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Abstract

To represent and reason about preferences over elements of a
combinatorial domain it is necessary to have a compact pref-
erence model. One of the most extensively studied models for
that setting is the conditional preference network (CP-net). A
major problem with CP-nets is that some tasks that are crit-
ical to decision making are computationally hard if the pref-
erence ordering is given by a CP-net. To overcome this diffi-
culty we propose to approximate CP-nets with other concise
preference models that are equally intuitive but have better
computational properties. In this paper, we focus on approx-
imations of CP-nets using modified lexicographic preference
models (LPMs). We show an acyclic CP-net’s dominance re-
lation can be approximated in polynomial time and present
several results on the accuracy of the approximation.

Introduction

An agent’s decisions are determined by their preferences. In
many cases decisions are made over many possible alterna-
tives and the sheer number of alternatives may lay a large
cognitive burden on the agent. In order to provide support
for decision making one needs to have a compact method
of representing preferences over large domains. Over the
years many representations have been studied. Conditional
preference networks (CP-nets) (Boutilier et al. 2004) have
remained a popular choice for study. CP-nets have an in-
tuitive, principled approach for their construction, encode
conditional preference information, and allow for polyno-
mial time computation of optimal and pessimal alterna-
tives (Boutilier et al. 2004). These advantages are not with-
out drawbacks. The dominance problem, determining which
of two alternatives is preferred, is computationally hard
for CP-nets. This holds even for CP-nets with acyclic de-
pendency graphs, where dominance is NP-hard (Boutilier
et al. 2004). In general, dominance testing for CP-nets is
PSPACE-complete (Goldsmith et al. 2008).

This work looks at efficiently approximating the domi-
nance problem for acyclic CP-nets. We build our approxima-
tion by extracting importance information from the depen-
dency graph of a CP-net. In short, we assume that attributes
whose preferences are “less” conditionally dependent, either
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directly or indirectly, are more important to decision mak-
ing. By combining this importance information with the con-
ditional preference tables of the CP-net we can build a dif-
ferent model, called a conditional lexicographic preference
model (CLPM) (Huelsman and Truszczyński 2019), which
is similar to several models such as lexicographic next-value
predicates (Wilson 2014), leximin evaluation of possibilis-
tic CP-nets (Dubois, Prade, and Touazi 2013), and lexico-
graphic preference trees (Booth et al. 2010).

For CLPMs dominance testing is in P, but a CLPM built
from a CP-net only provides an approximation of the CP-
net’s dominance relation. It reproduces all strict dominance
relations in the original CP-net, but may make some in-
comparable alternatives comparable. In other words, the ap-
proximating CLPM preference relation strengthens the CP-
net preference relation. The approximation can be improved
by considering multiple approximating CLPMs and, in fact,
even all such models, which maximizes the accuracy of the
approximation. We show that dominance testing is still in
polynomial time when considering all applicable CLPMs.

This work contains five sections. The second section con-
tains background information, the third section contains our
results, the fourth section discusses related works, and the
fifth section concludes and introduces further discussion.

Background

Preference reasoning deals with ordering objects. A pre-
order on a set U is defined by any reflexive and transitive
binary relation, denoted �. It becomes an order (on U ) if it
is antisymmetric. A preorder is total if for every pair of ele-
ments a, b ∈ U either a � b or b � a. We define the strict
counterpart to �, �, by setting a � b if and only if a � b
and b �� a. Similarly, the associated incomparability relation
�� is defined by setting a �� b if and only if a �� b and b �� a.
To avoid confusion we may denote incomparability by ‖.

A function r : U → [1 . . . k] is a ranking if it is an onto
function, that is, for any i ∈ [1 . . . k] there exists at least one
alternative α such that r(α) = i. Each ranking function de-
termines a preorder �r on U by setting α �r β precisely
when r(α) ≤ r(β). Conversely, each preorder � on U de-
termines a ranking r such that � and �r are the same. Given
a preorder �, we say that a ranking r is consistent with � if
α � b implies r(α) < r(β).

A combinatorial domain is defined by a set of attributes,
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V = {v1, v2, . . . , vn}, and their domains D1,D2, · · · ,Dn

(the finite sets of values they can take). The shorthand D(vi)
denotes the domain of an attribute vi. A specific alternative
α, is given by a tuple with one value from each attribute.

α = (α1, α2, · · · , αn) ∈ D(v1)×D(v2)× · · · × D(vn).

For example, the space of pizzas can formally be described
as a combinatorial domain, as follows:

V = {Sauce,Meat,Vegetable}
D(Sauce) = {Tomato, Alfredo, Cheese}
D(Meat) = {None, Sausage, Pepperoni}

D(Vegetable) = {None, Spinach, Mushrooms}.

The tuple (Tomato,Sausage,Spinach) represents a pizza with
tomato sauce, sausage, and spinach. The size of the domain
is 33 = 27. This domain is small, but the size of a combi-
natorial domain, in general, is exponential in the number of
attributes. Thus, explicit preference representations become
impractical and a subset of attributes must be considered.
We denote the projection of an alternative α onto a set of at-
tributes A as α[A]. If we are projecting onto a single attribute
a we denote α[{a}] as α[a] for simplicity.

Many preference representations for combinatorial do-
mains have been proposed. Two popular models are con-
ditional preference networks (CP-nets) (Boutilier et al.
2004) and lexicographic preference models (LPM) (Fish-
burn 1974). Huelsman and Truszczyński introduced a
model called conditional lexicographic preference models
(CLPM), which are also similar to LP-trees (Booth et al.
2010) (which will not be discussed here). This work extends
the initial work done on CLPMs and CP-nets with several
novel results.

CP-nets capture conditional preferences in a graphical
manner. Preferring white wine with fish and red wine with
beef is a conditional preference because the choice of wine
is dependent on the protein being served. CP-nets represent
preferences using a “ceteris paribus”, or all other things be-
ing equal semantics (Boutilier et al. 2004). Formally, a CP-
net on a set V of attributes is a triple C = (V, E, T ), where
(V, E) defines the dependency graph, which specifies for
each attribute v ∈ V those attributes that v depends on, with
an edge from v′ to v indicating that preferences over the
values of v depend on the value of v′, and T is a set of con-
ditional preference tables (CPTs). The set T of CPTs con-
tains a CPT for each attribute in V . A CPT for an attribute v
contains an entry for each possible value assignment of the
attributes that v depends on. Each entry gives a strict total or-
der over the domain of v. For an alternative α, �v,α denotes
the order in the entry of the CPT table for v determined by
the values in α of the attributes that v depends on.

Consider a CP-net C = (V, E, T ). An alternative α is
locally cp-preferred to an alternative β if β is identical to
α except on a single attribute v and α[v] �v,α β[v]. We
could also use �v,β because α and β coincide outside of v
thus, �v,α and �v,β are the same. Informally, α is locally
cp-preferred to β if the two differ on exactly one attribute
and on that attribute α has a better value than β based on

A

a � ā

B

a : b � b̄
ā : b̄ � b

C

b : c � c̄
b̄ : c̄ � c

Figure 1: A CP-Net

that attribute’s CPT. We denote this relation by α →C β and
refer to the transformation of α into β as a worsening flip.

The preference relation of a CP-net C, called cp-
preference and written �C , is the transitive closure of the
relation →C . In other words, for two alternatives α and β,
α �C β if and only if there is a sequence of worsening flips
in C that starts in α and ends in β.

A CP-net is acyclic if its dependency graph is acyclic.
For each acyclic CP-net C, the relation �C is an order
(nonempty cycles of worsening flips are impossible). In this
work, we only consider acyclic CP-nets. We write �C and
��C for the corresponding strict order and incomparability
relations for �C .

Using the CP-net in Fig. 1 to compare the alternatives
(a, b, c) and (ā, b, c̄) we look for a sequence of worsen-
ing flips from (a, b, c) to (ā, b, c̄). One such sequence is
(a, b, c) →C (ā, b, c) →C (ā, b, c̄). Thus, (a, b, c) �C

(a, b̄, c̄).
We move on to another model of interest in this work. Let

V be the set of attributes of a combinatorial domain. A con-
ditional lexicographic preference model (CLPM) is a tuple
π = (V, E, T, r), where V , E and T are as in CP-nets (that
is, (V, E, T ) is a CP-net), and r is an importance ranking of
attributes satisfying the consistency requirement: for every
pair of attributes v, w ∈ V if (v, w) ∈ E (in other words,
w depends on v), r(v) < r(w). A CLPM π = (V, E, T, r)
defines the dominance relation by considering attributes ac-
cording to their importance and taking into account condi-
tional preference information contained in CPTs in T .
Definition 1. Given a CLPM π = (V, E, T, r), α �π β if
α = β, or if for some attribute v ∈ V (i) α[v] �v,α β[v], (ii)
for all attributes w ∈ V such that r(w) ≤ r(v), α[w] �w,α

β[w], and (iii) for all attributes u ∈ V such that r(u) <
r(v), α[u] = β[u].

The notion of a CLPM generalizes a lexicographic pref-
erence model(LPM) (Fishburn 1974). An LPM is a CLPM
with a strict attribute ranking and with no conditional depen-
dencies between attributes. The following result illustrates
that CLPMs are a valid preference representation.
Proposition 1. For every CLPM π, �π is an order. If the
ranking of attributes in π is strict, �π is a total order.

We write �π and ��π for the strict order and incom-
parability relations associated with �π . A key property of
CLPMs is that the dominance problem (determining the
preference relation between two alternatives) can be solved
in polynomial time. This is contrasted by CP-nets, where the
problem is much harder (unless, of course, P=NP).
Theorem 1. There is a polynomial time algorithm that,
given a CLPM π and two alternatives α and β, decides
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whether α �π β (in other words, solves the dominance
problem for CLPMs).

A CLPM (V, E, T, r) can be given as a pair (C, r) where
C is a CP-net (V, E, T ) and r is a ranking on V consis-
tent with attribute dependencies in C. We call such CLPMs
consistent with C. They can be viewed from the perspec-
tive of possibilistic logic (Dubois, Prade, and Touazi 2013).
Specifically, a CLPM consistent with a CP-net C produces
the same order as the leximin evaluation of a certain possi-
bilistic encoding of C. In general, there may be several rank-
ings of the attributes of a CP-net consistent with the attribute
dependencies of that CP-net.
Definition 2. The set CLPM (C) for a CP-net C =
(V, E, T ) consists of all CLPMs (C, r) such that r is a rank-
ing on V consistent with attribute dependencies in C (or,
simply, all CLPMs consistent with C).

We focus on using CLPMs from CLPM (C) to approxi-
mate the cp-preference relation �C defined by a CP-net C.
We also define a preference relation over sets of CLPMs in
CLPM (C).
Definition 3. Let L be a nonempty subset of CLPM (C).
The aggregated preference relation given by L, �L is the
intersection of all relations �π , for π ∈ L. That is, α �L β
if and only if α �π β holds for every π ∈ L

Informally, α �L β if α is preferred to β unanimously
by all preference orders �π (with π ∈ L). It is clear that
�L is an order. It is also clear that for the corresponding
incomparability relation ��L we have α ��L β if and only
if there are CLPMs π and π′ in L such that α �π β and
β �π′ α, or β ��π α. When L = CLPM (C) (L consists
of all CLPMs in CLPM (C)), we write C and ||C for the
aggregated and incomparability relations.

Results
We first look at the relationship between a CP-net C and a
single CLPM consistent with C. Afterwards, we apply what
we know about individual CLPMs consistent with C to the
relation aggregating several CLPMs consistent with C.
Lemma 1. Let C be a CP-net and let π ∈ CLPM (C). For
every pair of alternatives α and β, if α →C β then α �π β.

Lem. 1 shows that a consistent CLPM replicates the lo-
cal cp-preferences of the CP-net. We also know, by Prop. 1,
that a CLPM produces a transitive relation. It follows that a
consistent CLPM strengthens the � relation of a CP-net.
Theorem 2. Let C be a CP-net and let π ∈ CLPM (C).
Then for every two alternatives, if α �C β then α �π β.

Proof. Consider an arbitrary worsening flipping sequence of
alternatives, according to C: o1, o2, o3, · · · , ok. This means
that oi →C oi+1, and by transitivity o1 �C ok. Since π is a
consistent CLPM we know by Lem. 1 that oi �π oi+1. Fur-
thermore, given that �π is transitive, by Prop. 1, we know
that o1 �π ok.

Corollary 1. Let C be a CP-net and let π ∈ CLPM (C)
then for every two alternatives α and β, if α ��π β then
α ��C β.

Thm. 2 and Cor. 1 show the accuracy guarantees we can
make about the relation �π when approximating �C , where
C is a CP-net and π ∈ CLPM (C). Simply, �π overes-
timates �C and ��π underestimates ��C . All errors are of
one type: expressing dominance under π when the underly-
ing CP-net C produces incomparability. We write E(C, π)
for the set of errors. The quantity |E(C, π)| is related to
the Kendall’s τ distance modified to the case of preorders
(Kendall 1938; Loreggia et al. 2018) but we will not pursue
this connection here.

Orders defined by CLPMs consistent with a CP-net C
may make considering some CLPMs in CLPM (C) redun-
dant. We can identify some of these redundancies using the
definition below.
Definition 4. A ranking r′ of elements in a set U is a strict
extension of a ranking r of U if for all pairs of elements
a, b ∈ U if r(a) < r(b) then r′(a) < r′(b) and there exists
elements a′, b′ ∈ U such that r(a′) = r(b′), r′(a′) < r′(b′).

A useful property of strict extension is that it preserves
consistency wrt a CP-net.
Proposition 2. Given a CP-net C = (V, E, T ) if r is an
importance ranking of V consistent with C and r′ is a strict
extension of r then r′ is also an importance ranking of V
that is consistent with C.

This observation leads to the following theorem and its
two corollaries that describe the relation between the accu-
racy of CLPMs given by two rankings, one being an exten-
sion of the other.
Theorem 3. Let π = (C, r) be a CLPM in CLPM (C) and
let r′ is a strict extension of r. Then π′ = (C, r′) is a CLPM
in CLPM (C) and, if α �π β, α �π′ β holds, too.
Corollary 2. Let π = (C, r) be a CLPM in CLPM (C) and
let r′ is a strict extension of r. Then π′ = (C, r′) is a CLPM
in CLPM (C) and, if α �� π′β, α ��π β holds, too.
Corollary 3. Given a CP-net C, a CLPM π = (C, r) and
a strict extension r′ of r, π′ = (C, r′) ∈ CLPM (C) and
E(C, π) ⊆ E(C, π′).

These results show that rankings that are strict extensions
of other rankings can inflate the number of errors, see Cor. 3.
CLPMs based on such rankings do not offer any additional
information about the order >C over what can be gleaned
out of CLPMs given by “non-extending” rankings.

In general, incomparabilities produced by a CLPM come
in sets, as shown by the following result.
Proposition 3. Given a CLPM π = (V, E, T, r), and two
alternatives α and β such that α ��π β and the incompa-
rability is decided on rank i, then for every two alterna-
tives γ and ζ if γ[V ] = α[V ] and ζ[V ] = β[V ], where
V = {v ∈ V|r(v) ≤ i}, it follows that γ ��π ζ.

Prop. 3 and Cor. 1 imply a fast method to identify some
pairs of incomparable alternatives wrt the order defined by
a CP-net. This method can be further strengthened by con-
sidering the order obtained by aggregating all CLPMs in
CLPM (C). Thm. 2, Cor. 1 and Def. 3 lead to the follow-
ing result:

71



Theorem 4. Let C be an acyclic CP-net and A ⊆ B ⊆
CLPM (C). For every pair of alternatives α, β, if α ��A β
then α ��B β.

Thm. 4 shows that the larger the subset of CLPM (C)
used the more incomparabilities are correctly decided. Since
errors only occur when incomparable alternatives, accord-
ing to the CP-net, are rendered comparable the greater the
number of incomparabilities generated by an aggregation,
the more accurate that approximation. This means that ag-
gregation over the entire set CLPM (C) produces the most
accurate approximation.

To estimate |CLPM (C)|, let us consider a CP-net whose
dependency graph has no edges. In this case, any ranking of
the attributes is trivially consistent with the dependencies.
The number of only strict rankings is |V|!. In fact, one can
show that even the number of CLPMs given by rankings that
are minimal wrt strict extension is exponential in |V|. Thus,
a naive approach to computing the aggregated order given
by all CLPMs in CLPM (C) is, in general, infeasible.

Algorithm 1 The aggregated lexicographic evaluation of a
CP-net C = (V, E, T ), and two alternatives α and β, α �= β.

procedure LEX-EVAL(α, β, C)
c ← 0
r ← ∅
while ∃v ∈ V such that IN-DEG(v) = 0 and α[v] =

β[v] do
5: for all v ∈ V where IN-DEG(v) = 0 and α[v] =

β[v] do
Remove v from (V, E)
r(v) ← c
c ← c+ 1

end for
10: end while

d ← ∅
for all v ∈ V where IN-DEG(v) = 0 do

d ← d ∪ {v}
end for

15: s ← ∅
for all v ∈ d do

if (α[v] �v,α β[v] and s = <C) or (β[v] �v,α

α[v] and s = >C) then
Return ‖C

else if α[v] �v,α β[v] and s = ∅ then
20: s ← >C

else if β[v] �v,α α[v] and s = ∅ then
s ← <C

end if
end for

25: Return s
end procedure

This difficulty can be overcome. We show that although
obtaining an explicit representation of the approximation
�C , by aggregating all CLPMs consistent with a CP-net C,
may be infeasible that we can compute, in polynomial time,
the dominance relation for that approximation. The method
is shown in Algorithm 1. The following result shows that

each pair of alternatives that are incomparable wrt ‖C can
be identified using a single CLPM, rather than two CLPMs
consistent with C (cf. the discussion after Def. 3).

Theorem 5. Given a CP-net C, two CLPMs π, π′ ∈
CLPM (C), and two alternatives α and β if α �π β
and β �π′ α then there exists a consistent CLPM π′′ ∈
CLPM (C) such that α ��π′′ β.

Thm. 5 shows we need not search for two CLPMs which
show contradictory relations between a pair of alternatives
to prove two elements are incomparable because we can in-
stead search for a single consistent CLPM that demonstrates
incomparability. LEX-EVAL tries to find such a CLPM in
CLPM (C) for the given alternatives. If none can be found
then by Def. 3 and Thm. 5, all CLPMs in CLPM (C) agree
on how to order the alternatives.

Informally, LEX-EVAL builds a ranking from a CP-net’s
dependency graph by removing sets of attributes which have
an in-degree of 0, removing them, and giving them the next
available rank. We call the set of attributes removed in each
iteration d. We proceed in this way as long as α and β have
the same values on all attributes in the (current) d. Once this
is not the case (which must happen since α �= β), we assign
these attributes the next available rank. It is clear that the
partial ranking built in this way contains enough information
to decide how α and β are related by >C since no matter
how the partial ranking is completed, the attributes in the
last d are sufficient to decide dominance as α and β must
differ over d. If for every attribute in d, α is preferred to
β according to the CPTs we return α >C β. If for every
attribute, β is preferred to α we return β >C α. Otherwise,
we return α||Cβ.
Theorem 6. Given a CP-net C = (V, E, T ) and two alter-
natives α and β LEX-EVAL correctly decides dominance,
with respect to the aggregated lexicographic evaluation, for
two alternatives α and β such that α �= β.

The algorithm takes time linear in the size of the depen-
dency graph, assuming constant time table lookup. Note that
CPTs are part of the CP-net and as long as table lookup is
polynomial in the size of the table our algorithm takes poly-
nomial time, in the size of the CP-net, and thus is a polyno-
mial time approximation of an NP-hard problem.
Proposition 4. LEX-EVAL takes time linear, O(|V |+|E|),
in the size of the dependency graph, assuming constant time
table lookup.

We ran experiments using randomly generated CP-nets,
with each line in Fig. 2 averaging 1000 CP-nets, generated
using software by Allen et al.. LEX-EVAL performance is
measured by counting the number of correctly identified in-
comparabilities in a CP-net order. Fig. 2 denotes the type of
CP-nets generated using two integers. The entry (1, 6) indi-
cates a CP-net with six binary attributes and each attribute
depends on at most one other attribute. As an additional
method of comparison we also performed our analysis with
a single consistent CLPM which was built by minimizing the
rank of each node in the dependency graph (a greedy heuris-
tic to produce a single CLPM in CLPM (C) with a promise
of identifying possibly many of the incomparabilities).
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Figure 2: The average proportion of correctly decided in-
comparabilities using LEX-EVAL

Fig. 2 shows both LEX-EVAL and the single CLPM per-
forms best with a CP-net in-degree bound of 1. In this case
the aggregated order is capable of identifying about 65%
of all incomparable alternative pairs, and a single “greedy”
CLPM identifies about 32% of them (an improvement of
about 85% more correct incomparabilities). The improve-
ment falls to about 30% for CP-nets with in-degree 2, and
falls further as the in-degree grows, but never below 10%.

It follows that the proposed approximation resolves some
of the incomparabilities in the CP-net order, that is, orders
them in some way. Still, a good number of CP-net incom-
parabilities are correctly identified. How to improve this ap-
proximation, while preserving good computational proper-
ties, is an interesting open challenge.

A related theoretical question is to study when the aggre-
gated lexicographic evaluation will perfectly reproduce the
dominance relation of a CP-net. Such a class of CP-nets ex-
ists. This class relies on the fact that some CP-nets can be
separated into smaller independent CP-nets, see Def. 5.
Definition 5. Given an acyclic CP-net C = (V, E, T ), the
set V ⊂ V is an independent subnetwork of C if for all
v ∈ V there does not exist w ∈ (V\V ) such that (v, w) ∈ E
or (w, v) ∈ E

The class of CP-nets which are perfectly reproducible by
the aggregated lexicographic evaluation are those that can be
split into a series of independent subnetworks, where each
subnetwork defines a linear order, see Thm. 7.
Theorem 7. Given an acyclic CP-net C composed of in-
dependent subnetworks {c1, . . . , ck} if each �ci produces a
linear order then >C perfectly reproduces �C .

Thm. 7 is the direct result of the following results. Sub-
networks can be viewed as CP-nets in their own right, with
alternatives projected onto that subnetwork’s attributes.
Definition 6. Given an acyclic CP-net C = (V, E, T ), an
independent subnetwork V , and two alternatives α and β,
α �V β if there exists a flipping sequence from α[V ] to
β[V ] which does not change any values in V \ V .

Each subnetwork defines its own dominance relation, see
Def. 6. These subnetwork dominance relations can be used
to better understand how CLPMs and CP-nets interact.

Lemma 2. Given an acyclic CP-net C = (V, E, T ), an in-
dependent subnetwork V , and two alternatives α and β, if
α �V β then there exists a consistent CLPM, π = (C, r)
where α �π β.

Lemma 3. Given an acyclic CP-net C = (V, E, T ), two
independent subnetworks of C, V and W , and two alterna-
tives α and β, α ��C β if α �V β and β �W α.

Corollary 4. Given an acyclic CP-net C = (V, E, T ), two
independent subnetworks of C, V and W , and two alterna-
tives α and β, if α �V β and β �W α then α ‖C β.

Lem. 2 shows that there exists a CLPM which approx-
imates the dominance relation of any given independent
subnetwork. Combined with Thm. 5 the aggregated lexico-
graphic evaluation of a CP-net will reproduce incompara-
bility when two independent subnetworks disagree. Cor. 4
shows these relations are identical in both the CP-net and its
aggregated lexicographic evaluation.

Using CP-nets identified by Wilson (Wilson 2011) as in-
dependent subnetworks yields a rich class of CP-nets for
which our approximation is exact. That class includes, in
particular, all weakly separable CP-nets, this is, CP-nets that
have no edges in their dependency graph.

Related Work

Using importance to simplify dominance testing on CP-nets
is not new. Brafman, Domshlak, Carmel and Shimony intro-
duced the concept of trade-off enhanced CP-nets, or TCP-
nets (Brafman, Domshlak, and Shimony 2006). TCP-nets
solve several problems of CP-nets by extending the CP-net
representation with additional information. The difference
between their approach and ours is that we extract impor-
tance information directly from the CP-net without relying
on any additional elicited information.

Using the induced importance of attributes to help with
dominance testing in CP-nets has been explored by Ahmed
and Mouhoub. That work focused on the problem of finding
optimal solutions based on a CP-net under a restricted do-
main (Ahmed and Mouhoub 2018). They define the term in-
duced importance order for CP-nets, equivalent to rankings
in this work. Their work dealt with finding an optimal alter-
native under domain constraints and not with finding a more
general approximation of dominance. They also looked at
eliciting additional importance information to fill out their
representation. This work does not concern itself with ad-
ditional information and uses only information provided by
the CP-net itself.

Dubois, Prade, and Touzai investigated the use of pos-
sibilistic logics to evaluate CP-nets (Dubois, Prade, and
Touazi 2013). They define how to encode a CP-net using
possibilistic logic and also two ways of approximating dom-
inance given the possibilistic representation of a CP-net.
Their definition of leximin dominance produces the same or-
der as a single CLPM. This is due to the similarity between
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our consistency constraint and the constraint on the proba-
bilities associated with attributes. Under the leximin evalu-
ation these probabilities convert nicely into an importance
ranking. Evaluating a possibilistic representation under lex-
imin replicates a single consistent CLPM. While such an
approximation is important, Dubois, Prade, and Touazi do
not further evaluate leximin beyond establishing it as an up-
per approximation of dominance. Our work extends beyond
what Dubois, Prade, and Touazi did, in that we consider ag-
gregated orders, establish an efficient evaluation algorithms,
evaluate experimentally the quality of approximations (indi-
vidual and aggregated), and identify some cases when the
approximations are perfect.

Multiple attributes being similarly important, which we
use in our work, is called attribute grouping. Grouping was
described by Wilson (Wilson 2009) as the collecting of
multiple single dimensional attributes into a single high di-
mensional attribute where preferences are expressed on the
Cartesian product of the attribute domains. In the context
of lexicographic preferences Bräuning, Hüllermeier, Keller,
Glaum, and Martin (Bräuning et al. 2017) studied group-
ing for learning lexicographic preferences. Their concept of
grouping is similar to how we define CLPMs, but our models
do not require a linear order over the Cartesian product.

Wilson described the use of lexicographic inference of
conditional preferences (Wilson 2014). This work dealt with
a more general representation of conditional preferences
than CP-nets. Wilson introduces lexicographic inference us-
ing Next Variable Predicates (NVPs) which define a series
of singleton lexicographic inferences, that is partial lexico-
graphic orders over a single attribute. He later extends NVPs
to allow for grouping, just as our CLPMs allow for group-
ing. NVPs require a total order over all combinations of the
grouped attribute values. CLPMs do not require this restric-
tive type of order and so our representation can be seen as
related, but different. It is interesting if approach to approx-
imating CP-nets can be extended to offer approximations to
orders resulting from the framework proposed by Wilson.

Conclusion

This work shows how acyclic CP-nets can be approximated
by CLPMs. Our main result is Thm. 2 which shows that any
consistent CLPM will reproduce all strict dominance rela-
tions of a CP-net. This leads to Cor. 1 which shows that in-
comparability is implied in the opposite direction. Inaccura-
cies are limited to incomparable alternatives becoming com-
parable under the CLPM. Approximation accuracy can be
increased by aggregating all consistent CLPMs. Dominance
for the aggregated evaluation can be computed in polyno-
mial time using our LEX-EVAL algorithm, specified in Al-
gorithm 1. The data shows a benefit to LEX-EVAL over
a singular CLPM. This leaves an open question about how
this evaluation method compared to other CP-net approxi-
mations and heuristics.
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