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Abstract

A brain signal based biometric system is a novel approach for
more intuitive, robust, and user-friendly authentication. Al-
though previous research has been conducted in this field with
different visual stimuli, music stimuli for brain signal au-
thentication is rarely considered. In this paper, a new frame-
work for user authentication system with electroencephalog-
raphy and music stimuli is proposed. The EEG data was rou-
tinely collected from 16 healthy participants once a week for
three weeks. Though different types of music evoke differ-
ent responses, users are able to be recognized based on their
brain signals. The experiment results show that when using
this approach, the best classification accuracy rate is around
96.75%. These results show that the musically evoked re-
sponse carries participant discriminating features, which can
be potentially employed as a biometric trait.

1 Introduction

The rapid development of wearable devices and sensor tech-
nology has promoted the further exploration of human bio-
signals in various domains. One of the frontiers in both sci-
ence and technology research of bio-signals is brain activ-
ity, which can be measured by using electroencephalogra-
phy (EEG), magnetic resonance imaging, or electromyog-
raphy. The electroencephalography is a method for quickly
determining how brain activity can change in response to
stimuli. It was found to be useful in many applications like
abnormal brain activity diagnosis, brain-computer interac-
tion, affective computing, robotics adaptive learning, direct
brain-to-brain communication (Jiang et al. 2019), and so on.
In addition to the conventional fields, EEG signals have also
been suggested for use in biometric authentication purposes.

Biometrics have various methodologies available for the
study of metrics related to human characteristics. Electroen-
cephalography signals are considered by many to be one of
the most efficient and universal methods for examining these
biometric measures. While commonly available methods of
conventional biometrics make use of physiological or behav-
ioral features, based on the individual’s characteristics or the
way they behave, EEG signal biometric systems rely on the
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use of cognitive and emotional brain states as their distinc-
tive features (Li, Cha, and Tappert 2019). Previous research
in both early neurophysiological studies and biometric stud-
ies have already pointed out that EEG signals provide rele-
vant information about individual differences. Another rea-
son for perceiving EEG as a promising technique to generate
biometric templates is also because the activity of the brain
signals is a more intuitive, robust, and user-friendly authenti-
cation modality. Additionally, EEG signals are very resilient
against fraud and non-knowledgeable acquisition compared
to other traditional biometrics such as fingerprint and facial
recognition. . Due to the highly unique nature of brain sig-
nals, it is hard to steal or mimic (Thomas and Vinod 2017),
and has the added benefit of allowing for continuous recog-
nition (Li et al. 2019). However, the disadvantage of using an
EEG signal authentication system is the challenge of setting
up a user for data acquisition and creating an ideal stimula-
tion environment.

Research for EEG extraction protocols for user recog-
nition has been implemented from the baseline study with
eyes-open (EO) and eyes-closed (EC) (La Rocca et al. 2014;
Thomas and Vinod 2016) to different imagery stimula-
tions (Rahman and Gavrilova 2016; Di et al. 2018; Li et al.
2019). The latest study has shown that the in-ear EEG tech-
nology and Auditory Evoked Potentials (Nakamura, Gover-
dovsky, and Mandic 2017; Kidmose, Looney, and Mandic
2012) is a potential solution to narrow this gap. Inspired
by these studies, this research attempts using music stim-
uli to evoke brain signals for user authentication and a new
approach in the field of EEG-based biometrics is proposed
as shown in Figure 1. In addition to the authentication ap-
proach, this study continued to track the distinctiveness of
the EEG signals of 16 subjects over three weeks. A single
channel and pairwise channel modality of the EEG system
is also evaluated and the relevant results were mapped. In or-
der to adapt to practical applications, the study adopted tra-
ditional statistical parameters and dynamic histogram mod-
els with dichotomy transformation for feature extraction
and applied the suggested classifier in (Li et al. 2017;
Siuly, Li, and Zhang 2018) to examine the dataset.

The rest of the paper is organized as follows: Section 2
outlines the related works of EEG-based studies. Section 3
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Figure 1: Proposed biometric authentication system

describes the experimental protocol, the music stimulus pre-
sentation, data collection materials, as well as the data prepa-
ration process. Section 4 discusses the experimental results,
and in the Section 5 is the conclusion and future work.

2 Related Works

Research into EEG-based user authentication has done much
to lay the foundation of this study. As cognitive biometrics,
EEG signals offer a high degree of uniqueness among indi-
viduals and contain a great deal of information about that
individual. Additionally, it also provides significant bene-
fits over other user-recognition schemes. When compared
to other accepted biometrics such as voice, fingerprint, and
face recognition, brain signals have a much higher degree of
“universality” (Chan et al. 2018). For example, people with
speech or language impairments may struggle to use voice
recognition software and individuals with missing or dam-
aged fingertips cannot use fingerprint recognition software;
but a brain that produces an electrical signal can be used with
an EEG for biometric recognition.

Aside from that, not all biometric techniques offer the
same level of security. For instance, fingerprints can be left
behind on surfaces or damaged in accidents. Faces can also
be photographed with a camera or covered by a mask. From
a security perspective, that biometric information is ‘pub-
lic’. They can be captured without the owner’s knowledge
and replicated to bypass whatever security measures are in
place. In the case of large scale data breaches, like the 2015
hacking of the United States Office of Personnel Manage-
ment, the personal information and 5.6 million fingerprints
of federal employees were stolen (Gootman 2016), render-
ing them useless for future authentication. Although brain
signals have limitations, they are not exposed or left be-
hind like other popular biometric features. Measuring these
signals requires physical contact with the head. Therefore,
it is difficult to obtain this data without the user’s partici-
pation, and the nonstationary characteristic of EEG signals
paired with each person’s unique neural pathways and re-
sponse to stimuli makes it impossible to imitate (Bashar,
Chiaki, and Yoshida 2016). All of these qualities make this
type of biosignal an attractive choice for biometric secu-
rity (Thomas and Vinod 2017).

Despite recent interest in this area of research, stimu-
lus tends to fall mainly into merely three categories: Rest,
Text, and Images/Video (Table 1 summarizes the related
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work concerning user authentication via brain signal anal-
ysis). Resting state stimulus with eyes-closed and eyes-open
is a baseline in the study of EEG for biometrics. In 2016,
researchers using the public database PhysioNet BCI were
able to classify resting state EEG signals of 109 subjects
with an average accuracy of 99.7% for beta-band in fre-
quency (15-30Hz) (Thomas and Vinod 2016). Although that
classification result reached a relatively high accuracy rate,
which demonstrates the potential of the use of EEG, the rest-
ing stage EEG signals is not enough to be applied for real-
world applications. Since in real cases, people do not only
stay resting when interacting with computers.

EEG experimentation done by Rahman et al. explored
the use of text stimulus to find the best signal band for
user verification. They considered the alpha, beta, and theta
bands both independently and in combination with each
other. Their results with a back propagation neural net-
work (BPNN) highlighted the benefits of analyzing each
signal band in isolation. The alpha, beta, and theta bands
had a classification rate of 84.4%, 80%, and 78.1% respec-
tively; while the alpha-theta (65.6%), alpha-beta (64.1%),
beta-theta (58.8%), and alpha-beta-theta (56.9%) combina-
tion bands had much lower accuracy overall (Rahman and
Gavrilova 2016). Di et al. of Tianjin University used a con-
volutional neural network (CNN) for their user identification
research using text stimulus. The EEG signals were mea-
sured by extracting the P300 wave as the event-related po-
tential components elicited in the process of decision mak-
ing, and they were able to reach around 99% accuracy when
classifying 33 subjects (Di et al. 2018) in multi-class classi-
fication.

In a video stimulus study, researchers set out to document
potential differences in classification rates when analyzing
signals from subjects who viewed both Virtual Reality (VR)
and Non-VR videos. Their findings showed a small but sig-
nificant difference of approximately 3% when classifying
VR (73.68%) vs Non-VR (76.73%) data when using their
best feature extraction method, a hybrid autoregressive (AR)
and statistical model, and support vector machine (SVM)
classifier with non-linear kernel (Li et al. 2019). Koike-
Akino et al. completed a study that made use of Zener
Cards (Kennedy 1938) as a form of digital image stimulus.
25 volunteers were tasked with selecting one of five cards
on the screen and counting the number of times their card
appeared. This data set in conjunction with principal com-
ponent analysis (PCA) as feature extraction and quadratic
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Figure 2: Music trial test procedure

discriminant analysis (QDA) as classifier reached 96.7% ac-
curacy (Koike-Akino et al. 2016). A smaller study of only
four subjects attempted to “investigate the efficacy of self-
related visual stimuli” (Thomas, Vinod, and others 2017) by
showing subjects pictures of different faces. With a classifier
based on Pearson’s Correlation Coefficient (PCC) they were
able to finish this study with an average accuracy of 87.5%.
Straticiuc et al., who performed “a preliminary analysis of
music on human brainwaves” found that music resulted in
an increase in alpha waves and a dramatic decrease in beta
waves (Straticiuc et al. 2016). However, no attempt at clas-
sifying subjects was made. The use of musical stimulus for
biometric analysis remains a somewhat unexplored area of
study. Hence, this study attempts to fill that gap with differ-
ent types of music stimuli.

3 Methodology

To explore music stimulation for the EEG-based user au-
thentication system, this research developed a specific mu-
sic trial program along with carefully designed EEG data
acquisition steps. This section will elaborate on the data ac-
quisition process, signal processing, and feature extraction
methods used in this study.

Data Acquisition

In this research, EEG data was collected from 16 healthy
participants (7 female, 9 male), with an average age of 26
years old £3 years. Before each session, the volunteers re-
ceived an average of 7 hours of sleep. The participants are
required to return for multiple sessions of data acquisition,
with each having EEG data collected once a week for three
weeks. Each week, the volunteers participated in a 5-minute
test session of music stimuli. The time frames of the test
session are illustrated in Figure 2. The first 60 seconds is
designed for the baseline study with 30 seconds eyes-closed
(EC) and 30 second eyes-open (EO) rest. After the 60 sec-
onds of rest, participants would then listen to three songs
broken by 30 second periods of EO rest. The songs con-
sisted of three different genres of music: classical, jazz, and
electronic. The same songs were played in the same order
during each session.

EEG recording and channel location

The data was recorded using an OpenBCI Utracortex “Mark
IV’ EEG headset with Cyton board. The default data am-
plifier is 250Hz sampling frequency and the EEG signals
were recorded from 8 channels (T3, T4, C3, C4, Cp5, Cp6,
Oz, and Fz), with 2 references (A1, and A2). As shown in
Figure 3, the EEG electrodes were placed in accordance
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with the international 10-20 system. The 8-channels were
selected to target the left and right auditory cortices, one for
the frontal area, and one for the Occipital area.

Figure 3: Chosen Electrode Locations

Pre-processing

Before feature extraction, the raw EEG signals are pre-
processed according to the conventional signal processing
procedure. First, ‘bad channels’ are removed; a channel is
considered ‘bad’ if it is not working or otherwise has trouble
making comfortable contact with the subject during the data
collection process. A notch filter of 60Hz is then applied to
remove background noise from power lines. After that, data
is downsampled from 200Hz to 128Hz to reduce the data
size. The EEG signals contain five major frequency bands:
delta (0-4Hz), theta (4-8 Hz), alpha (8-15 Hz), beta (15-30
Hz), and gamma (>30Hz) bands. In this study, only the fre-
quency range from 4-45Hz is considered because the delta-
band dominates in deep sleep states and the high gamma-
band is correlated with selective attention. The data passes
through the band-pass filter and the relevant data is sepa-
rated. After pre-processing, data is prepared for feature ex-
traction. In this step, data from the musical stimuli are iso-
lated and rest data is discarded.

Feature Extraction

The methods for extracting the characteristics of the EEG
signal after pre-processing are diverse. There are three types
of features that can be obtained from the EEG data: time-
domain, frequency-domain, or time-frequency domain. This
study considered time-domain features and time-frequency
domain features. First, a conventional statistical feature ex-
traction method which was also examined in the research (Li
and Cha 2019) is used. The statistical parameters used are
mean (p), median (m), standard deviation (o), z-score (z),



Table 1: Related work concerning user authentication via brain signal analysis.

Author Subjects | Stimulus Features Classifier Accuracy %
(Thomas and Vinod 2016) 109 Rest Sample Entropy, PSD | Mahalanobis Dis. 99.7
. . KNN 40-50

(Rahman and Gavrilova 2016) 10 Text Entropy, Statistics BPNN 360844
(Di et al. 2018) 33 Text n/a CNN 99

(Lietal. 2019) 29 Video AR, PSD, Statistics SVM 70.92-76.73
(Koike-Akino et al. 2016) 25 Images PCA QDA 96.7
(Thomas, Vinod, and others 2017) 4 Images PSD PCC 87.5

skewness (gq), and kurtosis (k), which are given in equa-
tions (1) - (6).
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In addition, to adopt the frequency components as the fea-
tures to represent the EEG signals under music stimulation,
a dynamic histogram measurement model with segmenta-
tion (DHMS) (Li 2019) is used. The dynamic histogram
measurement model with segmentation is a novel approach
to high-quality feature extraction by estimating the energy
distribution of the EEG signals based on the time-frequency
domain. In this research, the EEG data is segmented based
on 10 second frames with 75% overlapping. The DHMS is
described in Algorithm 1. The differential coefficient f is
given as

f(l’):dft: A,

where, x,, is the data sample of a sequence, ¢ represent the
time points of the data sample x, and ¢ is the step of the
differential coefficient.

. for i=[1,2] (7

Classification

EEG user authentication is the task of determining whether
two samples, X and Y, were collected from the same per-
son or from two different people. Before passing the fea-
tures into the classification machine, a feature domain trans-
formation is applied on the extracted features. Classifying
the distinctiveness of 16 individuals is a multi-class classi-
fication problem. However, with the use of the Dichotomy
Transformation Model (Srihari et al. 2002), it can be turned
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Algorithm 1: DHMS model for feature extraction

Input : A data sequences S, k is the number of
segments with number of overlapping p
Output: A feature set F'

Segment the data sequence S with p overlapping;
X,}f < the kth sub-sequence of S ;
fori <— ntoldo
fa  differential coefficient of z,, and z,,_1;
fp» + differential coefficient of z,, and z,,_2;
end
HF < histogram frequency of sub-sequence x,,;
HF < histogram frequency of sub-sequence f,;
H, f < histogram frequency of sub-sequence fj;

F « {H;, Hy, Hy}

into a binary-class classification problem to meet the pur-
pose of user authentication. Each pair of features from the
feature extraction phase were computed with Euclidean dis-
tance thereby transforming from polychotomy to dichotomy.
Feature pairs from the same person (intra-class) are labeled
‘0’, and feature pairs from separate persons (inter-class) are
labeled ‘1°. They are then trained for the model in a sup-
port vector machine (SVM) algorithm with a linear kernel.
The experiment details and classification results will be de-
scribed in the next section.

4 Experiments and Results

This section describes the details of the proposed sys-
tem with three categories of music stimulation in the EEG-
based authentication systems, as well as the recognition per-
formance on single-channel modality and pairwise-channel
modality of the EEG system. All the results reported here are
used in the form of an accuracy percentage with the mean
value for the channel modalities as well as false acceptance
rate (FAR) to represent the percentage of 'false positives’
allowed in by the models.

During the experiments, the EEG data was synced and
matched with the music trails. Data was segmented based
on the time series of music track; the data range for M1 =
[60:120], M2 = [150:210], and M3 = [240:300]. Each se-
ries was then evaluated for performance of both individual
channels and also the bipolar channels (same location on
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the left and right hemisphere) for synchronization purposes.
Figure 4 shows the overall average accuracy for single-
channel and pairwise-channels modalities in week 1, week
2 and week 3. Table 2 presents in detail both the recognition
performance and the false acceptance rate for the single-
channel and pairwise-channel modalities with music track
1 (M1), track 2 (M2), and track 3 (M3).

In terms of accuracy rate the DHMS outperformed the
conventional statistical features in every channel. The av-
erage accuracy for all channels across all three weeks was
91.32% (single-channel) and 90.20% (pair-channel) for the
DHMS model, and 66.75% (single-channel) and 67.15%
(pair-channel) for the statistical model. As for false accep-
tance rate, the average FAR was 5.66% (single-channel) and
6.14% (pair-channel) for the DHMS model, and 33.29%
(single-channel) and 32.58% (pair-channel) for the statisti-
cal model. Again averaging the channels, week 1 had the
highest accuracy for both single (92.26%) and pair-channels
(90.79%), followed by week 2 (91.27% single, 90.59% pair),
and finally week 3 (90.43% single, 89.22% pair). Overall,
the highest accuracies are not achieved in week 3, but in-
stead in week 2. Also, comparing the modalities, we find
that the C3 and Fz channel, and the C3/C4 and T3/T4 pairs
show a near consistent result for all the weeks. It proves that
collecting the EEG data near the auditory cortex can achieve
a relatively stable accuracy in music stimuli for the authen-
tication scheme.

5 Conclusions

This study proposes a new framework for EEG-based user
authentication with music stimuli. A new EEG database
consisting of 16 healthy subjects being stimulated by mu-
sic once a week for three weeks was created for the pur-
pose of testing this system and the viability of musical stim-
uli for user authentication. This model was capable of per-
forming user authentication with an average accuracy across
all weeks of 91.01%.These results show that the musically
evoked response carries participant discriminating features,
which can be potentially employed as a biometric. For future
work, an expansion of the dataset beyond three weeks is al-
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ready underway. Though an expanded study with a larger
sample size and more ambitious time frame would also be
beneficial. Analysis of authentication rates as users become
more accustomed to the musical stimuli over an extended
period of time could shed light on trends inherent to this
type of stimulus or authentication model.
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Table 2: Accuracy and False Acceptance Rate for single-channel and pair-channel modalities with the DHMS and Statistical

Features models

Dynamic Histogram Statistical Features
Accuracy (%) False Acceptance Rate (%) Accuracy (%) False Acceptance Rate (%)

Week | Channel | M1 M2 M3 Mean | M1 M2 M3 Mean Ml M2 M3 Mean | M1 M2 M3 Mean
T3 90.14 | 91.47 | 89.48 | 90.36 | 5.26 | 5.11 7.56 5.98 70.40 | 68.78 | 71.21 | 70.13 | 29.39 | 30.98 | 26.53 | 28.97

T4 89.40 | 94.87 | 91.40 | 91.89 | 7.86 | 3.71 5.93 5.83 67.38 | 68.61 | 68.85 | 68.28 | 33.37 | 34.28 | 25.59 | 31.08

C3 89.55 | 91.69 | 91.25 | 90.83 | 7.41 | 5.56 5.71 6.23 65.26 | 56.85 | 58.91 | 60.34 | 34.33 | 46.47 | 45.06 | 41.95

C4 90.40 | 92.58 | 92.65 | 91.88 | 4.74 | 5.04 | 497 | 4.92 62.97 | 63.25 | 63.41 | 63.21 | 41.55 | 41.05 | 37.79 | 40.13

Oz 92.65 | 95.46 | 92.28 | 9346 | 5.63 | 230 | 4.82 | 4.25 71.21 | 7451 | 7238 | 72.70 | 29.19 | 26.32 | 33.17 | 29.56

1 Fz 96.75 | 90.35 | 93.01 | 93.37 | 3.72 | 6.85 5.28 5.28 77.15 | 70.14 | 70.79 | 72.69 | 26.09 | 37.28 | 36.62 | 33.33
Cp5 93.54 | 93.76 | 93.39 | 93.56 | 3.71 | 3.34 3.85 3.63 69.96 | 65.70 | 67.41 | 67.69 | 26.72 | 38.79 | 34.21 | 33.24

Cp6 91.10 | 94.17 | 92.84 | 92.70 | 6.75 | 2.82 | 452 | 4.69 64.96 | 59.37 | 64.46 | 62.93 | 37.40 | 41.71 | 35.19 | 38.10
T3/T4 88.90 | 91.62 | 89.75 | 90.09 | 6.90 | 4.97 6.75 6.21 69.60 | 68.40 | 70.86 | 69.62 | 30.45 | 32.93 | 25.31 | 29.56
C3/C4 88.18 | 91.67 | 90.97 | 90.27 | 7.20 | 5.64 | 5.82 6.22 64.97 | 61.68 | 60.22 | 62.29 | 37.81 | 45.22 | 40.99 | 41.34
Cp5/Cp6 | 91.65 | 91.87 | 92.47 | 92.00 | 4.49 | 4.27 456 | 4.44 68.43 | 63.72 | 66.37 | 66.17 | 32.48 | 38.73 | 3491 | 35.37

T3 93.35 | 93.80 | 90.99 | 92.71 | 452 | 4.74 5.63 4.97 72.75 | 73.89 | 73.59 | 73.41 | 23.02 | 22.62 | 26.35 | 24.00

T4 91.43 | 89.51 | 89.96 | 90.30 | 4.89 | 6.52 | 7.04 6.15 65.52 | 66.81 | 60.58 | 64.31 | 36.16 | 31.88 | 42.93 | 36.99

C3 9298 | 90.21 | 90.25 | 91.15 | 4.08 | 6.30 | 6.00 | 5.46 60.75 | 64.73 | 63.62 | 63.03 | 38.86 | 33.83 | 36.59 | 36.42

C4 89.77 | 89.44 | 91.91 | 90.37 | 5.49 | 6.08 5.93 5.83 66.16 | 67.59 | 66.63 | 66.79 | 34.37 | 28.57 | 31.95 | 31.63

Oz 92,95 | 95.23 | 91.53 | 93.24 | 4.65 | 3.37 546 | 449 67.94 | 67.72 | 71.15 | 68.94 | 31.79 | 34.15 | 28.99 | 31.64

2 Fz 93.58 | 90.62 | 90.43 | 91.54 | 3.77 | 5.86 | 5.22 | 4.95 61.54 | 59.55 | 60.59 | 60.56 | 40.70 | 41.33 | 38.41 | 40.14
Cp5 91.95 | 92.91 | 91.14 | 92.00 | 6.00 | 5.04 5.49 5.51 67.71 | 69.82 | 67.79 | 68.44 | 29.66 | 26.59 | 31.05 | 29.10

Cp6 89.81 | 89.14 | 87.67 | 88.87 | 6.00 | 7.26 10.82 | 8.03 67.86 | 66.74 | 63.19 | 65.93 | 30.11 | 34.66 | 37.67 | 34.15
T3/T4 91.65 | 91.67 | 90.14 | 91.15 | 456 | 490 | 6.94 5.46 69.93 | 71.30 | 68.20 | 69.81 | 27.92 | 25.89 | 33.51 | 29.11
C3/C4 91.21 | 90.14 | 90.71 | 90.69 | 4.67 | 5.38 5.93 5.33 64.01 | 66.02 | 65.08 | 65.03 | 36.52 | 30.40 | 33.75 | 33.56
Cp5/Cp6 | 90.21 | 90.18 | 89.40 | 89.93 | 5.82 | 6.23 7.23 6.43 68.71 | 68.67 | 65.44 | 67.61 | 29.11 | 28.88 | 35.26 | 31.09

T3 93.17 | 87.56 | 94.46 | 91.73 | 393 | 949 | 2.52 5.31 70.14 | 68.08 | 69.56 | 69.26 | 26.72 | 31.27 | 29.03 | 29.01
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