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Abstract

Abduction is a form of inference that seeks the best expla-
nation for the given observation. Because it provides a rea-
soning process based on background knowledge, it is used in
applications that need convincing explanations. In this study,
we consider weighted abduction, which is one of the com-
monly used mathematical models for abduction. The main
difficulty associated with applying weighted abduction to real
problems is its computational complexity. A state-of-the-art
method formulates weighted abduction as an integer linear
programming (ILP) problem and solves it using efficient ILP
solvers; however, it is still limited to solving problems that
include at most 100 rules of background knowledge and ob-
servations. In this study, we first formulate the weighted ab-
duction problem as a Max-SAT problem whose hard clauses
are mostly Horn clauses. Then, we propose to solve the prob-
lem using modern Max-SAT solvers. In our experiments, the
proposed method solved the problems much faster than the
state-of-the-art ILP-based weighted abduction.

1 Introduction

Background Abduction is a type of inference that seeks
the best explanation for a given observation (Peirce 1883).
Abduction provides a reasoning process based on prior
knowledge; hence, it is used in tasks that need convincing
explanations such as law applications (Anderson, Schum,
and Twining 2005), plan recognition (Hobbs et al. 1993),
and discourse analysis (Ng and Mooney 1992). The abduc-
tion is a very classical problem and has been extensively
studied in the early age of artificial intelligence (Josephson
and Josephson 1996). Recently, the abduction has attracted
attention owing to the progress of knowledge acquisition and
improvements in the performance of inference algorithms
and computers (Gordon 2016).

The abduction problem is formulated as follows. We are
given background knowledge B and an observation O, each
of which is a set of first-order formulas. The task is to find a
hypothesis H that reasonably explains the observation with
the background knowledge, i.e., H is a set of first-order for-
mulas satisfying H ∪B |= O and H ∪B �|= ⊥.
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There are several models for selecting the best hypothesis,
such as probabilistic Horn abduction (Poole 1993), weighted
abduction (Hobbs et al. 1993), etcetera abduction (Inoue
and Gordon 2017), Markov logic networks based abduc-
tion (Kate and Mooney 2009), and Bayesian abductive logic
programs (Singla and Mooney 2011). Among them, we con-
sider weighted abduction, which is a cost-based abduction
method that selects H having the lowest cost induced by
backchaining and unification (see Sec. 2). The weighted ab-
duction has been widely used in several tasks (Appelt and
Pollack 1992; Blythe et al. 2011; Ovchinnikova et al. 2014)
since it is a basic model of abduction and easy to incorpo-
rate the uncertainty of the background knowledge and ob-
servation (Hobbs 2004). In particular, (Ovchinnikova et al.
2014) observed that the weighted abduction has an advan-
tage over alternative approaches when they are applied to
the discourse interpretation tasks.

The main difficulty of the weighted abduction (and other
models) is its computational cost. In general, the abduction
problem is NP-hard (Bylander et al. 1991); hence, it will be
impractical if we have to handle a large amount of back-
ground knowledge and observations. To overcome this dif-
ficulty, (Inoue and Inui 2011) introduced the depth-limited
weighted abduction problem (see Sec. 3) and formulated the
weighted abduction as an ILP problem. To accelerate the
performance of the ILP approach to the weighted abduction,
(Inoue and Inui 2012) observed that the most constraints
represent the transitivity among equalities of the variables,
and proposed a method called cutting-plane inference to im-
prove the performance. (Yamamoto et al. 2015) proposed
a method to prune the redundant candidate to improve the
performance. (Schüller 2016) proposed an answer set pro-
gramming (ASP)-based approach for the weighted abduc-
tion. Similar to the ILP-based approach of (Inoue and Inui
2012), their approach also specifies a parameter that limits
the depth of the backchaining, which are incomparable to
the depth parameter of (Inoue and Inui 2012).

However, even using these methods, the weighted abduc-
tion still cannot be applied to large-scale instances, which
typically contain more than hundreds of items in background
knowledge and observations. Our purpose is to establish a
more efficient algorithm for the weighted abduction.
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Contributions We propose an efficient method for the
weighted abduction. We make the following contributions.

• We formulate the depth-limited weighted abduction prob-
lem as a maximum satisfiability (Max-SAT) problem
whose majority of the hard clauses are Horn clauses, and
the number of soft clauses is small.

• We propose to solve the problem using Max-SAT solvers.
Our experiments showed that this approach is 100 times
faster than the existing method that uses ILP solver for
large-scale real-world instances.

As discussed above, most of the existing methods formu-
lated the problem as an ILP problem to use efficient ILP
solvers. However, since abduction is a logic problem, we be-
lieve that it is more natural to formulate it as a SAT problem.

Our first contribution shows that our problem is “nearly”
Max Horn SAT problem with a small number of soft clauses.
For example, in our largest instance, the total number of
hard clauses is about 2,000,000, but only 6,000 are non-Horn
clauses. Also, the number of soft clauses is 6,000. Since the
complexity of the Max Horn SAT is exponential in the num-
ber of soft clauses, i.e., not the number of hard clauses, it is
beneficial to use our Max Horn-like SAT formulation.

Our second contribution verifies the above analytic contri-
bution via experiments. The Max-SAT and ILP formulation
had almost the same number of variables and constraints;
however, the former solved the problem much faster than the
latter. This verifies that our Max-SAT formulation is much
better than the ILP formulation for the weighted abduction
problem. Here, we have to thank the recent progress of Max-
SAT solvers (Balyo, Heule, and Järvisalo 2017). The per-
formance of SAT solvers improves every year, and many
high-performance implementations (e.g., OpenWBO (Mar-
tins, Manquinho, and Lynce 2014) and MaxHS (Davies and
Bacchus 2011)) are freely available. This might change the
situation around solving abduction problems.

2 Preliminaries

We follow the standard notation of first-order logic. We de-
note by �x = (x1, . . . , xk) a set of variables with a suitable
length, and p(�x) for an atomic formula with variable �x.

2.1 Weighted Abduction

Weighted abduction (Hobbs et al. 1993) is a method of ab-
duction based on the costs. In weighted abduction, back-
ground knowledge B is a set of first-order Horn clauses,
where all of the variables on the left-hand side are univer-
sally quantified with the widest possible scope, and the vari-
ables only on the right-hand side are existentially quantified.
Each Horn clause in the background knowledge is referred
to as a rule. Each atomic formula p(�x) on the left-hand side
of a rule has a positive weight w; this is denoted by p(�x)w.
Thus, in general, a rule is represented as

∀�x∃�y (p1(�x1)
w1 ∧ · · · ∧ pk(�xk)

wk ⇒ q(�x0, �y)), (2.1)

where �x and �y denote (possibly empty) sets of variables and
�x0, . . . , �xk are subsets of �x. Observation O is a conjunc-
tion of existentially quantified atomic formulas p(�x), each

of which has a positive cost c; this is denoted by p(�x)$c.
Thus, in general, an observation is represented as

∃�x (p1(�x1)
$c1 ∧ · · · ∧ pk(�xk)

$ck). (2.2)

A candidate hypothesis H is also in the same format as the
observation. The cost of H is the sum of all costs of atomic
formulas in the hypothesis, i.e.,

c(H) =
∑

p(�x)w∈H

w, (2.3)

where p(�x)w ∈ H means that p(�x) appears in H .
A candidate hypothesis H is generated as follows. Ini-

tially, we set H := O. Then, we iteratively apply backchain-
ing and unification in arbitrary order.

Backchaining We select an atomic formula q(�x0, �y)
$c ∈

H and a rule ∀�x′∃�y′ (p1(�x′
1)

w1 ∧ · · · ∧ pk(�x
′
k)

wk ⇒
q(�x′

0, �y
′)) ∈ B. Then, we replace H by removing

q(�x0, �y)
$c and adding p(�x1)

w1$c ∧ · · · ∧ p(�x1)
wk$c. For

example, if H = ∃x1, x2 (p(x1, x2)
$2 ∧ q(x2)

$1) and
∀x′

1, x
′
2, ∃y (r(x′

1)
$3 ∧ s(x′

2)
$4 ⇒ p(x′

1, y)) ∈ B then
we obtain H ′ = ∃x1, x2, y (r(x1)

$6 ∧ s(x2)
$8 ∧ q(y)$1).

Unification We select sets �x, �y of variables of the same
size in H . Then, we replace H by letting �x = �y. This
is allowed only if all of the atomic formula contain-
ing �xj and �yj are the same up to the variables. The
cost of the resulting atomic formulas are the smallest
costs of the original atomic formulas. For example, if
H = ∃x, y (p(x)$2 ∧ p(y)$3 ∧ q(x)$5 ∧ q(y)$4), we have
H ′ = ∃x (p(x)$2 ∧ q(x)$4).

A different inference process gives a different hypothesis.
The goal of weighted abduction is to find a hypothesis that
has the lowest cost.

2.2 Satisfiability Problems

Given a set of clauses, satisfiability (SAT) problem asks to
find a truth assignment of the variables such that all clauses
are satisfied. If all clauses are Horn clauses, the problem is
referred to as the Horn SAT problem. The SAT problem is
NP-hard (Bylander et al. 1991), but the Horn SAT problem
is solved in linear time (Dowling and Gallier 1984).

The Max-SAT problem is an optimization variant of the
SAT problem. A clause having the infinite cost is called a
hard clause, which must be satisfied; otherwise, it is called
a soft clause. We are given a set of clauses, each of which
is associated with a (possibly infinite) weight. The objec-
tive value of an assignment is the total weight of the satis-
fied clauses. The Max-SAT problem seeks the assignment
that maximizes the objective value, which equivalently min-
imizes the total weight of the unsatisfied clauses.

The Max Horn SAT problem is a Max-SAT problem
whose clauses are Horn clauses. The Max Horn SAT prob-
lem is NP-hard (Jaumard and Simeone 1987) and has no
constant-factor approximation algorithm unless P = NP (Lee
2017). Therefore, it seems as difficult as the general Max-
SAT problem. However, in reality, we can obtain large ben-
efits. In practice, Max Horn SAT problems can be solved
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much faster than general Max-SAT problems using modern
Max-SAT solvers (Marques-Silva, Ignatiev, and Morgado
2017; Ignatiev, Morgado, and Marques-Silva 2017). Mod-
ern Max-SAT solvers iteratively solve the decision version
of the problem, find a core, which is unsatisfied clauses, and
extract information from the core. Here, in the Max Horn-
SAT case, the first two steps are performed in polynomial
time; therefore, we expect that the solvers run efficiently
compared with the general Max-SAT problem.

3 Weighted Abduction via Max-SAT

Here, we formulate the problem as a Max-SAT problem
whose majority of hard clauses are Horn clauses.

A naive approach is searching hypothesis using
backchaining and unification from the observation.
However, this approach is impractical because of the com-
binatorial explosion. To overcome this difficulty, (Inoue and
Inui 2011) introduced the depth-limited weighted abduction
problem, which restricts the depth of backchaining at most
d, where d is a positive integer specified as a parame-
ter. This formulation has advantages in both application
and computation. In a practical application, we usually
hope explanations with shallow backchaining because an
explanation with deep backchaining may look like the
“butterfly effect.” Therefore, it is reasonable to restrict the
depth of backchaining. In computation, this removes the
combinatorial explosion due to backchaining.

3.1 Backchaining Graph

A backchaining graph of depth d is a node-weighted di-
rected hypergraph1 G = (P,R) ≡ (P (i), R(i))i=0,...,d such
that each α ∈ P corresponds to an atomic formula p(�x)
(with different variable names), and each e ∈ R is asso-
ciated with a rule in the background knowledge. It is con-
structed as follows. First, we define P (0) = {α1, . . . , αk}
for observation O = ∃�x (p1(�x1)

$c1 ∧ · · · ∧ pk(�xk)
$ck),

where α1, . . . , αk are associated with p1(�x1), . . . , pk(�xk),
respectively, and the weights are defined by w(α1) = c1,
. . ., w(αk) = ck. We define R(0) = ∅. Then, we per-
form the following procedure for i = 1, . . . , d. We ini-
tialize P (i) = P (i−1) and R(i) = R(i−1). For each rule
∀�x′∃�y′ (p1(�x′

1)
w1 ∧ · · · ∧ pk(�x

′
k)

wk ⇒ q(�x′
0, �y

′)) ∈ B and
node β ∈ P (i−1) that is associated with q(�x0, �y) (i.e., having
the same predicate name), we create new nodes β1, . . . , βk,
which are associated with p̄1(�x

′
1), . . . , p̄k(�x

′
k), respectively,

and the weights are defined by w(β1) = w1w(β), . . .,
w(βk) = wkw(β). Here, we introduce new variables �x′ to
distinguish them from existing variables. We add these new
nodes to P (i) and add new hyperedge ({β1, . . . , βk}, β) to
R(i). We refer to the nodes in P as latent atomic formula.
The backchaining graph is a hyperforest since each applica-
tion of backchaining creates new nodes.

The above construction generates all atomic formulas us-
ing the applications of backchaining with depth at most

1A directed hypergraph (P,R) is a pair of finite sets P and
R ⊆ 2P × P . Each hyperedge e ∈ R is denoted by e = (S, t),
where S ⊆ V and t ∈ V .

d. (Yamamoto et al. 2015) proposed an A∗-search-based
heuristics to construct a smaller graph by pruning atomic
formulas that do not constitute the optimal hypothesis.

3.2 Max-SAT Formulation

After constructing the backchaining graph, our remaining
tasks are to determine (1) which atomic formulas are in-
cluded in the best hypothesis, and (2) which variables are
unified. We solve them by reducing to a Max-SAT problem.

Let V be the set of variables in the atomic formulas cor-
responding to P , and C be the set of constants in them. Our
encoding to Max-SAT is based on (Inoue and Inui 2011).
We introduce four types of Boolean variables: hα, rα, uα,β

for all α ∈ P , and β ∈ P associated with the same atomic
formula (i.e., with a different variable name) with that of
α, and sx,y for all variables or constants x, y ∈ V ∪ C. In
the following, we design formulas to enforce these variables
representing the following events.
• hα = True if p(�x) corresponding to α can be deduced

from the hypothesis (i.e., it is explained by others or in-
cluded in hypothesis).

• rα = True if p(�x) corresponding to α does not have to
pay the cost even if p(�x) is explained (i.e., it is explained
or unified with another atomic formula).

• uα,β = True if p(�x) corresponding to α and p(�y) corre-
sponding to β are unified.

• sx,y = True if the variables or constants x and y are
equal. We define sx,y = False for all distinct constants.

Then, we can see that hα∧¬rα implies that α is included in
the solution hypothesis. Note that we use this representation
because most of the constraints use hα instead of hα ∧¬rα;
hence, it reduces the lengths of the formulas.

Objective Function (Soft Clauses) The objective of
weighted abduction is to find a set of latent atomic formulas
such that the total cost is the smallest. By the encoding, α
pays a cost if hα ∧ ¬rα holds. Thus, we set the negations of
these formulas to the soft clauses as

hα ⇒ rα; weight = w(α), α ∈ P. (3.1)

By the construction, if an assignment falsifies this clause, the
assignment contains α in the solution hypothesis; therefore,
it pays the cost w(α). These are Horn clauses.

Constraint 1: Observation must be true We require that
the latent observation must be true. Thus, we add

hα, α ∈ Ō (3.2)

to the formula. These are Horn clauses.

Constraint 2: Unification is only performed for explained
atomic formulas Two latent atomic formulas can be uni-
fied only if both are explained or included in hypothesized.
So, we add the following constraint, which are Horn clauses.

uα,β ⇒ hα, uα,β ⇒ hβ , α, β ∈ P (3.3)
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Constraint 3: Unified atomic formulas do not have to pay
the costs A latent atomic formula α does not have to pay
the cost only if it is explained or unified. To represent this
constraint compactly, we first add the constraint:

(
∧
β∈S

hβ) ∨ (
∧
β∈S

¬hβ), (S, t) ∈ R for t ∈ P. (3.4)

This means that all the atomic formulas that are chil-
dren of β ∈ P have the same value. Since the gener-
ated hypergraph is a hyperforest, we can safely add this
constraint. (Note that two latent atomic formulas associ-
ated with the same atomic formula can have different val-
ues). Since these are not Horn clauses, we convert them
using the Tseitin transformation (Tseitin 1968). For each
S, we introduce a new variable XS and add the clause(∧

β∈S hβ ⇒ XS

)
∧

(
XS ⇒ ∧

β∈S hβ

)
to the formula.

Then, XS ≡ ∧
β∈S hβ ⇒ XS . The first conjunction is a

Horn clause, and the second conjunction is a conjunction
of a Horn clause, i.e., XS ⇒ ∧

β∈S hβ is equivalent to
XS ⇒ hβ for all β ∈ S. For the above event, the original
clause is equivalent to

∧
β∈S (hβ ⇒ XS). Therefore, (3.4)

is represented by Horn clauses.
Under this constraint, the cost condition is represented by

¬rα ∨
⎛
⎝ ∨

β∈I(α)

hβ

⎞
⎠ ∨

⎛
⎝ ∨

β∈small(α)

uα,β

⎞
⎠ (3.5)

where I(α) = {β ∈ P : (S, α) ∈ R, β ∈ S} is the set of
the in-neighborhood of α, which are the nodes that explain
α, and small(α) = {β ∈ P : c(β) ≤ c(α)} is the nodes
having a smaller cost than β. Here, we introduce arbitrary
tie-breaking to make all of the costs have different values.
This cannot be converted into a Horn clause if we use any
transformation. So, (3.5) is not represented by Horn clauses.

Constraint 4: Variable transitivity If x = y and y = z
then x = z. This is represented as follows:

sx,y ∧ sy,z ⇒ sx,z, sx,z ∧ sy,z ⇒ sx,y,

sx,y ∧ sx,z ⇒ sy,z, x, y, z ∈ V ∪ C. (3.6)

These are Horn clauses.

Constraint 5: Valid substitution If we unify two latent
atomic formulas p and q, all corresponding variables must
take the same value. This condition is represented by

up,q ⇒ sx,y, p, q ∈ P, (x, y) ∈ usub(p, q), (3.7)

where usub(p, q) is the matching pairs of the variables of
p and q that can be unified. For example, given atomic for-
mula p′(x1, x2, x3) and q′(y1, y2, y3) corresponding nodes
p ∈ P and q ∈ P , respectively, we have usub(p, q) =
{(x1, y1), (x2, y2), (x3, y3)}. These are Horn clauses.

Now all the constraints of the depth-limited weighted ab-
duction problem are encoded as an instance of the Max-SAT
problem. We analyze the instance. First, we see that most

of the hard clauses come from Constraint 4 (variable transi-
tivity), which are Horn clauses. The non-Horn clauses only
come from Constraint 3, whose number is at most the num-
ber of the nodes in the backchaining graph, which are much
smaller than the total number of the hard clauses. Next, we
see that the number of soft clauses is equal to the number of
vertices of the backchaining graph. Thanks to the A∗-search
technique mentioned in the last of Section 3.1, the size of
the backchaining graph is not too large. By summarizing the
above discussion, we obtain the following.

Claim 3.1. A depth-limited weighted abduction problem is
reduced to a Max-SAT problem with a small number of soft
clauses and a small number of non-Horn clauses.

As mentioned in Section 2, modern Max-SAT solvers ef-
ficiently solve Max Horn-SAT problems. We expect these
also solves our problem efficiently.

4 Experiments

We conducted the following experiments to evaluate our
proposed method. We refer to our method as SAT-WA.

All experiments were conducted on a computer (Intel
Xeon E3-1270 V2 (4C/3.50GHz/8M) with 32GB of mem-
ory). The code of our method was implemented in C++ (g++
[version4.8.5] with the -O2 option). We implemented our al-
gorithm (SAT-WA) using OpenWBO2 and MaxHS3, which
are particularly efficient Max-SAT solvers. For comparison,
we employed David4, which is a successor to Phillip (Ya-
mamoto et al. 2015), with the Gurobi optimizer5 and ASP-
based method (ASP-WA)6 (Schüller 2016) using Gringo7

for grounding and Wasp8 for solving. Note that ASP-WA
can be used for datasets that do not contain cycles because
the method does not support depth-limitation. As a result,
we compared ASP-WA with other method only for the AC-
CEL dataset without the depth limitation (see below).

4.1 Datasets

Fraud We created a new dataset for a real-world event de-
tection problem. The task is to seek the possibility of “fraud”
from emails9. The background knowledge consists of rules
such as competitor(x, y)∧ provide(PRICE INFO, x, y) ⇒
cartel(x, y), which means that “if x and y are competitors
and x provides y the price information, then x and y form a
cartel.” We created 215 rules by hand. The observation is a
set of events that are extracted from emails. We selected 10
observations that are extracted using a lexical analysis. Each
observation has 331.9 atomic formulas on average. By per-
forming weighted abduction for this instance, we may ob-
tain a possibility of fraud (e.g., cartel) that can explain the

2http://sat.inesc-id.pt/open-wbo/
3http://www.maxhs.org/docs/papers.html
4https://github.com/aurtg/open-david
5http://www.gurobi.com/
6https://bitbucket.org/knowlp/asp-fo-abduction
7http://potassco.sourceforge.net/
8https://github.com/alviano/wasp/
9The emails are manually and artificially created based on the

actual incidents. Thus, there is no issue in law, privacy, and ethics.
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d Graph Convert Solve Total (ratio of solved)

1 David gurobi 0.067 0.002 0.008 0.077 (10/10)
SAT-WA openwbo 0.065 0.002 0.006 0.074 (10/10)
SAT-WA maxhs 0.064 0.002 0.006 0.073 (10/10)

3 David gurobi 5.13 0.053 362.75 367.93 (7/10)
SAT-WA openwbo 4.71 0.051 0.176 4.94 (10/10)
SAT-WA maxhs 4.51 0.051 77.02 81.59 (7/10)

5 David gurobi 8.72 0.110 468.06 476.89 (7/10)
SAT-WA openwbo 8.25 0.107 0.305 8.66 (10/10)
SAT-WA maxhs 8.12 0.107 77.81 86.04 (10/10)

(a) Running time [sec] varying depth value d = 1, 3, 5.

d = 1 d = 3 d = 5

#nodes of graph 564.9 2983.3 4385.5
#valuables 797.9 15372.5 33167.5
#constraints 994.7 26500.2 63285.6

(b) The size of ILP and Max SAT problem

Table 1: Comparison of David and SAT-WA for Fraud. All
values are the averages over the instances.

observation. We assign the uniform weights to the rules so
that the total weight equals 1.2. We assign a cost of 10 for
each observation. This dataset contains cycles; thus, ASP-
WA method cannot be applied for this dataset.

ACCEL The ACCEL dataset is the dataset used in
(Schüller 2016). It is extracted from the dataset originally
developed for the abductive plan recognition system AC-
CEL (Ng and Mooney 1992) and one rule that makes the
background knowledge cycle is removed from it.

The background knowledge and observations of this
dataset were obtained by extracting 189 background axioms
and 50 plan recognition problems, respectively. The plan
recognition problems provide agents’ partial actions as a
conjunction of atomic formulas. The number of rules in the
background knowledge is 189 and the average number of
atomic formulas for 50 observations is 12.58. This contains
no cycles. Thus, we can apply ASP-WA for this dataset.

4.2 Evaluation

We measured the number of solved problems in 1000 sec-
onds and the average running times of David and SAT-WA
on the Fraud and ACCEL datasets with the depth of 1, 3, and
5. We also measured the average running time of ASP-WA
and the above methods on ACCEL with the depth of ∞. The
average is taken over the instances in the datasets (i.e., 50 for
ACCEL and 10 for Fraud). The running time is separated as
the following three parts: i) Graph: the running time for gen-
erating the backchaining graph, ii) Convert: the running time
for converting to the ILP or Max Horn-SAT problem and iii)
Solve: the running time for finding an optimal hypothesis by
the solvers. SAT-WA and David performed the same proce-
dure for Graph part and almost the same for Convert part.
The difference will appear in Solve part.

4.3 Results

Tables 1a and 2a present the running times for the Fraud and
ACCEL datasets that could be solved in 1000 seconds, re-

d Graph Convert Solve Total (ratio of solved)

1 David gurobi 0.006 0.01 6.167 6.185 (50/50)
SAT-WA openwbo 0.01 0.01 0.031 0.056 (50/50)
SAT-WA maxhs 0.008 0.01 0.115 0.137 (50/50)

3 David gurobi 0.48 0.16 159 159.6 (27/50)
SAT-WA openwbo 2.78 1.81 6.303 10.89(50/50)
SAT-WA maxhs 2.68 1.81 53.60 58.10(50/50)

5 David gurobi 0.74 0.23 262.8 263.8 (26/50)
SAT-WA openwbo 4.24 2.41 9.05 15.70(50/50)
SAT-WA maxhs 3.92 2.43 78.19 84.54(50/50)

∞ David gurobi 0.68 0.23 263.9 264.9 (26/50)
SAT-WA openwbo 4.39 2.46 9.22 16.08(50/50)
SAT-WA maxhs 4.08 2.46 79.65 86.20(50/50)
ASP-WA — — — 14.71(50/50)

(a) Running time [sec] varying depth value d = 1, 3, 5,∞.
d = 1 d = 3 d = 5 d = ∞

#nodes of graph 141.38 4853.42 5917.84 5917.84
#valuables 3575.66 540853 723639 723639
#constraints 7830.48 1248961 1672480 1672480

(b) The size of ILP and Max SAT problem

Table 2: Comparison of David and SAT-WA for ACCEL. All
values are the averages over the instances.

spectively. For all cases, SAT-WA outperformed David sig-
nificantly. For the Fraud dataset with d = 5, the all of the
problems were solved by SAT-WAs with all SAT solvers,
while the 30% (3/10) of the problems were not solved by
David with ILP solver. For the ACCEL dataset with d = 5,
all problems were solved by SAT-WAs with all SAT solvers,
while the 48% (24/50) of the problem could not be solved
by David with ILP solver. This implies that SAT-WAs were
much efficient than David, and they efficiently worked for
reasonable depths. Besides, for depth = ∞ SAT-WA with
OpenWBO efficiently ran as well as ASP-WA.

To understand the reason why SAT-WA was so efficient,
we looked into the details of the ILP and Max-SAT prob-
lems. Tables 1b and 2b show the size of these problems con-
verted from the weighted abduction problem. As expected
by Claim 3.1, the number of soft clauses, which equals to the
number of nodes of the backchaining graph, is small com-
pared with the other parameters. Hence, we can expect that
the SAT solver can solve the problem efficiently.

5 Conclusion

We proposed a Max-SAT formulation of the weighted ab-
duction problem and proposed to solve the problem using
Max-SAT solvers. The Max-SAT problems obtained by the
formulation have a small number of soft clauses compared
with the hard clauses, and the hard clauses are mostly Horn
clauses. This indicates that the problems can be solved effi-
ciently using modern SAT solvers. Experimental results sup-
ports this observation. Our method outperformed the exist-
ing methods by a factor of 100 for real-world instances.

There are several possible directions. One promising di-
rection is to develop a tailored solver, instead of general
Max-SAT solvers. Our Max-SAT problems have many Horn
clauses; thus, a progress on the Max Horn-SAT solvers can
be incorporated. Another promising direction is to learn the
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parameters (i.e., the cost and weight) for the weighted ab-
duction problem from dataset. A learning process may re-
quire to solve the weighted abduction problem several times;
hence, our efficient method will help such the process.
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