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Abstract

We focus on handling conflicting and uncertain information
in lightweight ontologies, where uncertainty is represented in
a possibilistic logic setting. We use DL-Lite, a tractable frag-
ment of Description Logic, to specify terminological knowl-
edge (i.e., TBox). We assume the TBox to be stable and co-
herent, while its combination with a set of assertional facts
(i.e., ABox) may be inconsistent. We address the problem of
dealing with conflicts when the reliability relation between
sources is only partially ordered. We propose to represent the
uncertain ABox as a symbolic weighted base, where a strict
partial order is applied on the weights. In this context, we pro-
vide a strategy for computing a single repair for the ABox,
called the partial possibilistic repair. The idea is to consider
all compatible bases of a partially preordered ABox (which
intuitively encode total extensions of a partial order), com-
pute their associated possibilistic repairs, before intersecting
those repairs to produce a single consistent sub-base.

Introduction
Description Logics (DLs) are a family of logic-based knowl-
edge representation languages successfully used in a broad
range of applications, thanks to the good trade-off they of-
fer between expressive power and computational complex-
ity. In particular, DLs are widely used for representing and
reasoning about ontologies. Inconsistency management in
formal ontologies, especially those specified in DL-Lite, a
lightweight fragment of description logics, has been tack-
led from different angles. One line of research supports rea-
soning in the presence of incomplete, uncertain, qualitative
and prioritized information using possibility theory (Dubois,
Prade, and Schockaert 2017; Finger et al. 2017).

For instance, fuzzy extensions have been proposed for
DLs (Borgwardt and Peñaloza 2017; Bobillo and Straccia
2018; Straccia 2013) and for DL-Lite (Pan et al. 2007;
Straccia 2006). There has also been possibilistic extensions
of DLs (Dubois, Mengin, and Prade 2006; Qi et al. 2011)
as well as probabilistic ones (Baader et al. 2019; Borgwardt,
Ceylan, and Lukasiewicz 2018; Lutz and Schröder 2010).

Furthermore, a framework for possibilistic DL-Lite has
been proposed (Benferhat and Bouraoui 2017). It draws
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inspiration from Standard Possibilistic Logic (Dubois and
Prade 2015) in which inconsistent and uncertain information
is prioritized by way of a total preorder. Basically, weights in
the unit interval [0, 1] (seen as an ordinal scale) are attached
to ABox assertions to represent different reliability levels of
the information. The higher the weight, the more certain or
reliable is the assertion. A weight (or degree) is considered
as a lower bound on the assertion’s certainty (or priority)
level. A nice feature of possibilistic DL-Lite is that query
answering is tractable despite the fact that the expressive-
ness of standard DL-Lite is enhanced with a total preorder
over the assertions.

Nevertheless, in applications such as ontologies, informa-
tion is typically obtained from multiple sources having con-
flicting opinions. This implies applying a partial order in-
stead of a total order over the weights assigned to assertions.
Note that the order relation applied to weights is a strict par-
tial order, i.e., there are no ties between weights. However
the order relation on the corresponding assertions is a partial
preorder, since the same weight could be attached to more
than one assertion (i.e., ties between assertions are allowed).
Hence the corresponding ABox is partially preordered.

Extensions of Standard Possibilistic Logic have been pro-
posed to support reasoning with partially preordered in-
formation, mainly using the notion of compatible bases.
In (Benferhat, Lagrue, and Papini 2004), possibilistic infer-
ence is revisited by assigning symbolic weights defined over
a partially ordered uncertainty scale to propositional logic
formulas. This idea has also been explored in (Benferhat,
Dubois, and Prade 1995; Touazi, Cayrol, and Dubois 2015).
However, computational complexity is expensive (Δ2

p-hard),
making such approaches not suitable in a context where
queries need to be answered efficiently.

A natural question is whether standard possibilistic DL-
Lite (Benferhat and Bouraoui 2017) can be extended to
take into account partially preordered knowledge, without
increasing computational complexity. Recently, an efficient
method, called “Elect”, has been proposed for the case
where the ABox is partially preordered (Belabbes, Benfer-
hat, and Chomicki 2019). In essence, Elect computes a sin-
gle repair for an inconsistent ABox and does so in polyno-
mial time. It has been shown that Elect generalises the well-
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known Intersection ABox Repair (IAR) semantics (Lembo
et al. 2010) defined for a flat ABox and the so-called
non-defeated repair (Benferhat, Bouraoui, and Tabia 2015;
Benferhat, Dubois, and Prade 1998) defined for a totally pre-
ordered ABox. Basically, a partially preordered ABox is in-
terpreted as a family of totally preordered ABoxes such that
a single repair can be computed for each one of them. The
intersection of all those repairs produces a single repair for
the partially preordered ABox.

In this paper, we follow an approach similar to the Elect
method and propose a possibilistic strategy for computing
a single repair for the ABox, called the partial possibilistic
repair. To achieve this aim, we consider a family of compat-
ible ABoxes (which amount to a family of possibilistic DL-
Lite ABoxes) and compute the possibilistic repair associated
with each one of them. We then intersect those possibilistic
repairs to obtain a single repair for the partially preordered
weighted ABox.

We start the paper by briefly recalling the basics of DL-
Lite in description logic followed by its extension to possi-
bilistic logic. We introduce our method for computing a pos-
sibilistic repair for a partially preordered weighted ABox.
We then conclude and discuss future work.

The Description Logic DL-Lite

Description Logics (DLs) are a family of knowledge repre-
sentation languages that have been successfully applied in
various domains and specifically in formalising ontologies.
The lightweight fragments of DLs such as DL-Lite (Cal-
vanese et al. 2007) are particularly popular, since they offer a
good trade-off between expressive power and computational
complexity. For instance, query answering from a DL-Lite
knowledge base can be carried out efficiently using query
rewriting (Kontchakov et al. 2010). In this paper, we present
the DL-LiteR dialect of DL-Lite, without loss of generality.

A Knowledge Base (KB) is built upon three finite and mu-
tually disjoint sets C, R and I, which contain respectively
concept names, role names and individual names. The DL-
LiteR language is defined according to the following rules:

R −→ P | P− E −→ R | ¬R
B −→ A | ∃R C −→ B | ¬B

where A denotes a concept name, P is a role name, and P−
is the inverse of P . Also, R stands for a basic role and E
denotes a complex role. Furthermore, B is a basic concept
while C is a complex concept.

A DL-Lite KB K is a tuple K = 〈T ,A〉, where:

• T is a finite set of inclusion axioms, also known as TBox.
An inclusion axiom on concepts (resp. on roles) is a state-
ment of the form B � C (resp. R � E). Concept in-
clusions are said to be negative inclusion axioms if they
contain the symbol “¬” to the right of the inclusion, oth-
erwise they are called positive inclusion axioms.

• A is a finite set of assertions (ground facts), also known
as ABox. An assertion is a statement of the form A(a) or
P (a, b), where a, b ∈ I.

A KB K is said to be consistent if it admits at least one
model, otherwise it is inconsistent. A TBox T is incoherent
if there is a concept name A ∈ C such that A is empty in
every model of T , otherwise it is coherent.
Henceforth, we shall refer to DL-LiteR simply as DL-Lite.

We shall use the following running example throughout the
paper and adapt it as needed.
Example 1 Let K = 〈T ,A〉 be a DL-Lite KB.
Let T = {A �¬B,B �¬C,C �¬D} be a TBox.
Let A = {A(a), A(b), B(a), B(c), C(a), C(b), D(a),
D(b), D(c), E(a)} be a flat ABox (i.e., no weights are as-
signed to assertions).
One can easily check that K is inconsistent. For instance,
individual ‘a’ belongs to both concepts A and B. This con-
tradicts the negative axiom A �¬B.

�
There exist various strategies in the literature, called
inconsistency-tolerant semantics, for reasoning with incon-
sistent KBs (e.g. (Baget et al. 2016; Calvanese et al. 2010;
Bienvenu and Bourgaux 2016; Trivela, Stoilos, and Vassa-
los 2019)). Basically, they proceed by computing a single
or several consistent sub-bases of the ABox, known as re-
pairs, then use those repairs to perform reasoning tasks such
as query answering. The most well-known strategies are the
ABox Repair (AR) semantics and the Intersection ABox Re-
pair (IAR) semantics (Lembo et al. 2010). In AR, queries
are evaluated separately over all the repairs, then the sets
of answers are intersected. Thus a query answer is con-
sidered valid if it can be entailed from every repair of the
ABox. In IAR, queries are evaluated over one consistent
sub-base of the ABox obtained from the intersection of all
the repairs. Other strategies have been proposed such as the
so-called non-defeated semantics (Benferhat, Bouraoui, and
Tabia 2015), which amounts to a prioritized version of the
IAR semantics.

In the present paper, we focus on possibilistic repairs, es-
pecially in the case of partially preordered knowledge. Note
that a repair is usually defined as an inclusion-maximal sub-
set of the ABox that is consistent with respect to the TBox.
Here we use the term repair in the possibilistic context even
for a subset of assertions that is not maximal, provided it is
consistent with respect to the TBox.

In the next section, we recall the underpinnings of stan-
dard possibilistic DL-Lite.

Possibilistic DL-Lite Knowledge Base

Possibilistic Description Logics (Hollunder 1995; Dubois,
Mengin, and Prade 2006) are extensions of standard De-
scription Logics frameworks based on possibility theory
that support reasoning with uncertain and inconsistent
knowledge. Extensions to possibilistic DL-Lite (Benferhat
and Bouraoui 2017) have recently been proposed for the
lightweight fragments DL-Lite. The main idea consists in
assigning priority degrees (or weights) to TBox axioms and
ABox assertions to express their relative certainty (or con-
fidence) in an inconsistent KB. The inconsistency degree of
the KB can then be computed from those weights, making
provision for possibilistic inference.
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In this section, we consider a possibilistic DL-Lite KB
WK = 〈T ,WA〉, henceforth referred to as weighted KB.
We assume axioms in T to be fully certain (or fully reliable)
while assertions in WA (for weighted ABox) are equipped
with priority degrees from the interval ]0, 1] as follows:

WA = {(f, α) : f is a DL-Lite assertion, α ∈]0, 1]}.

Assertions in WA with priority degree α = 1 are fully cer-
tain and cannot be questioned, whereas assertions with pri-
ority degree 0 < α < 1 are somewhat certain. Assertions
with higher degrees are more certain than those with lower
degrees. We ignore assertions whose degree α = 0.

Henceforth, for any given weighted ABox B, we shall de-
note by B∗ the set of assertions without priority degrees.

We also assume that the weighted KB WK may be incon-
sistent. Furthermore we assume the TBox component to be
coherent and stable, thus the inconsistency of WK is caused
by conflicts between assertions of WA w.r.t. axioms of T .

An assertional conflict is defined as an inclusion-minimal
subset of assertions that is inconsistent with the TBox, where
inconsistency is understood in the sense of standard DL-
Lite. Formally:

Definition 1 Let WK = 〈T ,WA〉 be a weighted KB.
A sub-base C ⊆ WA is an assertional conflict in WK iff:

• 〈T , C∗〉 is inconsistent, and
• ∀f ∈ C∗, 〈T , C∗ \ {f}〉 is consistent.

Let C(WA) denote the set of all assertional conflicts
of WA. It is important to highlight that computing the set of
conflicts is done in polynomial time in DL-Lite (Calvanese
et al. 2010). Furthermore, assertional conflicts in coherent
DL-Lite KBs are binary, i.e., ∀C ∈ C(WA), |C| = 2 (Cal-
vanese et al. 2010). Thus we denote a conflict by a pair Cij =
{(fi, αi), (fj , αj)}, where (fi, αi), (fj , αj) ∈ WA, and say
that assertions fi, fj ∈ WA∗ are conflicting w.r.t. T .

Example 2 We equip the ABox of Example 1 with weights.
Let WK = 〈T ,WA〉 be a weighted KB, where the TBox
T = {A �¬B,B �¬C,C �¬D}, and the weighted ABox

WA =

⎧⎪⎨
⎪⎩

(A(a), .9), (A(b), .9), (B(c), .8),
(E(a), .7), (D(b), .6), (C(a), .5),
(D(a), .4), (B(a), .3), (D(c), .3),
(C(b), .1)

⎫⎪⎬
⎪⎭

The set of assertional conflicts of WA is given by:

C(WA) =

⎧⎪⎨
⎪⎩

{(A(a), .9), (B(a), .3)},
{(D(b), .6), (C(b), .1)},
{(C(a), .5), (D(a), .4)},
{(C(a), .5), (B(a), .3)}

⎫⎪⎬
⎪⎭

�
As shall be made clear later, we are interested in the high-

est priority degree where inconsistency is met in the ABox,
known as the inconsistency degree. Formally:

Definition 2 Let WK = 〈T ,WA〉 be a weighted KB. Con-
sider a weight β ∈]0, 1]. We denote by:

• A≥β = {f : (f, α) ∈ WA, α ≥ β} the β-cut of WA.

• A>β = {f : (f, α) ∈ WA, α > β} the strict β-cut
of WA.

The inconsistency degree of WA, denoted by Inc(WA), is:

Inc(WA) =

⎧⎨
⎩

0 iff 〈T ,WA∗〉 is consistent
β iff 〈T ,A≥β〉 is inconsistent

and 〈T ,A>β〉 is consistent

We illustrate this notion on our running example.
Example 3 One can easily check that for β = 0.4, we have:

• A>β = {A(a), A(b), B(c), E(a), D(b), C(a)} is consis-
tent w.r.t. T , whereas

• A≥β = A>β ∪ {D(a)} is inconsistent w.r.t. T .

Therefore: Inc(WA) = 0.4.
�

The inconsistency degree serves as a means for restor-
ing consistency of the ABox. This is due to the fact that
only assertions with a certainty degree that is strictly higher
than the inconsistency degree are included in the possibilis-
tic repair, which ensures safety of the results. Moreover, this
has the advantage of being efficient. Indeed, for a weighted
ABox WA, Inc(WA) can be computed tractably using
log2(n) (where n is the number of different weights in WA)
consistency checks of a classical ABox (without weights).

The possibilistic repair, henceforth referred to as π-repair,
is formally defined as follows:
Definition 3 Let WK = 〈T ,WA〉 be a weighted KB and
Inc(WA) the inconsistency degree. The π-repair of WA,
denoted by π(WA), is given by:

π(WA) = {f : (f, α) ∈ WA, α > Inc(WA)}.
The π-repair π(WA) is composed of those assertions
of WA of which the priority degree is strictly higher
than Inc(WA). Hence by Definition 2, π(WA) is con-
sistent with T . Also note that priority degrees are omit-
ted in π(WA). Moreover, when WK is consistent (i.e.,
Inc(WA) = 0), then π(WA) amounts to WA∗ (i.e., the
ABox without priority degrees).
Example 4 The π-repair of WA is:

π(WA) = {A(a), A(b), B(c), C(a), D(b), E(a)}.
�

So far, we have considered weighted ABoxes such that the
weights attached to assertions can be used to induce a total
preorder on the ABox. Next, we scale the results to the case
where priority degrees are partially ordered.

Partially Preordered Knowledge Base

In this section, we still assume TBox axioms are fully reli-
able. However, priorities associated with ABox assertions
are partially preordered, i.e., reliability levels associated
with some assertions may be incomparable. This is often the
case when information is obtained from multiple sources.
Thus we may not be able to decide on a preference between
two assertions fi and fj because according to one source,
assertion fi should be preferred to fj , whereas according to
another source, it should be the opposite.
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Let us define a partially ordered uncertainty scale
L = (U,�), over a non-empty set of elements U =
{u1, . . . , un}, called a partially ordered set (POS), and a
strict partial order � (irreflexive and transitive relation).

Intuitively, elements of U represent symbolic priority de-
grees applied to assertions. We assume that U contains a
special element 1 representing full certainty, such that for
all ui ∈ U , 1 � ui. Moreover, if ui � uj and uj � ui, we
say that ui and uj are incomparable and write ui ∼ uj .

A partially preordered DL-Lite KB is a triple K� =
〈T ,A�,L〉, where A� = {(fi, ui) : fi is a DL-Lite as-
sertion, ui ∈ U} and L = (U,�).
Given two assertions (fi, ui), (fj , uj) ∈ A�, we shall
sometimes abuse notations and write fi�fj to mean ui�uj

and fi ∼ fj to mean ui ∼ uj .

Compatible Bases

A natural way of representing a partially preordered ABox is
to consider the set of all compatible ABoxes, i.e., those that
preserve the strict preference ordering between assertions, in
the spirit of proposals made in the context of propositional
logic (Benferhat, Lagrue, and Papini 2004). Formally:
Definition 4 Let L = (U,�) be a partially ordered uncer-
tainty scale. Let K� = 〈T ,A�,L〉 be a partially preordered
DL-Lite KB. Let WK = 〈T ,WA〉 be a weighted KB, ob-
tained from K� by replacing each element u by a real num-
ber in the interval ]0, 1], where:

WA = {(f, α) : (f, u) ∈ A�, α ∈]0, 1]}.
The weighted ABox WA is said to be compatible with A�
iff: ∀(fi, αi), (fj , αj) ∈ WA, if fi � fj then αi > αj .

Note that compatible bases are not unique, actually there
is an infinite number thereof. In fact, the actual values of
weights do not really matter, only the ordering between as-
sertions matters, as shall be shown later.
Example 5 Let L = (U,�) be a partially ordered uncertainty
scale defined over the set U = {u1, . . . , u4}, such that: u4 �u3 �
u1, u4 � u2 � u1 and u2 ∼ u3.
Let K� = 〈T ,A�,L〉 be a partially preordered KB.
Let T = {A �¬B,B �¬C,C �¬D}. Let the ABox be:

A� =

⎧⎨
⎩

(A(a), u4), (A(b), u4), (B(c), u4), (C(a), u3),
(D(b), u3), (E(a), u3), (C(b), u2), (B(a), u1),
(D(a), u1), (D(c), u1)

⎫⎬
⎭

Consider the set of weights {.2, .4, .6, .8}. The following bases are
compatible with A�:

WA1 =

⎧⎪⎨
⎪⎩

(A(a), .8), (A(b), .8), (B(c), .8),
(C(a), .6), (D(b), .6), (E(a), .6),
(C(b), .4),
(B(a), .2), (D(a), .2), (D(c), .2)

⎫⎪⎬
⎪⎭

WA2 =

⎧⎪⎨
⎪⎩

(A(a), .8), (A(b), .8), (B(c), .8),
(C(b), .6),
(C(a), .4), (D(b), .4), (E(a), .4),
(B(a), .2), (D(a), .2), (D(c), .2)

⎫⎪⎬
⎪⎭

WA3 =

⎧⎨
⎩

(A(a), .8), (A(b), .8), (B(c), .8),
(C(a), .6), (D(b), .6), (E(a), .6), (C(b), .6),
(B(a), .4), (D(a), .4), (D(c), .4)

⎫⎬
⎭
�

Computing the Partial Possibilistic Repair

We are interested in computing a single repair for a par-
tially preordered ABox. However, the family of compatible
ABoxes is infinite, which means that selecting one compati-
ble ABox over others would be arbitrary. A better approach
for computing the partial possibilistic repair consists in:

(i) defining the compatible ABoxes (Definition 4) with
weights defined over ]0, 1],

(ii) computing the π-repair associated with each compatible
ABox (Definition 3),

(iii) and finally intersecting all π-repairs.
This ensures the safety of the results since all compatible
ABoxes are taken into account.
Definition 5 Let L = (U,�) be a partially ordered uncer-
tainty scale. Let K� = 〈T ,A�,L〉 be a partially preordered
DL-Lite KB. Let F(A�) = {π(WA) : WA is compatible
with A�} be the set of π-repairs associated with all com-
patible bases of A� (given by Definition 3).
The partial possibilistic repair, denoted by π(A�), is:

π(A�) =
⋂

{π(WA) : π(WA) ∈ F(A�)}.

Namely, π(A�) = {f : (f, u) ∈ A�, ∀WA compatible
with A�, f ∈ π(WA)}.

Note that weights are omitted in the partial possibilistic
repair π(A�), similarly to the π-repair π(WA).

The set F(A�) is infinite because there are infinitely
many weighted ABoxes that are compatible with the par-
tially preordered ABox A�. However, we do not need to
consider all compatible bases of A� in order to compute
the partial possibilistic repair π(A�). Indeed, it is enough
to consider only the compatible bases (and their associated
repairs) that define a different ordering between assertions.
This is captured by the following lemma.
Lemma 1 Let WA1 be a weighted ABox. Let S = {α :
(f, α) ∈ WA1} be the set of weights attached to assertions
of WA1. Consider an assignment function ω : S −→]0, 1]
s.t. ∀α1, α2 ∈ S, α1 ≥ α2 iff ω(α1) ≥ ω(α2).
Let WA2 = {(f, ω(α)) : (f, α) ∈ WA1} be a weighted
ABox obtained by applying assignment function ω to the
weights attached to assertions of WA1. Then:

π(WA1) = π(WA2).

In Lemma 1, although WA2 is different from WA1, the
former ABox preserves the ordering on the latter’s asser-
tions. Thus WA2 is said to be order-preserving and in this
case, the two weighted bases generate the same repairs.

Proof: Let us show that Inc(WA1) = β iff Inc(WA2) =
ω(β). First note that if C12 = {(f1, α1), (f2, α2)} and
C34 = {(f3, α3), (f4, α4)} are two conflicts of WA1, then
obviously C′12 = {(f1, ω(α1)), (f2, ω(α2))} and C′34 =
{(f3, ω(α3)), (f4, ω(α4))} are also two conflicts of WA2.
Then, by definition of the function ω(·), if we have min{α :
(f, α) ∈ C12} = α1 (resp. α2), then we also have
min{ω(α) : (f, ω(α)) ∈ C′12} = ω(α1) (resp. ω(α2)).
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Similarly, if min{α : (f, α) ∈ C12} > min{α : (f, α) ∈
C34}, then min{ω(α) : (f, ω(α)) ∈ C′12} > min{ω(α) :
(f, ω(α)) ∈ C′34}. Thus if Inc(WA1) = β, then trivially
Inc(WA2) = ω(β).

Assume Inc(WA1) = β. Let (f, α) ∈ WA1 s.t. α > β.
Then f ∈ π(WA1). By definition of ω(·), we get ω(α) >
ω(β) = Inc(WA2). This means f ∈ π(WA2). Similarly,
let (f, α) ∈ WA1 s.t. α ≤ β. Then f /∈ π(WA1). Again by
definition of ω(·), we get ω(α) ≤ ω(β) = Inc(WA2). This
means f /∈ π(WA2).

Therefore we conclude that π(WA1) = π(WA2). �
Let us illustrate these notions on our running example.

Example 6 Thanks to Lemma 1, in order to compute the
repair π(A�), it is enough to consider only the three
bases WA1, WA2 and WA3 as compatible bases of A�.
Their associated π-repairs are given by:

• π(WA1) = {A(a), A(b), B(c), C(a), D(b), E(a)}.
• π(WA2) = {A(a), A(b), B(c), C(b)}.
• π(WA3) = {A(a), A(b), B(c)}.

The partial possibilistic repair is:

π(A�) =
⋂

i=1...3

π(WAi) = {A(a), A(b), B(c)}.

�
We conclude that reasoning (i.e., answering queries) from

a partially preordered inconsistent KB amounts to replacing
the original ABox A� with its repair π(A�).

Discussion of a Characterization

In previous work (Belabbes, Benferhat, and Chomicki
2019), a method called Elect has been introduced to com-
pute a single repair for an inconsistent DL-Lite KB, where
a partial preorder is directly applied to the assertions of the
ABox, i.e., no weights are attached to them. The idea con-
sists in viewing a partially preordered ABox as a family
of totally preordered ABoxes to which the so-called non-
defeated semantics (Benferhat, Bouraoui, and Tabia 2015) is
applied. This produces non-defeated repairs which are then
intersected in order to produce a single repair for the ini-
tial partially preordered ABox. An equivalent characteriza-
tion has been provided in order to avoid eliciting all total
preorders. It relies on the notion of elected assertion (Be-
labbes, Benferhat, and Chomicki 2019), which is defined as
an assertion that is strictly preferred (according to the partial
preorder) to all its opponents (i.e., assertions involved in a
conflict with it). It has been shown that the set of all elected
assertions corresponds indeed to the Elect repair, that it is
consistent with the TBox, and that its computation can be
achieved in polynomial time in DL-Lite.

The question now is whether a similar approach can be
followed in a possibilistic setting. In other words, we would
like to define an equivalent characterization for computing
the partial possibilistic repair π(A�), without enumerating
all compatible bases WAi of A�. Due to space limitations,
the details are left for future work and we provide here a
brief discussion.

Recall that partially ordered symbolic weights are applied
to the assertions of A� and that numeric weights in the unit
interval ]0, 1] are applied to the assertions of the compati-
ble bases WAi. The former case can be viewed as a partial
preorder applied to the assertions (without weights) and the
latter case can be viewed as a total preorder applied to the
assertions. It follows that the idea of the Elect method can
indeed be used. However we argue that the notion of ac-
cepted assertion in a possibilistic setting should be weaker
than the notion of elected assertion. Basically, an assertion
of a partially preordered possibilistic ABox A� is said to
be accepted if it is strictly preferred to at least one assertion
of each assertional conflict of A�. Clearly, if an assertion is
accepted in the possibilistic setting, then it is also elected.

We illustrate this notion on our running example where
the set of assertional conflicts of A� is:

C(A�) =

⎧⎪⎨
⎪⎩

{(A(a), u4), (B(a), u1)},
{(C(a), u3), (D(a), u1)},
{(D(b), u3), (C(b), u2)},
{(C(a), u3), (B(a), u1)}

⎫⎪⎬
⎪⎭

It is easy to see that assertions (A(a), u4), (A(b), u4) and
(B(c), u4) are strictly preferred to at least one assertion of
each conflict, since the symbolic weight u4 is strictly pre-
ferred to all other weights. Hence these assertions are all
accepted. This corresponds to the result of Example 6, i.e.,
π(A�), where weights are omitted.

Note that the base π(A�) is obviously consistent w.r.t. the
TBox. Indeed, since the π-repair π(WAi) of each compat-
ible base WAi of A� is consistent, the intersection of all
π-repairs is necessarily consistent.

In addition, by construction of π(A�), it is straightfor-
ward to see that when the partial order � is a total order de-
noted by �, then π(A�) collapses with the π-repair π(A�).

Conclusion

In this paper, we proposed an extension of possibilistic DL-
Lite to partially preordered inconsistent knowledge bases.
Basically, a partially preordered ABox is interpreted as a
family of compatible weighted ABoxes for which possibilis-
tic repairs are computed then intersected to produce a single
repair for the partially preordered ABox. Due to space limi-
tations, the characterization of the partial possibilistic repair
and its computational properties are left for future work.

In the future, we also plan to enhance the productivity of
the partial repair by considering the closure of possibilis-
tic repairs associated with the compatible ABoxes. A cru-
cial question is whether the computation of the closed par-
tial possibilistic repair can be achieved in polynomial time
in DL-Lite. An idea consists in reducing the problem to an-
swering an instance checking query. We plan to investigate
whether polynomial methods for computing repairs in the
flat and prioritized cases are also polynomial with a partial
order for DLs in general (more expressive than DL-Lite).

Moreover we plan to develop an efficient tool for query
answering from ontologies representing Southeast Asian tra-
ditional dances. Dance videos are semantically enriched by
domain experts through annotations w.r.t. the ontology (i.e.,
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the TBox). Conflicts may emerge when the same video is
annotated differently by several experts. Experts may assign
confidence degrees to their annotations which corresponds
to a totally preordered ABox. However different experts may
not share the same meaning of confidence scales which cor-
responds to applying a partial preorder to the ABox.
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