
Encoding Neighbor Information into Geographical
Embeddings Using Convolutional Neural Networks

1 École d’actuariat, Université Laval, Canada (christopher.blier-wong.1@ulaval.ca)
2 Département d’informatique et de génie logiciel, Université Laval, Canada (jean-thomas.baillargeon@ift.ulaval.ca)

Abstract

Geographic information is crucial for estimating the future
costs of an insurance contract. It helps identify regions ex-
posed to weather-related events and regions exhibiting higher
concentrations of socio-demographic risks such as flood or
theft. In actuarial science, the current approach of estimat-
ing future costs in a territory is through one-hot encoding of
zip codes, postal codes or company-defined polygon levels in
statistical learning models. This method has two main draw-
backs: it does not share information from similar risk territo-
ries and does not share information from neighboring areas.
We propose the Convolutional Regional Autoencoder model,
a method for generating geographical risk encodings using
convolutional neural networks. We aim to replace the tradi-
tional territory variable for estimating future costs of insur-
ance contracts. Experimental results demonstrate that encod-
ings generated by our approach provide more useful features
to predict risk-related regression tasks.

1 Introduction

Insurance plays an essential role in society since it enables
the transfer of risks from individuals to insurers. Insurers ac-
cept this risk transfer in exchange for a fixed premium calcu-
lated before knowing the actual cost of the risk. In non-life
insurance, actuaries predict the total costs associated with
short term risks, such as single-year car insurance and home
insurance contracts. Historical data is used to infer relation-
ships between an insurance client’s information and his ex-
pected future claim costs in a process called ratemaking.

Geographical information is useful in property and casu-
alty insurance ratemaking since it helps contextualize risks.
For weather-related perils such as flooding, geographic in-
formation is crucial since location represents vital infor-
mation to predict claim frequency. An insurance company
might want to limit the exposure to risks in the same street
because if a flood occurs, the insurance company will need
to pay a lot of claims at the same time, placing it in a diffi-
cult financial situation. For socio-demographic risks such as
driving, habits depend on where drivers live: in rural areas,
they are less likely to have accidents since they use rarely

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

frequented roads. When they do have accidents, they tend to
generate higher claim costs since they are more severe.

For this reason, insurance companies define territory lev-
els, which act as one-hot encoding in their ratemaking mod-
els. Due to the nature of insurance data (low frequency,
heavy-tailed severity), the variance of claim costs is high.
Therefore, a high volume of historical data is needed for
models to yield reliable predictions and actuaries have to
deal with a variance-bias tradeoff in determining the size of
territory levels. Larger territories contain more observations
and lower variance but high bias, as opposed to smaller re-
gions with fewer observations and lower bias but higher vari-
ance. Some spatial effects occur at a granular scale while
some at a grander scale. This challenge implies that a spatial
risk effect appearing on a small scale could go undetected to
an insurer using territory boundaries of larger size. There-
fore, insurance companies tend to choose smaller territories,
leading to neighboring territories that look alike, sometimes
having a different insurance premium due to high variance.

In this paper, we propose a method to generate low-
dimensional encodings (embeddings) of geographic risks
across a large territory. These encodings are compact rep-
resentations of the geographical context of a spatial coor-
dinate. Since the dimensions of the embeddings may be
smaller than one-hot encoding of rating territories, we have
better control of the variance-bias tradeoff of geographic risk
segmentation. Additionally, since geographic embeddings
are calculated at coordinate-level and not at territory-level,
they may be smoother in space, avoiding harsh spikes when
crossing territory limits.

This work aspires to be a reference on geographical risk
segmentation with the use of external data sources. We focus
on an application to actuarial science, but this research is
relevant to other fields such as geomatic and geostatistical
sciences. Our contributions include:

• The exploration of using external data at different spatial
scales to create an encoding of geographic risks.

• The introduction of the geographic data cube generator,
an algorithm for generating matrix grids of spatial data
usable by vision techniques.

• The introduction of the Convolutional Regional AutoEn-

The Thirty-Third International
FLAIRS Conference (FLAIRS-33)

Christopher Blier-Wong,12 Jean-Thomas Baillargeon,2

Hélène Cossette,1 Luc Lamontagne,2 Etienne Marceau1

15

coder (CRAE) as a method of generating geographical en-
codings that exploit information from neighboring points.

• The source code to generate geographical data cubes and
to train the neural network 1.

2 Related Work

The work most similar to ours is by (Saeidi, Riedel, and
Capra 2015), who examine methods of dimension reduc-
tion of UK census data with principal component analysis
and autoencoders. The learned representations are used for
downstream regression tasks. Although they examine neigh-
bouring effects by adding the longitude and latitude coor-
dinates to the embeddings, results show that adding coordi-
nates does not improve model accuracy in downstream tasks.
Our model tackles the spatial continuity directly.

Convolutional neural networks and multi-source geo-
graphical information are used by (Yao et al. 2018) for house
price mapping. This work was for a task-specific application
and trained in a supervised way.

Other geographical embeddings have been studied in spe-
cific applications. For example, (Cocos and Callison-Burch
2017) build on the distributional semantics theory that sim-
ilar words appear in similar contexts. Additionally, people
use different vocabularies at different geographical loca-
tions. Therefore, tweets sent from a particular location are
context-dependent. (Levy and Goldberg 2014) train word
embeddings with the skip-gram model using geographic tags
based on locations identified from Google Places and Open-
StreetMap. Other specific applications of geographical em-
beddings in the literature include point-of-interests sequenc-
ing (Yao et al. 2017), generation of natural environment em-
beddings (Jeawak, Jones, and Schockaert 2019) and analysis
of lexical variation (Eisenstein et al. 2010). Our work stands
out by proposing embeddings that are unsupervised and ag-
nostic of downstream tasks.

The approach proposed in this paper designs representa-
tions of geographical information such that they may easily
be used as features in a machine learning model. These rep-
resentations are useful since feature engineering of impor-
tant or significant geographic variables is hard due to their
high volume and variety. Our work therefore fits within the
field of representation learning (see, e.g. (Bengio, Courville,
and Vincent 2013)). Our model is based on convolutional
autoencoders, where the encoder is composed of convolu-
tions and max-pooling, while the decoder is composed of
deconvolutions and max unpooling. Such ideas are inspired
by (Zeiler, Taylor, and Fergus 2011) and (Noh, Hong, and
Han 2015), who apply these techniques in vision tasks.

3 Proposed Method

In this section, we present our approach and evaluation strat-
egy. First, we present the models that serve as baselines for
our experiment. We proceed with our approach, the Convo-
lutional Regional Autoencoder (CRAE). Vector data cubes
are presented, followed by the evaluation scheme.

1https://github.com/jtbai/census-compression

Figure 1: Fully Connected Autoencoder

3.1 Baseline models

To compare the effectiveness of our approach, we estab-
lish two baseline algorithms: principal component analysis
(PCA) and fully-connected autoencoder (FCAE).

Principle component analysis is a popular linear dimen-
sion reduction technique in statistics. An important advan-
tage of PCA is that the percentage of variance conserved
from the input features is easily controlled. Additionally,
latent variables are linearly uncorrelated, making the prob-
lem unique and easily interpretable. Since linear features are
highly restricting, the latent variables might not be abstract
enough to contain enough information in a low-dimensional
feature space.

An autoencoder is a neural network designed to learn a
function such that the output values are equal to the input
values. In this paper, the FCAE is an undercomplete (bot-
tleneck) autoencoder composed of 4 main components: in-
put data x of size d, an encoder f , a bottleneck layer f(x)
(containing the latent variables of size h that will be used as
embedding) and a decoder g. Encoders are often composed
of one linear layer, followed by an activation function. More
layers may generate better representations but are harder to
train (see (Bengio, Courville, and Vincent 2013)). The em-
beddings from this architecture are extracted by applying the
encoder function to the initial data, thus projecting the input
space to a latent space of a reduced dimension. We present a
FCAE architecture in Figure 1.

3.2 Convolutional Regional Autoencoder

The proposed approach in this paper builds on the under-
complete autoencoder by expanding the spatial context. The
limitation of the FCAE and PCA methods is that embed-
dings for a location are created using only features of that
same location, i.e. the encoder output is f(x). Since weather
or social effects vary smoothly through space, we want to
alleviate this constraint and consider supplementing infor-
mation from nearby locations. This idea is based on the first
law of geography: everything is related to everything else,
but near things are more related than distant things (see (To-
bler 1970)). Using neighbor information will create embed-
dings using a function of the type f(x ∈ δx), where δx cor-
responds to the neighbors of location x. In our CRAE model,
the neigborhood of x is defined by generating a square grid
centered at coordinate x, sampling points at a uniform dis-
tance in longitude and latitude.

16

Figure 2: Convolutional Regional Autoencoder

Convolutional neural networks (CNNs), a deep neural
network algorithm, are particularly efficient at solving prob-
lems of spatial dependence. Their success initially came
from vision tasks (see, e.g. (LeCun and Bengio 1995),
(Krizhevsky, Sutskever, and Hinton 2012)). We postulate
that CNNs can be used for other tasks where data can be
formed into a grid. We redefine the data used in our algo-
rithm to convert vectors of data into vector data cubes. This
cube can, in turn, be handled in the same way as an image
in vision tasks. Although an image is a data cube of depth
3 (where slices consist of R, G and B channels), CNNs may
handle data cubes of arbitrary depth. In our CRAE model,
data cubes represent geographical information around a cen-
ter coordinate. Each slice of the data cube is composed of a
raster for a specific input variable. The cube is a combination
of raster slices, and the number of slices is the number of fea-
tures to train embeddings. Hence, the depth d of the cube is
the number of features available from input vectors used in
baseline models. The algorithm to generate data cubes and
an example data cube is presented in the next subsection.

In CRAE, the bottleneck comes from the reduction of the
depth of convolutions (number of feature maps) and the ap-
plication of max pooling. Once the CRAE is trained, re-
gional geographical embeddings are generated by applying
the encoder to the input data, creating a cube of smaller di-
mensions. As illustrated in Figure 2, embeddings are created
from the values in the middle layer. The cube is flattened into
a vector of dimension h× 1.

To illustrate this idea, suppose we have a CRAE model
with one encoder layer and an input cube of size 8×8×100.
The convolution has zero-padding such that the raster size
does not change and has depth 5. After the convolution, the
data cube size is 8×8×5. Then, we apply 2×2 max-pooling
with stride 2, so the data cube size becomes 4×4×5 and
contains 80 values. The embeddings for this example are ob-
tained by flattening the 4×4×5 cube into a 80× 1 vector.

3.3 Generating Vector Data Cubes

Since CRAE handles vector data cubes, these cubes first
need to be generated. This subsection presents the method
for creating vector data cubes from vector data.

Two parameters regulate the generation of data cubes: the
width in pixels of the data cube p and the resolution w, the
distance in meters between two vertical or horizontal points.

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

45.50

45.52

45.54

45.56

−73.650 −73.625 −73.600 −73.575 −73.550

lon

la
t

Figure 3: Example Data Grid

The grid is given by the union of coordinates in the formula

δx =

p−1⋃
i=0

p−1⋃
j=0

[
lon(x) +

w

2
(2i− p + 1) , lat(x) +

w

2
(2j− p + 1)

]
,

where lon(x) and lat(x) are respectively the longitude and
latitude coordinates of the center point x, where x belongs to
the set of locations in the territory where geographical em-
beddings are calculated. If the grid size p is even, the center
point x is not included in δx. The general algorithm to cre-
ate a geographic data cube is presented in Algorithm 1. The
random rotation at step 4 is to make the model rotation in-
variant.

Algorithm 1: Generating a geographic data cube
Input: Center coordinates, cube width w, pixel size p
Output: Geographic data cube

1 project coordinates to Lambert coordinate system;
2 generate grid of size p× p with pixel width w meters;
3 center grid at input coordinates;
4 apply random rotation to grid;
5 foreach pixel in grid do
6 allocate pixel to corresponding index;
7 assign vector data to pixel

An example of resulting grid (steps 1-4 in Algorithm 1)
is presented in Figure 3. The parameters used for this grid
are w = 100 meters and p = 8. The red star corresponds to
the center location. In this example, we used a central loca-
tion close to the border between two polygons. With base-
line models, only the data associated to the polygon in which
the point is located would be considered. With our model,
12 points would contain data from the original polygon, 8
points would use data from the neighbor polygon, and the
remaining 44 are sampled from other, farther, neighboring
polygons. As distance increases, more neighbors contribute
to the data but with lower importance to each new neighbor.

The corresponding vector data cube from the previous ex-
ample is presented in Figure 4. Each slice of the cube repre-
sents an input variable.

17

Feature 1
Feature 2

Feature 3

Feature d

Feature d-1

Figure 4: Example Vector Data Cube

3.4 Model Evaluation

We evaluate the baseline models and the proposed approach
with two metrics. The first is the reconstruction error of un-
supervised models, and the second is the prediction error on
downstream regression tasks.

Reconstruction Error The reconstruction error is the ob-
jective function to minimize the learning algorithm. This
metric represents the inability of the algorithm to reconstruct
its input from the latent space. This metric is pertinent since
a model with a low reconstruction error of input in the out-
put layer implies that the bottleneck layer contains salient
information.

Prediction Error on Downstream Tasks The prediction
error on downstream tasks is the metric used to evaluate the
usefulness of the embeddings generated by our approach.
These tasks use generalized linear models (GLMs) with a
Poisson distribution. We use GLMs due to their prevalence
in non-life actuarial practice.

Downstream were selected according to two criteria.
First, they should be related to insurable risks since embed-
dings are to be used as geographic risk segmentation vari-
ables in actuarial (insurance) ratemaking. Second, the data
needs to span large regions: since open datasets are often
published by cities or municipalities, comparing tasks across
vast territories is complex since data collection methods may
differ. Downstream tasks are presented in the results section.

4 Experiment

Two sources of data are needed for our experiment. The first
is data which describes the territories, which are used to gen-
erate geographic embeddings. The second will be presented
in the Results section. The data used to generate geographic
embeddings is the 2016 Canadian Census 2. This dataset
contains rich, heterogeneous summary statistics from inhab-
itants, at the FSA level (an aggregation of neighboring postal
codes). The census dataset contains 2,247 variables for each
of the 1,620 FSAs. Types of variables include amounts,
counts and proportions. Information such as salary, age and
field of study is available aggregated by the individual or
by household. Since FSAs are aggregation of postal codes,
they may be too large to draw useful geographic insights.

2https://www12.statcan.gc.ca/census-recensement/2016/dp-
pd/index-eng.cfm

Our model indirectly performs spatial disagregation by pro-
viding features at a higher resolution that the available data.
Each polygon in Figure 3 represents a different FSA.

4.1 Generating Census Value Vectors

We first preprocess the Canadian census data. Preprocessing
was done such that reconstruction errors from autoencoders
did not significantly attempt to reconstruct values on larger
scales and did not use discriminatory attributes.

First, we pruned the variables to remove the ones explic-
itly referring to ethnic attributes. Out of 2,247 variables, 512
were kept as they were judged not related to ethnicity. Exam-
ples of removed attributes include language spoken at home
and country of birth. Second, the variables were normalized
on a scale of [0, 1]. This prevented the model from focusing
on large reconstruction errors such as salaries and neglecting
small reconstruction errors such as inhabitants per house-
hold. The code used to normalize census data is provided in
a public repository 3.

4.2 Selecting the FCAE architecture

We selected the FCAE architecture on its ability to gener-
ate embeddings that yield a low prediction error when used
as features in downstream regression tasks. For comparison
purposes, we selected an embedding (bottleneck) size of 32.
The hyperparameters of this model were the number of lay-
ers and feature size decay speed from the input to the bot-
tleneck. We experimented with the following methods for
selecting these hyperparameters:
• exponential interpolation where the size of layer l is given

by �32 × 161−
l
n �, l = 0, . . . , n and n is the number of

layers in the encoder. Values of n = 1, 2, 3, 4 and 5 were
tested;

• quadratic interpolation where the size of layer l is given
by �[√512(1 − l

n) +
√
32(l

n)]
2�, l = 0, . . . , n and n is

the number of layers in the encoder. Values of n = 1, 2, 3
and 4 were tested.
We observed that deeper networks do not necessarily lead

to a more useful embedding, and we selected an encoder
with a fully connected layer going directly from 512 dimen-
sions (the number attributes from the pruned census) to 32
dimensions. We did not use any intermediate representation
between the input layer and the bottleneck layer, but used
a ReLU activation function to add non-linearity to the net-
work. Figure 1 shows the architecture of the autoencoder.

To train the autoencoder, we used Adam optimizer, with
an initial learning rate of 0.0001 and reducing the learning
rate by a factor of 4 when validation loss plateaus for 100
epochs. The batch size is 32, and the network is trained for
800 epochs.

4.3 Generating Census Data Cubes

To use the census data in a convolutional neural network,
we create a data cube containing information around a co-
ordinate. We use a data cube with census value vectors to
generate data to train the CRAE.

3https://github.com/jtbai/census-data-transformation

18

In our experiment, we selected p = 16 and w = 50 me-
ters for generating data cubes. These parameters were em-
pirically estimated, extrapolating conclusions from the city
of Montreal to train the model for Canada.

4.4 Selecting the CRAE architecture

Working with geographic data, we must manipulate poly-
gons and point patterns. Attributing a point to a polygon
(postal code to FSA) is a task that requires a long time if data
cubes are generated on each epoch. Since there are close to
1,000,000 postal codes in Canada, and each data cube has
a depth of 512 features, data size becomes an issue. For a
dataset of data cubes of dimension 16 × 16 × 512, gener-
ating data cubes in advance takes 36 hours. The alternative,
generating data cubes during training, results in 25 hours per
epoch. We elected the former approach.

This approach was not without drawbacks: the dataset
for 1,000,000 postal codes is composed of 1,000,000 data
points, each 16 × 16 pixels × 512 features × 16 bits. This
resulted in a 2 Terabyte dataset for a single data cube gener-
ation hyperparameter combination. Each epoch represented
a challenge and took between 1.5 and 3 hours, depending on
the computer hardware. For this reason, we tested embed-
dings from only one architecture using the entire Canadian
dataset. To select the best architecture hyperparameters, we
tested various combinations and retained the one that yields
a better reconstruction error after 20 epochs. However, since
embeddings are trained offline, this training only has to be
done once and are within reach for insurance companies.

The two hyperparameters to test were the size of the con-
volution filter in the first layer and the decay rate for feature
maps. We tested convolution filter kernel sizes of 3×3 and
5×5 and intermediate representation depths of 52 and 256.

The selected CRAE architecture trained with the Cana-
dian dataset has two layers of convolution, each followed by
a max-pooling of kernel size 2×2 and stride 2. The first layer
of convolutions includes 256 channels and a filter of kernel
size 5×5 and the second consists of 8 channels, with a filter
of kernel size 3× 3. The latent space is 2×2×8, generating
a bottleneck of 32 values. These 32 values are then flattened
into a vector of 32×1 and used in the GLMs for downstream
regression tasks. To train the CRAE, we use the stochastic
gradient descent over 50 epochs. The learning rate used is
0.001, and we reduce the learning rate on a plateau.

5 Results and Analysis

5.1 Reconstruction Errors

Reconstruction errors determine if the decoder may recon-
struct the input vectors from the latent space. Although a
good reconstruction error does not directly translate to better
representation for embeddings, this is the most convenient
optimizer loss function to use to keep the task unsupervised.
Generally, embeddings of size 32 have the best performance
on downstream tasks. For consistency, we select an embed-
dings size of 32 for all vectors. Reconstruction errors were
4.6%, 4.7% and 6.9% for PCA, FCAE and CRAE respec-
tively. We note that the PCA and FCAE reconstruct 512 val-
ues as CRAE reconstructs 16×16×512 values, hence base-

Table 1: Observed vs Expected on Frequency Predictions
Sev. Level Observed PCA FCAE CRAE

1 19,010 18,939 18,934 18,949

2 16,437 16,308 16,301 16,329

3 9,118 8,728 8,728 8,740

4 372 370 370 372

5 45 47.7 47.6 47.4

Table 2: Exceeded losses (in thousands CAD)
Sev. Level PCA FCAE CRAE

2 1,414 1,495 1,189
3 4,286 4,286 4,157
4 14 13 -4

Total 5,719 5,795 5,342

line reconstruction errors can’t be compared directly with
CRAE. We conclude important information is adequately
encoded since all reconstruction errors are negligible.

5.2 Downstream Regression Tasks

The second dataset needed for this experiment are response
variables associated with territories to be used to calculate
prediction errors on downstream tasks. In Québec, a public
institution (SAAQ) handles bodily injury payments resulting
from automobile accidents. The SAAQ publishes locations
of accidents, which are then geocoded by Montreal Open
Data 4, providing a dataset of coordinate-level observations
for the location of car accidents. The dataset used to fit our
model used in downstream regression tasks are the coordi-
nates of 171,271 car accidents in Montreal between 2014
and the 2018. For each accident, we have a severity level
from low damage (level 1) to deadly accident (level 5). Each
coordinate is associated to the closest postal code centroid
and the downstream task is to predict the number of acci-
dents within postal codes. The metrics we consider are pre-
dictions on downstream regression tasks. Embeddings are
used as covariates in the regression task. These metrics al-
low us to determine if the information carried by the embed-
dings are useful to accomplish generic tasks and establishes
the relevance of our approach in other domains. GLMs are
trained using 70% of postal codes. Table 1 presents the re-
sults for the three sets of embeddings for each downstream
task using the remaining 30% validation set. Bold values
show the smallest difference with the observed count (best
performance), and italic values show the largest difference
with the observed count (worse performance). Accident lev-
els 2, 3 and 4 come with indemnity payments. The average
payment from the SAAQ was 11,009.70 CAD in 20175. We
present the expected exceeded losses (amount exceeding the
expected value, assuming each loss is 11,009.70 CAD) for
each model in Table 2.

We observe that CRAE outperforms the baseline on all

4http://donnees.ville.montreal.qc.ca/
5https://saaq.gouv.qc.ca/fileadmin/documents/publications/

rapport-annuel-gestion-2017.pdf

19

tasks. This confirms our intuition that smoothing regional
demographic profiles using a CNN approach yields bet-
ter embeddings. When accident severity is considered, the
impact of this improvement is accentuated. Using CRAE
would have improved the loss prediction by 400,000 CAD
for the 30% test set. The SAAQ could have priced insur-
ance contracts more accurately and lowered it’s loss. PCA
and FCAE yield similar predictions since the embeddings
generated are of similar complexity. In an actuarial science
context, this represents a significant improvement since it
gives more flexibility for actuaries to determine higher con-
centrations of risky behaviour.

6 Conclusions and Future Work

In this paper, we presented a method of using external data
sources to create geographical embeddings to predict down-
stream tasks related to socio-demographic risks. Our ap-
proach surpasses the baseline models since they generally
lead to smaller errors in generalized linear model predic-
tions. Our method successfully smooths regional effects of
higher scale datasets for granular use in risk-related tasks.
This tool is practical for insurance companies seeking to im-
prove spatial risk analysis. Summarizing complex and het-
erogeneous data in an embedding gives actuaries more flex-
ibility in risk modeling and will be in a better position to un-
derstand the risks in it’s insurance portfolio. To the best of
our knowledge, we have proposed the first geographic em-
beddings based on convolutional neural networks and have
placed the CRAE as state of the art for territorial risk classi-
fication of property and casualty insurance.

The next steps could be incorporating more sources of
data such as textual data from geolocalized tweets, or senti-
ment analysis from local newspapers. To better capture natu-
ral insurance risks, weather information could also be added.
Algorithm 1 may already deal with cases of additional data
sources (appenders) that may apply at different geographical
scales by adding a loop over all data sources before line 5.

Other improvements to the model would be scale and ro-
tation invariance, achieved by applying random rotations or
scaling when generating the geographic data cube. Another
approach would be to sample w uniformly between a prede-
fined inverval of values or using geostatistical tools such as
the variogram.

Acknowledgments

Neural networks were trained with Pytorch (Paszke, Gross,
and et. al 2019) with the Poutyne framework (Paradis 2018).
Maps were generated with Google maps R api with the
ggmap library. This work was financially supported by the
Society of Actuaries Hickman Scholar program and by the
Chaire en actuariat de l’Université Laval (Blier-Wong, Bail-
largeon and Marceau : FO502320).

References

Bengio, Y.; Courville, A.; and Vincent, P. 2013. Repre-
sentation learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence
35(8):1798–1828.

Cocos, A., and Callison-Burch, C. 2017. The language of
place: Semantic value from geospatial context. In Proceed-
ings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short
Papers, 99–104.
Eisenstein, J.; O’Connor, B.; Smith, N. A.; and Xing, E. P.
2010. A latent variable model for geographic lexical varia-
tion. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, 1277–1287.
Jeawak, S. S.; Jones, C. B.; and Schockaert, S. 2019. Em-
bedding geographic locations for modelling the natural envi-
ronment using Flickr tags and structured data. In European
Conference on Information Retrieval, 51–66.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems, 1097–1105.
LeCun, Y., and Bengio, Y. 1995. Convolutional networks
for images, speech, and time series. The handbook of brain
theory and neural networks 3361(10):1995.
Levy, O., and Goldberg, Y. 2014. Dependency-based word
embeddings. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 2:
Short Papers), volume 2, 302–308.
Noh, H.; Hong, S.; and Han, B. 2015. Learning deconvo-
lution network for semantic segmentation. In Proceedings
of the IEEE International Conference on Computer Vision,
1520–1528.
Paradis, F. 2018. Poutyne: Keras-like framework for Py-
Torch.
Paszke, A.; Gross, S.; and et. al, M. 2019. Pytorch: An
imperative style, high-performance deep learning library. In
Wallach, H.; Larochelle, H.; Beygelzimer, A.; d’Alché Buc,
F.; Fox, E.; and Garnett, R., eds., Advances in Neural In-
formation Processing Systems 32. Curran Associates, Inc.
8024–8035.
Saeidi, M.; Riedel, S.; and Capra, L. 2015. Lower dimen-
sional representations of city neighbourhoods. In Workshops
at the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence.
Tobler, W. R. 1970. A computer movie simulating ur-
ban growth in the Detroit region. Economic Geography
46(sup1):234–240.
Yao, Y.; Li, X.; Liu, X.; Liu, P.; Liang, Z.; Zhang, J.; and
Mai, K. 2017. Sensing spatial distribution of urban land
use by integrating points-of-interest and Google Word2Vec
model. International Journal of Geographical Information
Science 31(4):825–848.
Yao, Y.; Zhang, J.; Hong, Y.; Liang, H.; and He, J. 2018.
Mapping fine-scale urban housing prices by fusing remotely
sensed imagery and social media data. Transactions in GIS
22(2):561–581.
Zeiler, M. D.; Taylor, G. W.; and Fergus, R. 2011. Adap-
tive deconvolutional networks for mid and high level feature
learning. In Proceedings of the IEEE International Confer-
ence on Computer Vision.

20

