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Abstract

Artificial Intelligence (AI) has become an integral part of
domains such as security, finance, healthcare, medicine, and
criminal justice. Explaining the decisions of AI systems in
human terms is a key challenge—due to the high complex-
ity of the model, as well as the potential implications on hu-
man interests, rights, and lives. While Explainable AI is an
emerging field of research, there is no consensus on the def-
inition, quantification, and formalization of explainability. In
fact, the quantification of explainability is an open challenge.
In our previous work (Islam et al. 2019), we incorporated do-
main knowledge for better explainability, however, we were
unable to quantify the extent of explainability. In this work,
we (1) briefly analyze the definitions of explainability from
the perspective of different disciplines (e.g., psychology, so-
cial science), properties of explanation, explanation methods,
and human-friendly explanations; and (2) propose and formu-
late an approach to quantify the extent of explainability. Our
experimental result suggests a reasonable and model-agnostic
way to quantify explainability.

Introduction

The use of Artificial Intelligence (AI) has spread into a
spectrum of high-stakes applications from different domains
such as security, finance, healthcare, medicine, and criminal
justice, impacting human interests, rights, and lives. Follow-
ing the pace of the demand, the successful AI-based mod-
els have also become so complex that their decisions have
become too complicated to express in human terms. This
further complicates their adoption in many sensitive disci-
plines, raising concerns from the ethical, privacy, fairness,
and transparency perspectives. The root cause of the prob-
lem is the lack of explainability and/or interpretability of the
decision.

We have seen the very confusing use of the terms “ex-
plainability” and “interpretability” throughout the literature.
Some treat these as the same and stick to one, while some
differentiate among the two, and others use them ambigu-
ously. Research in Explainable Artificial Intelligence (XAI)
is seeing a resurgence after three decades of slowed progress
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since some preliminary work on expert systems in the early
1980’s. Currently, there is no consensus on the definition
these terms. In addition, the quantification of explainability
is another open challenge, which will be difficult until there
is a consensus on the concrete definition of those terms (e.g.,
explainability, interpretability).

In our previous work (Islam et al. 2019) and (Islam et
al. 2020), we proposed an approach to incorporate domain
knowledge in the model to make the prediction more ex-
plainable for two different domain. However, we were un-
able to quantify the quality of explanations (i.e., validation
of explainability). There has been some previous work (Mol-
nar, Casalicchio, and Bischl 2019) that mentions three no-
tions for quantificiaiton of explainability. The first two no-
tions involve experimental studies with humans (e.g., do-
main expert, layperson) that mainly investigate whether a
human can predict the outcome of the model (Dhurandhar
et al. 2017), (Friedler et al. 2019), (Huysmans et al. 2011),
(Poursabzi-Sangdeh et al. 2018). However, the third notion
(proxy tasks) does not involve a human. Instead they use
known truth as a metric (e.g., the less the depth of the deci-
sion tree, the more explainable the model).

In this work, our contributions are as follows:

1. We define explainability and interpretability from a multi-
domain perspective and clarify their resemblance.

2. We analyze the properties of explanation, explanation
methods, and human friendly explanations.

3. We present a potential way to formalize and quantify ex-
plainability with experimental results using proxy tasks.

Explainability, and Interpretabiliy

(Miller 2018) argue that most of the work on XAI focuses
on the researcher’s intuition of what constitutes a good ex-
planation. However, there exists a vast area of research in
philosophy, psychology, and cognitive science on how peo-
ple generate, select, evaluate, and represent explanations and
associated cognitive biases and social expectations towards
the explanation process. Therefore, the author emphasizes
that the research on Explainable AI should incorporate stud-
ies from these different domains.
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From the social science perspective, according to (Miller
2018) and (Lombrozo 2006), explanation is both a process
and product:

• Cognitive explanation process: identifies the causes for an
event, perhaps concerning particular counterfactual cases,
and a subset of these causes is selected as the explanation.

• Product: the explanation that results from the cognitive
explanation process.

• Social process: the process of transferring knowledge be-
tween explainer and explainee, generally an interaction
between groups of people, in which the goal is to provide
the explainee with enough information to understand the
causes of the event.

This definition of explanation insists that it is both a process
and product (i.e., outcome), and focuses on understanding
the causes of the event.

Furthermore, according to psychologist (Lombrozo
2006), “Explanations are . . . the currency in which we ex-
changed belief”. This definition stresses the need for high fi-
delity for the explanation, in other words, gaining trust from
the explanation recipient. Moreover, according to physicist
(Deutsch 1998) who is the pioneer of quantum computation:
explanations consist of interpretations of how the world
works and why. This definition suggests that explanations
are roughly equal to or a superset of interpretations. Inter-
pretations are the building blocks of explanations; without
interpretation, explanation is incomplete. Furthermore, the
terms “explainability” and “interpretability” are simply the
extent of explanation and interpretation accordingly.

There are other mentionable definitions too. According to
(Miller 2018), “interpretability is the degree to which a hu-
man can understand the cause of a decision”. Besides, ac-
cording to (Kim et al. 2017) “Interpretability is the degree to
which a human can consistently predict the model’s result”.
Furthermore, according to (Ribeiro, Singh, and Guestrin
2016) “By ‘explaining a prediction’, we mean presenting
textual or visual artifacts that provide qualitative understand-
ing of the relationship between the instance’s components
(e.g. words in text, patches in an image) and the model’s
prediction”. In other words, (Ribeiro, Singh, and Guestrin
2016) put an emphasis on the qualitative understanding of
the relationship between input and output (i.e., a selec-
tive/suitable set of information pieces that together can re-
fer to a cause to an event, in contrast to the complete causal
attributions) .

To this end, in the case of an intelligent system (i.e.,
AI/ML-based system), it is evident that explainability is
more than interpretability in terms of importance, complete-
ness, and fidelity of prediction. Based on that, we choose
to keep our focus entirely on explainability instead of inter-
pretability. Finally, analyzing different definitions from the
literature, we come up with following:

Definition: Explainability of an AI model’s prediction is the
extent of transferable qualitative understanding of the re-
lationship between model input and prediction (i.e., selec-
tive/suitable causes of the event) in a recipient friendly man-
ner.

We proceed further based on this informal definition of ex-
plainability.

Background

There are two primary directions of research towards eval-
uation of explainability of an AI/ML model: (1) model
complexity-based and (2) human study-based.

Model Complexity-based Explainability Evaluation

In the literature, model complexity and (lack of) model in-
terpretability are often treated as the same (Molnar, Casalic-
chio, and Bischl 2019). For instance, in (Fürnkranz, Gam-
berger, and Lavrač 2012) and (Yang, Rudin, and Seltzer
2017), model size is often used as a measure of interpretabil-
ity (e.g., number of decision rules, depth of tree, number of
non-zero coefficients).

(Yang, Rudin, and Seltzer 2017) propose a scalable
Bayesian Rule List (i.e., probabilistic rule list) consisting
of a sequence of IF-THEN rules, identical to a decision
list or one-sided decision tree. Unlike the decision tree that
uses greedy splitting and pruning, their approach produces a
highly sparse and accurate rule list with a balance between
interpretability, accuracy, and computation speed.

Furthermore, according to (Rüping and others 2006),
while the number of features and the size of the decision tree
are directly related to the interpretability, the optimization of
the tree size or features (i.e., feature selection) is costly as it
requires generation of a large set of models and their elimi-
nation in subsequent steps. Besides, reducing the tree size
(i.e., reducing complexity) increases error; however, they
could not find a way to formulate the relation in simple func-
tional form.

More recently, (Molnar, Casalicchio, and Bischl 2019) at-
tempt to quantify the complexity of the arbitrary machine
learning model with a model agnostic measure. In that work,
the author demonstrates that when the feature interaction
(i.e., the correlation among features) increases, the quality
of representations of explainability tools degrades. For in-
stance, the explainability tool ALE Plot starts to show harsh
lines (i.e., zigzag lines) as feature interaction increases. In
other words, with more interaction comes a more combined
influence in the prediction, induced from different correlated
subsets of features (at least two), which ultimately makes it
hard to understand the causal relationship between input and
output, compared to an individual feature influence in the
prediction. In fact, from our study of different explainabil-
ity tools (e.g., LIME, SHAP, PDP), we have found that the
correlation among features is a key stumbling block to rep-
resent feature contribution in a model agnostic way. Keeping
the issue of feature interactions in mind, (Molnar, Casalic-
chio, and Bischl 2019) proposes a technique that uses three
measures: number of features, interaction strength among
features, and the main effect (excluding the interaction part)
of features to measure the complexity of a post-hoc model
for interpretation. Although, their work mainly focuses on
model complexity for post-hoc models, that acted as a pre-
cursor to formulate our approach of explainability quantifi-
cation. Our approach to quantify explainability is model ag-
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nostic and is for a model of any notion (e.g., pre-modeling,
post-hoc).

Human Study-based Explainability Evaluation

The following work deals with the application and human-
level evaluation of explainability involving human studies.

(Huysmans et al. 2011) investigate the suitability of dif-
ferent alternative representation formats (e.g., decision ta-
bles, (binary) decision trees, propositional rules, and oblique
rules) for classification tasks primarily focusing on the ex-
plainability of results rather than accuracy or precision. They
discover that decision tables are the best in terms of accu-
racy, response time, confidence of answer, and ease of use.

Furthermore, (Dhurandhar et al. 2017) argue that inter-
pretability is not an absolute concept; rather, it is relative
to the target model, and may or may not be relative to the
human. Their finding suggests that a model is readily inter-
pretable to a human when it uses no more than seven pieces
of information (Miller 1956). Although, this might vary in
task to task and person to person. For instance, a domain ex-
pert might consume a lot more detail information depending
on their experience.

The work of (Poursabzi-Sangdeh et al. 2018) is a human-
centered approach, focusing on previous work on human
trust in a model from psychology, social science, machine
learning, and human-computer interaction communities. In
their experiment with human subjects, they vary factors
(e.g., number of features, whether the model internals is
clear or a black box) that makes a model more or less in-
terpretable and measures how the variation impacts the pre-
diction of human subjects. Their result suggests that partic-
ipants who were shown a clear model with a small number
of features were more successful in simulating the model’s
predictions and trusted the model’s predictions.

Furthermore, (Friedler et al. 2019) investigate inter-
pretability of a model based on two of its definitions: sim-
ulatability, which is a user’s ability to predict the output of
a model on a given input; and ”what if” local explainabil-
ity, which is a user’s ability to predict changes in predic-
tion in response to changes in input, given the user has the
knowledge of a model’s original prediction for the original
input. They introduce a simple metric called runtime op-
eration count that measures the interpretability, that is, the
number of operations (e.g., the arithmetic operation for re-
gression, the boolean operation for trees) needed in a user’s
mind to interpret something. Their findings suggest that the
interpretability decreases with an increase in the number of
operations.

Properties of Explanations and Explanation

Methods

Although our main interest lies in explainable prediction, it
depends on the model that generates the explanations. So,
it is crucial to analyze the properties of both the explana-
tion and the explanation method that generates the explana-
tions. (Robnik-Šikonja and Bohanec 2018) and (Molnar and
others 2018) attempt to define the properties of explanation

methods and individual explanations, which we present in
the following sections.

Properties of Explanation Methods

Some properties of explanation methods include:
• Expressive Power: Refers to the structure (e.g., decision

trees, IF-THEN rules, weighted sum, and natural lan-
guage) of the explanation method.

• Translucency: The level in which the explanation method
relies on looking into (e.g., coefficient for a linear regres-
sion, node splitting point in the tree-based approach) the
ML model. For instance, explanation methods that rely on
intrinsically interpretable methods like linear regression
are highly translucent; however, counterfactual model ag-
nostic explanation methods that leverage the changes in
output in response to input for explanation have zero
translucency as it does not look at model at all.

• Portability: The number of ML models that the explana-
tion method covers. Usually low translucency (i.e., ML
model usually remains black box) comes with more porta-
bility.

• Algorithmic Complexity: The required time to generate
the explanation.

Properties of Individual Explanations

Some properties of individual explanations include:
• Accuracy: The explanation needs to be accurate enough

when fidelity is essential. Although, low accuracy of ex-
planation might be a cause of the low accuracy of the
ML/AI model.

• Fidelity: How well the explanation approximates the pre-
diction of the black-box model. Usually a highly accurate
model with high fidelity leads to highly accurate explana-
tions. Thus, fidelity and accuracy are related.

• Consistency: Refers to the extent of consistency among
explanations for different ML models on the same task.

• Stability: Refers to the extent of similarity of explanations
for similar instances. While consistency compares expla-
nations between different models, stability compares the
explanations of similar instances for a particular model.

• Comprehensibility: The extent to which the recipient of
explanation understands the explanation, which is very
hard to measure. A few measures could be the number of
features with non-zero weights in a linear model, or the
number of rules in a tree. Usually a human can compre-
hend 7+-2 pieces of information at a time (Miller 1956)

• Certainty: Many ML models provide the probability of the
target class. Similarly, explanations with a certainty value
are expected to be useful.

• Degree of Importance: How well the explanation covers
the important features or how well the explanation reflects
parts of the explanations. For example, from the decision
rules, we can understand which of the rules are more im-
portant (e.g., important features are at the beginning of a
ruleset, or the top of the tree).
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Recent laws (Goodman and Flaxman 2016) (Wyden ) fo-
cus on the impact of an algorithmic decision on human
rights, interests, and lives. In that sense, we need a human-
friendly explanation, which has slightly different properties
than the explanation that does not consider humans as a key
factor.

Properties of Human-friendly Explanation

According to (Miller 2018), humans usually prefer short ex-
planations that contrast the current situation with a situation
in which that event would not have occurred (a.k.a., coun-
terfactual explanations). Furthermore, the human friendly
explanation does not consider all factors (i.e., selective in
nature) for a particular prediction or behavior. However, if
one needs to legally specify all influencing factors or need
to debug the machine learning model, there is a need for a
complete causal attribution (Molnar and others 2018), which
is out of the scope of human-friendly explanation. That is
the reason behind mentioning the term qualitative instead of
quantitative in our definition of explanation (see Definition
of Explainability).

In summary, according to (Štrumbelj and Kononenko
2011), (Miller 2018) (Lipton 1990), and (Molnar and others
2018), human friendly explanations are: contrastive—why
a prediction (e.g., loan was rejected) was made instead
of the alternative prediction (e.g., loan was accepted), se-
lected—does not cover the complete list of causes of an
event, social—social context (e.g., explaining to a layperson
or domain expert) determines the nature of the explanations,
abnormal behavior focused—when a criteria (e.g., a particu-
lar feature value) is rare and has influence in the prediction,
then it should be included (i.e., should have higher prece-
dence in case of other criteria with the same influence) in the
explanation, truthful—explanation should be as truthful as
possible, although selectiveness comes first which might ex-
clude some of the true reasons, consistent—consistent with
prior belief, and general and probable—good explanations
are general and probable, although this contradicts with the
claims that abnormal causes make good explanations, abnor-
mal causes have higher preference over general and probable
explanations (see abnormal behavior focused point).

Explainability Quantification Method

Usually, humans can relate and process 7+-2 pieces of in-
formation (i.e., cognitive chunks) to understand something
(Miller 1956). For instance, suppose that, in the most gener-
alized form, the quality of an explanation is dependent upon
the number of cognitive chunks that the recipient has to re-
late to in order to understand an explanation (i.e., the less,
the better). Lets assume, E = explainability; Nc = number
of cognitive chunks; I = interaction; Ni = number of input
cognitive chunks; and No = number cognitive chunks in-
volved in the explanation representation (i.e., output cogni-
tive chunks).

E =
1

Nc
(1)

However, sometimes, these cognitive chunks are correlated
and their influence/contribution/abilities are not mutually

exclusive. This interaction among cognitive chunks compli-
cates the explainability. So we penalize Formula 1 for having
an interaction among cognitive chunks, resulting in Formula
2.

E =
1

Nc
+ (1− I) (2)

Where, the interaction I ranges in between 0 and 1, and the
less the interaction, the better the explainability, so we take
the complement of that.

Formula 2 is in a form that can be applied to any of the
application, domain, or proxy level explanation evaluations
described before. However, from the perspective of an ap-
plication and domain level evaluation of explainability, to
progress further, we need human studies that are out of the
scope of this work. Instead, in this work, we focus on the
proxy level evaluation of explainability that considers dif-
ferent properties of output representation (e.g., depth of de-
cision tree, length of rule list) as a metric for evaluation.

Furthermore, we need to breakdown the number of cog-
nitive chunks more to get a better evaluation. Both the num-
ber of input cognitive chunks in the model and the number
of output cognitive chunks involved in the representation of
output are important to understand the causal relationship,
which is vital for explanation. While the ideal explainability
case would be when there is only one input and one output
cognitive chunk (no chance of interaction), that is unusual
in real-world situations. Following the segregation of input
and output cognitive chunks, Formula 2 can be re-written as
Formula 3:

E =
1

Ni
+

1

No
+ (1− I) (3)

where Ni refers to the number of input cognitive chunks
and No refers to the number cognitive chunks involved in the
explanation representation (i.e., output cognitive chunks).
Usually, the more these cognitive chunks, the more com-
plicated the explanation becomes. So, the ratio of the best
case (i.e., one cognitive chunk) and observed case is added
towards total explainability.

Also, Formula 3 has three predicates, which might have
different influences on the quantification of explainability,
and different domains might have different implications
(e.g., accuracy vs explainability trade off). So, we add a
weight term with each of the predicates, considering the
weights are constant (e.g., .3333) by default, and their sum-
mation is equal to 1: w1 + w2 + w3 = 1. However, these
weights can be set to a different distribution, perhaps depen-
dant upon a particular domain (e.g., healthcare, finance).

After the addition of the weight terms, Formula 3 be-
comes Formula 4:

E =
w1

Ni
+

w2

No
+ w3(1− I) (4)

Formula 4 can then be used to quantify the explainabil-
ity of the explanation method (i.e., global explainability).
We can use Formula 4 to also quantify the explainability
of an instance level prediction (i.e., local explainability).
In that case, the first predicate of Formula 4 (including the
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Figure 1: Breakdown of feature contributions for a random
sample.

weight term) remains the same (i.e., the same number of in-
put chunks). However, predicate 2 and predicate 3 will be
different from instance to instance as a different set of cog-
nitive chunks with different interaction strengths might be
involved in the representation of explanation for a particular
instance as explanations are selective.

Experimental Results

We provide a brief overview of the experimental settings
of our previous work (Islam et al. 2019) that we will then
use for our proposed explainability quantification method.
In this example, we incorporate domain knowledge in the
model for mortgage bankruptcy prediction, and apply dif-
ferent supervised ML algorithms in three different ways:

1. Using original features: we use all original features that
have a non-zero effect on prediction (features with zero
effect were removed in a data pre-processing stage by ob-
serving the Random Forest’s feature importance).

2. Using domain-related features: we select a subset of fea-
tures that match with extracted domain knowledge (e.g.,
5 C’s of credit) from the domain. Traditionally, credit risk
is assessed using the 5C’s of credit (character, capital, ca-
pacity, collateral, and cycle), a popular domain principle
to for determining credit risk. We extract necessary do-
main knowledge and map to the 5 C’s of credit to get the
domain features (Islam et al. 2019).

3. Using newly constructed features: we construct a very
concise set of new features (i.e., five features—one feature
for each element of the domain principle 5C’s of credit)
from the domain-related features using the quantitative
measure of gain/compromises (i.e., the cumulative sum
of related feature values times the correlation coefficient)
associated with each element of the domain principle.

Furthermore, we represent the predicted output as a com-
position of individual elements of the domain principle 5C’s
of credit (i.e., newly constructed features) (Figure 1).

One will notice that the representation (Figure 1) of the
prediction in terms of the newly constructed features pro-
vides better explainability as the final prediction is segre-
gated into the individual influences of a very concise set of
intuitive features (i.e., five compared to 30). However, there
is no way to quantify the level of perceived explainability.
To use our proposed formula in this work (Formula 4) to
quantify explainability, we need to calculate the interaction
strength (I) too. We measure the interaction strength among

Original Domain Constructed

Input chunks (Ni) 30 7 7
Output chunks (No) 30 7 5
Int. Strength (I) 0.556 0.5233 0.5251
Explainability (E) 0.1701 0.2539 0.2723

Table 1: Comparison of explainability

Figure 2: Dispersion in performance—original features mi-
nus domain-related features

features using R’s iml package that uses the partial depen-
dence of an individual features as the basis for calculating
interaction strength (I).

Applying Formula 4, on metadata (Table 1) of three dif-
ferent feature settings, we see that newly constructed fea-
tures (5’C of credit) provide the best explainability score of
.2723, which is an improvement of 60.14% compared to the
0.17 that we get using the original features (Table 1). In fact,
even if we apply the state-of-the-art methods of post-hoc
interpretability/explainability like SHAP, the explainability
will be still limited to 0.17 as it does not reduce the num-
ber of cognitive chunks to represent output. Besides, using
domain related features, the explainability score is .2538,
which is better than using the original features, although a
little worse than using the newly constructed features. We
also applied Principal Component Analysis (PCA) to see
the extent of compromise in information in exchange for
achieved explainability in domain mapped and newly con-
structed features. We found that PCA takes the first 29 prin-
cipal components (i.e., new features) to get a similar perfor-
mance to when we use the original features (30 cognitive
chunks). Therefore we can say that the compromise in in-
formation for explainability is very negligible. Besides, the
principal components of PCA lacks explainability.

Furthermore, this explainability gain comes with a negli-
gible cost of performance (Figure 2, Figure 3) which is ex-
pected and a known trade off for explainability methods. In
fact, for a few algorithms (e.g., Random Forest (RF), Gra-
dient Boosting (GB)), the newly constructed features, and
domain related features lead to better recall, which is cru-
cial for anomaly detection where the target class instances
are very few compared to non-target class instances. In that

79



Figure 3: Dispersion in performance—original features mi-
nus newly constructed features

sense, besides a better explainability, the domain knowledge
also benefits us in terms of improved performance (e.g., bet-
ter recall, less features leads to less computation time).

Conclusion

Explainable decisions from commercial AI systems are go-
ing to be a standard imposed by regulators to eliminate
bias and discrimination, and ensure trust. Our work attempts
to establish a concrete definition of explainability, proper-
ties of explanations and explanation methods, and a way
to quantify explainability which is transferable to a vari-
ety of explainability methods or tools. For the quantifica-
tion of explainability, we only present an approach for the
proxy method. As an extension of this work, we would like
to address human studies, and investigate the effectiveness
among different approaches (e.g., supervised, unsupervised,
semi-supervised) for different application areas (e.g., natural
language processing, image recognition).
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