent pre-training. The

7https://www.statmt.org/wmt18/translation-task.html

Source (Farsi) سعی شد کھ عنصر مورب محدود از تصویر 
 مقطعی از چشم واقعی ساختھ شود

Target (Spanish) Se intentó la preparación de la malla de 
elementos finitos a partir de las 
imágenes de la sección transversal del 
globo ocular real 

Cent output Se intentó que la malla de elementos 
finitos se hiciera a partir de la imágen de 
la sección transversal de <UNK> real 

Cemb output Se intentó que la malla de elementos 
finitos se hiciera a partir de la imágen de 
la sección transversal del ojo real 

Figure 1: Farsi-Spanish translation example 1.

Source (Farsi) ھا قالب شکل و مخزن در جریان  الگوی
Target (Spanish) El patrón del flujo en el depósito y la 

forma de las molduras 
Cent output Patrónes de flujo en reservorio y <UNK> 

formas 
Cemb output El patrónes de flujo en el depósito y la 

forma de extensión  

Figure 2: Farsi-Spanish translation example 2.

BLEU gains for Spanish-to-English translation are larger
than those for Farsi-to-Spanish. This result suggests that the
Cemb method is beneficial for not just one language pair.

Discussion

We encode words using BPE with 32K merge operations to
achieve an open vocabulary. OpenNMT-py enables substi-
tution of OOV words with target words that have the high-
est attention weight according to their source words. When
words are not found, a copy mechanism copies source words
to the position of the not-found target word. We note that
OpenNMT-py is selected over Transformer because it en-
ables substitution of OOV words with target words that have
the highest attention weight according to their source words.

The experimental results demonstrate the advantage of
employing the word embeddings cost function for Farsi-
Spanish low-resource NMT, most notably in the genera-
tion of similar words due to relaxed constraints in the cost
function. Figures 1 and 2 illustrate two translation examples
in a Farsi-to-Spanish experiment with a vocabulary size of
20K. These examples are generated by utilizing the baseline
model (Cent) as well as word embeddings model, which use
Cemb after Cent pre-training.

Figure 1 demonstrates a case where the target sentence in-
cludes the word ocular, but this is replaced with the special
token <UNK> as an OOV word. In this case, the baseline
translation result contains an OOV word that corresponds to
a word that means ocular. By contrast, the model trained us-
ing our new cost function generated ojo instead of <UNK>.
This suggests that our method enables generation of a rea-
sonable word choice for low-frequency words. In Figure
2, the target sentence similarly includes a <UNK> token
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corresponding to a word that means molduras. The Cemb

model outputs a paraphrase la forma de extensión utilizing
limited in-vocabulary words for the phrase la forma de las
molduras.

Related Work
Prior work (Elbayad, Besacier, and Verbeek 2018) uses word
vectors for smoothing a cost function in neural network-
based language modeling. Their method aims at optimiz-
ing the conditional log-probability of improved output sen-
tences sampled from the reward distribution. The rewards
are defined based on the cosine similarity in a semantic word
embedding space. They improve the results on image cap-
tioning and MT with both token-level and sequence-level
rewards. They find that sequence-level rewards yield better
performance improvement on MT tasks.

An alternative approach (Chousa, Sudoh, and Nakamora
2018) aims to minimize a weighted sum of distances from a
reference word in a vector space, considering all the other
words instead of some sampled words. Their token-level
cost significantly improves upon the results above (Elbayad,
Besacier, and Verbeek 2018), but the token-level rewards
bring smaller improvement on MT tasks.

Another method (Sennrich, Haddow, and Birch 2016) re-
duces OOV words through the effective use of subwords and
demonstrates that a subword-based system achieves higher
performance than a word-based system for translating rare
words. Their softmax cross-entropy still yields a generation
probability that approaches 1 for the correct word and 0 for
all other words regardless of their meaning. This approach
also does not tackle our problem directly.

Various approaches have been proposed for word em-
beddings; FastText (Bojanowski et al. 2017), word2vec
(Mikolov et al. 2013) and Glove (Pennington, Socher, and
Manning 2014). Several of these yield vectors of syntacti-
cally and semantically similar words that are close to each
other. Since embeddings are a key tool in transfer learn-
ing, techniques such as ELMo (Peters et al. 2018) have been
proposed for embedding words in real vector space using
LSTMs. Such approaches are trained on a language model-
ing objective and have beaten previous performance bench-
marks, with a potential 10x reduction in training data.

BERT (Devlin et al. 2019) is proposed as an alternative
to ELMo, targeting a different training objective: “masked
language modeling.” The motivation behind this work is the
inability of prior approaches to take into account both left
and right contexts of the target word due to left-to-right
operation associated with the language modeling objective.
For example, ELMo, simply concatenates the left-to-right
and right-to-left information, which means the representa-
tion cannot exploit both contexts simultaneously. Our idea
is complementary and would potentially assist systems like
BERT and ELMo with OOVs in a low-resource context.
However, since ELMo and BERT are context dependent, do-
ing this requires the model that was used to train the vectors
even after training, since the models generate the vectors for
a word based on context.

Our work differs from those described above in that we
adopt a new cost function for low-resource NMT, defined as

a weighted average of distances between word vectors of a
reference word and the others in the target language vocab-
ulary. The weights are assigned by the generation probabili-
ties in the softmax layer, yielding a small penalty for similar
words and a large penalty to dissimilar words.

Label smoothing (Pereyra et al. 2017), as a solution to
alleviate hard-target problems, is limited in that labels are
smoothed with a uniform distribution; this is overcome by
our model’s distribution and incorporation of information
about ratios between incorrect classes. Scheduled sampling
(Bengio et al. 2015), as an alternative solution, is limited
by argmax discontinuity and is thus unable to penalize er-
rors made in previous steps. Our approach overcomes this
by enabling fast and stable training, while also overcom-
ing alignment limitations to reduce noise in the training sig-
nal. Cost definitions (Elbayad, Besacier, and Verbeek 2018),
yet another solution, generally optimizes conditional log-
probability of augmented output sentences sampled from the
reward distribution, thus yielding only small improvements
in token-level rewards in MT tasks. Our approach yields
greater improvements by minimizing a weighted sum of dis-
tances from a reference word in vector space and consider-
ing all other words instead of a subset of sampled words.

Conclusions and Future Work

We applied a new cost function for Farsi-Spanish low-
resource attention-based NMT using a weighted average of
distance between a reference word and all the other tar-
get words in semantic space. Experimental results demon-
strate advantages of our new method for computing transla-
tion accuracy, and for robust word selection considering se-
mantic similarity in a limited-vocabulary condition. Exper-
iments further demonstrate the advantage of using the new
cost function in NMT, especially in generating similar words
with the help of relaxed constraints in the loss function.

Future steps for this work include: (1) calculation of an
efficient cost function over target language words; (2) use
of different types of word embeddings; and (3) additional
in-depth evaluation of attentional NMT through human-in-
the-loop and task-oriented evaluations.
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