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Abstract

Building on recent research for prediction of hurricane tra-
jectories using recurrent neural networks (RNNs), we have
developed improved methods and generalized the approach
to predict Bayesian intervals in addition to simple point es-
timates. Tropical storms are capable of causing severe dam-
age, so accurately predicting their trajectories can bring sig-
nificant benefits to cities and lives, especially as they grow
more intense due to climate change effects. By implement-
ing the Bayesian interval using dropout in an RNN, we im-
prove the actionability of the predictions, for example by
estimating the areas to evacuate in the landfall region. We
used an RNN to predict the trajectory of the storms at 6-hour
intervals. We used latitude, longitude, windspeed, and pres-
sure features from a Statistical Hurricane Intensity Prediction
Scheme (SHIPS) dataset of about 500 tropical storms in the
Atlantic Ocean. Our results show how neural network dropout
values affect predictions and intervals.

Introduction

We look at a dataset of tropical storm data in the Atlantic
Ocean from 1982 to 2017 and perform deep learning predic-
tions with uncertainty bounds on trajectories of the storms.
The result of these storms, particularly the strongest ones
called hurricanes—defined as having wind speeds exceed-
ing 74 mph—can be devastating because of their strong
winds and heavy precipitation that can cause dangerous
tides. Tropical storms can cause major environmental dis-
asters when they reach land, such as the 2005 Hurricane
Katrina that resulted in over 850 deaths and caused ma-
jor economic damage and the 2012 Hurricane Sandy that
caused almost $70 billion in damage across much of the
eastern United States, with peak winds of 115 mph (Hur-
ricane 2013). According to the National Oceanic and Atmo-
spheric Administration, it is likely that global warming will
cause hurricanes in the upcoming century to be more intense
by 1 to 10% globally (with higher peak winds and lower
central pressures), which will result in a higher proportion
of more severe storms (NOAA 2019).

Historically, hurricane trajectory predictions have used
statistical methods that can be limiting because of the
nonlinearity and complexity of atmospheric systems. Deep
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learning techniques and specifically recurrent neural net-
works have grown in popularity in recent years as a strong
method for approaching prediction problems because of the
ability to extract important features and relationships from
complex high-dimensional data, especially for forecasting
and classification (McDermott and Wikle 2019). We imple-
mented a number of improvements over previous deep learn-
ing prediction work (Alemany et al. 2019), including pre-
dicting exact storm locations in latitude/longitude instead of
a grid value and using a prediction window that uses all pre-
vious hurricane data rather than a fixed-size sliding window.

While hurricane trajectory predictions have seen improve-
ments recently (SHIPS 2019), we build on previous work to
include a fundamental uncertainty measure in the prediction
for the first time as part of a neural network framework. The
uncertainty measure is especially valuable for understanding
a defined location range rather than only a point estimate,
which is important for evacuation and safety/preparation
purposes. The National Hurricane Center (NHC) builds their
uncertainty cone such that 2

3 of historical forecast errors over
the previous 5 years fall within the circle, whereas we use a
rigorous Bayesian prediction model to build our intervals.

RNNs and Dropout

RNNs are fully connected networks, which use connection
weights as training parameters. The standard RNN setup
uses inputs over time that are connected to hidden layers.
The hidden layers connect forward to the next hidden layer
or output layer and also through time to the next hidden layer
timestep. The ny dimensional output vector Yt corresponds
to the original nx dimensional input vector Xt by:

Yt = g(V ∗ ht)

where ht is the final nh dimensional vector of hidden state
variables, V is the ny × nh weight matrix, and the function
g(·) is an activation function that maps between the output
and hidden states. The hidden layers are defined as follows:

ht = f(W ∗ ht−1 + U ∗Xt)

where W is an nh × nh weight matrix, U is an nh × nx

weight matrix, and the function f(·) is the activation func-
tion for the hidden layers, which creates the nonlinearity in
the neural network.
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Deep learning methods are known to overfit, which results
in an inability of the model to generalize properly. We use
dropout to regularize the network and prevent this overfit-
ting. Dropping neurons randomly during training is known
to reduce the generalization error.

By making the presence of hidden units unreliable,
dropout prevents co-adaptions amongst the nodes, and pro-
motes each to be more robust and to produce more use-
ful features on its own without relying on other hidden
units (Srivastava et al. 2014). Dropout is a common tech-
nique in which a hyperparameter with a set percentage is
given as the percentage number of neurons to set to 0 (i.e., to
dropout) during the training passes. Large dropout rates can
lead to divergence, while small rates can result in insignif-
icant effects. In the next section we show that additionally
using dropout during training approximates Bayesian infer-
ence in a deep Gaussian process.

Srivastava et al. (2014) note that in the simplest case, each
hidden unit is retained with a fixed probability p independent
of other units, where p can be chosen using a validation set
or can simply be set at 0.5, which seems to be close to op-
timal for a wide range of networks and tasks. For the input
units, however, the optimal probability of retention is “usu-
ally closer to 1 than to 0.5.”

We used Long Short-Term Memory Cells (LSTM) in our
RNN, whose main purpose is to remember values over arbi-
trary time intervals by preventing vanishing and exploding
weights throughout the RNN. LSTMs have been shown to
significantly improve RNN performance when applications
require long-range reasoning. Storm models that span up to
120 hours in length are a good fit for the LSTM model (Ale-
many et al. 2019).

In general, estimating posterior densities of weights using
Bayes’ rule is difficult because of the need to marginalize
over all possible values that the weight parameter can take
in the model. A Gaussian prior on the weights is generally
used, p(w) = N(0, 1).

p(w | x, y) = p(x, y | w) p(w)∫
p(x, y | w) p(w)dw

This process is equivalent to variational inference in
Gaussian processes; i.e., by averaging the forward passes
through the network, this is equivalent to Monte Carlo in-
tegration over a Gaussian process posterior approximation.
Variational inference is an approach for approximating a
model’s posterior that would be otherwise difficult to work
with directly. By minimizing the Kulback-Leibler (KL) di-
vergence between an approximating variational distribution
qθ(w) and p(w | x, y), we can estimate our original predic-
tive distribution for new input x∗

p(y∗ | x∗, X, Y ) =

∫
p(y∗ | x∗, w)p(w | X,Y )dw

to qθ(y
∗ | x∗) =

∫
p(y∗ | x∗, w)qθ(w)dw,

which can be approximated at prediction time by

qθ(y
∗ | x∗) ≈ 1

T

T∑
t=1

p(y∗ | x∗, wt).

Quantifying uncertainty with a Bayesian RNN

Prior research has shown that we can use a deep learn-
ing model that uses dropout to model uncertainty by using
the dropout in both the training and testing passes, with-
out the need for an inference framework (Gal and Ghahra-
mani 2016a; 2016b; Gal 2016). This technique of interpret-
ing dropout as a Bayesian approximation of a deep Gaussian
process provides a simple method for estimating the interval
of a neural network output, in addition to the standard point
estimate output. The key idea with Bayesian RNN dropout is
that weights have probability distributions rather than fixed
point estimates. We perform multiple forward passes of the
network, each time with a new set of weights which result
from a different set of dropouts during the prediction phase.

The authors showed that if dropout is seen as a variational
Monte Carlo approximation to a Bayesian posterior, then the
natural way to apply it to recurrent layers is to generate a
dropout mask that zeroes out both feedforward and recur-
rent connections for each training sequence, but to keep the
same mask for each time step in the sequence as a form of
variational inference (see Figures 1 and 2). This differs from
the naı̈ve way of applying dropout to RNNs, which would
generate new dropout masks for each input sample regard-
less of which time sequence it was from.

By enabling dropout during the testing phase, every for-
ward pass with a given input will result in a different out-
put. These non-deterministic predictions can be interpreted
as samples from a probabilistic distribution, i.e., a Bayesian
approximation. By applying dropout to all the weight lay-
ers in a neural network, we are essentially drawing each
weight from a Bernoulli distribution. This means that we
can sample from the distribution by running several forward
passes through the network. By sampling from distributions
of weights, we can evaluate the distribution of many predic-
tions, which informs the quality of the model and the uncer-
tainty of the output. The more the output varies when using
dropout, the higher the model’s output uncertainty. The sam-
ple means and variances of the output represent estimates of
the predictive mean and variance of the model.

The NHC publishes a “Forecast Cone” that shows esti-
mates for two times (e.g., 8AM and 8PM) for each future
day up to 5 days ahead (Figure 3). It shows a 67% inter-
val around the center of the storm for each of those times.
It is named a cone because the areas closest to the present
time are relatively thin due to having less uncertainty and the
times further in the future are wider due to having more un-
certainty. The two main difficulties with this diagram style
are that hurricanes can be hundreds of miles wide, poten-
tially wider than the cone itself, and that by definition of the
67% uncertainty interval, about 1

3 of hurricanes will be out-
side of the cone (Cairo and Schlossberg 2019).

The size of the circles is set so 67% of historical official
forecast errors over the previous 5-year sample fall within
the circle. For 2019, a 24-hour forecast of an Atlantic hur-
ricane would have a 41 nautical mile probability circle. Our
uncertainty interval instead uses fundamental Bayesian tech-
niques by performing multiple predictions using our model
and evaluating according to the mean and variance of these
predictions. Additionally, we examine a variety of interval
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Figure 1: Standard RNN model Figure 2: Variational Bayes RNN model

Figure 3: NHC Forecast Cone for Hurricane Dorian (2019)

ranges up to 99%, which could be more useful since fewer
hurricanes would be expected to be outside of the interval.

Applying the model to Atlantic hurricanes

We used the SHIPS dataset with data from Atlantic Ocean
storms from 1982 to 2017 (SHIPS 2019). The data contains
499 storms, with a large number of time series records for
each storm and about 100 total features (not all are avail-
able for all storms). Each data point is given in six-hour
timestep intervals. The base features that we use are latitude,
longitude, maximum surface wind (kt), minimum sea level
pressure (hPa), and calculated features of distance and di-
rection (angle of travel) from timestep to timestep. All fields
are discretized relative to the storm center, which was deter-
mined from the NHC best track. All atmospheric predictors
are from the NCEP global model analyses.

Our model takes an input in the shape of the number
of samples by the maximum hurricane length by the num-
ber of features (6). We use 2 LSTM hidden layers with
sizes of 32 and then 16, which isolate important hidden dy-
namic features from the input data. Our output for the trajec-
tory predictions are latitude and longitude at the appropriate
prediction timestep. Loss is computed using mean squared
error (MSE), which takes our predicted value for the lo-

cation (ŷ) and the labeled known value (y) and computes
MSE = (y− ŷ)2. This is averaged over all predictions in the
training dataset.

To implement this model, we use Keras and the parameter
dropout for input dropout W weights and recurrent dropout
for hidden state dropout (U weights). Keras is automatically
set up to keep the same dropout masks over all timesteps
as required by the Bayesian model. We trained over 200
epochs, at which point the model stopped improving.

All hurricanes in the dataset were shuffled (i.e., each hur-
ricane remained complete, but the order of hurricanes was
randomized) to ensure that the training and test sets don’t
contain only older or newer data. All features are then min-
max normalized prior to training.

We build our training and test set input with 3 main
parameters: min to start predictions, prediction length, and
max hurricanes. The first parameter determines how many
preliminary timesteps are seen before any predictions begin.
This is used so all predictions have some reasonable basis
and is justified because we assume some time is needed to
detect the storm. The second is the length of the predictions
beyond the input data (e.g., 1 timestep is a 6-hour predic-
tion using all previous input data and 4 timesteps is a 24-
hour prediction). The final parameter is fixed at the length of
the longest hurricane (89 timesteps in this dataset), such that
each model input is this length minus the prediction length
minus the minimum prediction start, and shorter inputs are
padded with 0s. The labeled data is taken from the corre-
sponding value being predicted (latitude and longitude) at
the timestep of the prediction. The inputs and labels are con-
structed for each hurricane separately and then we input all
the data into the network to evaluate the overall error rates.

We used the following parameters for our experiments:
• Test set size: 0.25
• Validation set size: 0.25
• Batch size: 64
• Epochs: 200
• Optimizer: Adam with default parameters (LR 0.001)
• Recurrent dropout: 0.1
• Dropout: Experiments with 0.1/0.2/0.5
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Figure 4: Datapoints from all storms in the dataset Figure 5: Random selection of 6 hurricanes in dataset

After model training, we perform the prediction on our
test set many times—we used 100 and 400 comparisons
for our predictions. Each contains a matrix of predictions
over every timestep in the test set and each prediction is
unique because of the dropout during testing. We use the
D’Agostino-Pearson Test that combines skew and kurtosis
to produce an omnibus test of normality and determine that
the predictions are approximately normal. We then use the
mean and standard deviation of the predictions as our uncer-
tainty measure, allowing us to create uncertainty bounds by
using Z-scores for 67%, 90%, 95%, 98%, and 99% credible
intervals. Credible intervals are a Bayesian concept that de-
notes that our intervals are based on sampling the network,
different from the confidence interval that would indicate
knowing a true parameter and creating an interval to include
that parameter with some minimum probability.

All datapoints from storms in the dataset are shown in
Figure 4 and six randomly selected storms are shown for
illustration purposes on a map in Figure 5.

Experiments

Our main experiments are predicting locations and intervals
of these predictions over the SHIPS dataset. The experi-
ments are over our entire test set and we have also produced
figures for Hurricane Katrina specifically.

Trajectory forecast results

Based on predicting normalized latitude and longitude
points, we find the following MSE rates on our test data for
three dropout rates in Table 1.

0.1 dropout 0.2 dropout 0.5 dropout

.0020 .0027 .0055

Table 1: MSE of our model at different dropout levels.

We performed MSE calculations specifically on Katrina
and Sandy. With dropout of 0.2, we had MSE .0017 for
Sandy and .0026 for Katrina. We find that higher dropout
levels generally resulted in worse MSE, suggesting that the
model is not overfitting. Alemany et al. (2019) used the same
RNN prediction techniques and show improvement relative
to the National Hurricane Center (NHC) error rates and Gov-

ernment Performance and Results Act (GPRA) target rates
for 2003–12 (Figure 6).

Figure 6: RNN forecast error compared to NHC and GPRA target

Analysis of uncertainty in trajectory forecasts

We performed uncertainty forecasts on the test portion of our
dataset and on two specific hurricanes. Figures 7–8 show 4
random predictions out of 100 total predictions made, along
with the mean of the 100 predictions and the true values.
This illustrates the variability in the individual predictions.
We show one figure each for latitude and longitude for Hur-
ricane Katrina. We see that the dropout does cause notice-
able differences in the random predictions. Next we show
intervals for latitude and longitude from 100 predictions us-
ing their mean, standard deviation, and the relevant Z-score.
We show lines for the true values and the mean of our pre-
dictions, along with bounds on 67%, 90%, 95%, 98%, and
99% intervals on Katrina (Figures 9–10).

Our evaluation metric for the intervals is to compute the
percentage of points over a specific sample or specific hur-
ricane that actually fit within each of the computed interval
bands over every timestep of that sample or hurricane. For
the main test set we also performed an experiment with 400
predictions in addition to 100, but the effect was negligible.
However, increased dropout, which produces more variance
in the predictions (although gives the overall model a worse
MSE) leads to significantly improved uncertainty estimates.
Tables 2– 4 show results using different dropout rates and
number of predictions over the entire test set.
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Figure 7: Hurricane Katrina latitude predictions

Figure 8: Hurricane Katrina longitude predictions

Figure 9: Hurricane Katrina latitude intervals

Figure 10: Hurricane Katrina longitude intervals

The 0.1 dropout rate underfits the intervals due to a lack
of variation in the predictions. The 0.5 dropout rate produces
worse results and has a large variance in the predictions such
that the intervals are too large, even larger than the intended

sizes (e.g., 100 latitude predictions fits 76.4% of data rather
than 67%). We determine that 0.2 is the best medium that
results in strong error rates and accurate intervals and use
this dropout for our individual hurricane predictions.
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0.1 dropout test set 67% 90% 95% 98% 99%

100 Latitude 51.0 72.0 78.5 84.3 87.0
400 Latitude 51.7 72.1 78.6 84.8 87.4

100 Longitude 64.5 83.1 87.3 90.7 92.0
400 Longitude 64.9 83.5 87.5 90.7 92.2

Table 2: Percentage of latitude and longitude data within
predicted region for different interval levels and numbers of
predictions using 0.1 dropout.

0.2 dropout test set 67% 90% 95% 98% 99%

100 Latitude 61.1 82.0 87.0 90.9 93.0
400 Latitude 61.2 82.4 87.3 91.2 93.4

100 Longitude 66.3 84.3 88.6 92.2 93.9
400 Longitude 66.2 84.6 88.8 92.0 94.1

Table 3: Percentage of latitude and longitude data within
predicted region for different interval levels and numbers of
predictions using 0.2 dropout.

0.5 dropout test set 67% 90% 95% 98% 99%

100 Latitude 76.4 91.7 94.2 96.2 97.0
400 Latitude 77.1 92.0 94.3 96.2 97.1

100 Longitude 82.0 94.3 95.9 97.5 98.0
400 Longitude 82.5 94.2 96.2 97.7 98.2

Table 4: Percentage of latitude and longitude data within
predicted region for different interval levels and numbers of
predictions using 0.5 dropout.

Conclusion

We produced a storm prediction model capable of strong tra-
jectory predictions. By implementing a rigorous uncertainty
bound, we add significant value relative to point estimates
that were predicted in previous work and an important alter-
native to the uncertainty bounds produced by the NHC that
are based on recent historical data. The computed bounds
agree closely with our predicted intervals.

Future work could examine changes in hurricane trajec-
tories over time given the variation in climate change and
weather patterns. It may be important to build models based
only on more recent hurricanes that best capture the most
recent climate effects. We could also utilize more features
from the SHIPS dataset. While there are nearly 100 features,
many are not provided for large sets of storms. It would be
useful to work with a domain expert to understand which
features would be most interesting and also if we could fur-
ther improve our model by incorporating additional weather-
related data. If possible to supplement the dataset with satel-
lite imagery, this could be a powerful combination. Another
possibility is to compare uncertainty measures using dropout
as we have done in this paper with a Bayesian RNN model
trained with traditional Markov Chain Monte Carlo methods
such as the one described formally by McDermott and Wikle
(2019). Finally, it could also be useful to perform more spe-
cific predictions relating to when and where hurricanes are
expected to hit land.
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