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Abstract

Inspired by Vaswani’s transformer, we propose in this paper an
attention-based transformer neural network with a multi-head
attention mechanism for the task of student answer assessment.
Results show the competitiveness of our proposed model. A
highest accuracy of 71.5% was achieved when using ELMo
embeddings, 10 heads of attention, and 2 layers. This is very
competitive and rivals the highest accuracy achieved by a
previously proposed BI-GRU-Capsnet deep network (72.5%)
on the same dataset. The main advantages of using transformers
over BI-GRU-Capsnet is reducing the training time and giving
more space for parallelization.

Introduction

Automatically assessing open-ended, short student
responses plays a vital role in the effectiveness of dialogue-
based intelligent tutoring systems (ITSs) (Rus et al. 2013)
and other education technologies that rely on freely
generated (open ended) student input. Assessment is vital
because it provides an insight about the mastery level of the
student on the target topic which in turn enables the tutoring
system to trigger appropriate micro-adaptation (step-level),
e.g., in the form of appropriate hints, as well as macro-level
adaptation, e.g., selecting appropriate instructional tasks, for
struggling learners.

Assessing open-ended, short answers that students
provide during their interactions with ITSs is challenging as
students express their answers in a variety of ways based on
their knowledge level, cognitive abilities, and other factors.
This diversity of answers creates major challenges to
semantic similarity approaches which are widely used to
assess freely generated student responses (Banjade et al.
2016; Maharjan et al. 2018; Rus et al. 2013).  Typically,
such approaches work well when the two texts being com-
pared, e.g., the student answer and the reference/expert-
generated answer, are self-contained, i.e., they do not rely
much on prior/wider contexts such as the previous dialogue
history in dialogue-based ITSs or the problem description,
e.g., a Physics problem. However, naturally occurring
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student responses do rely heavily on context through lin-
guistic phenomena such as ellipsis or anaphora (Banjade et
al. 2016).

Semantic similarity is a well-defined research problem in
Natural Language Processing (NLP). It is a key challenge in
numerous applications such as text summarization
(Nenkova et al. 2011), assessing the correctness of students
answers — our task in this paper (Banjade et al. 2016; Dikli
2006; Maharjan et al. 2018), question answering (Vo et al.
2015) and machine translation (Corley and Mihalcea 2005).
At its core, the task of semantic similarity is about
estimating the degree of similarity between two short texts,
e.g., a student generated answer and an expert-generated,
reference answer. It is a challenging task due to the
complexity and variability of natural language statements as
exemplified in Table 1 by the diversity of student responses.

Problem description:

While speeding up, a large truck pushes a small compact car.
Tutor question:

How do the magnitudes of forces they exert on each other compare?
Reference answer:

The forces from the truck and car are equal and opposite.
Student answers:

Al. The magnitudes of the forces are equal and opposite to each
other due to Newton’s third law of motion.

A2. they are equal and opposite in direction

A3. equal and opposite

AA4. the truck applies an equal and opposite force to the car.

Table 1. Examples of student generated short answers during
tutorial dialogues

To tackle the difficult and critical task of assessing
student responses, we adopt here a deep learning approach.
Deep learning networks have displayed superior
performance on various NLP tasks, particularly text
classification and semantic similarity. Motivated by this, we
propose a transformer-based network for students answers
assessment. The main advantages of using transformers
over other approaches, e.g., Bi-GRU-Capsnet (Ait Khayi



and Rus 2019), is reducing the training time and easing
parallelization across elements of the input sequence. Our
transformer network is composed of several encoder layers
where self-attention is a major component. More
specifically, our proposed model uses a multi-head attention
mechanism that allows modeling dependencies regardless of
their distance in the input sentence which could be either a
student answer or a reference answer. This mechanism
consists of several self-attention layers that run in parallel
and then their outputs are concatenated. Further details are
provided in a later section in the paper.

We experimented with the proposed deep neural network
on the DT-Grade dataset (Banjade et al. 2016) which con-
tains 900 instances categorized in four classes: correct (367
instances), incorrect (238 instances), correct but incomplete
(210 instances), and contradictory (84 instances). To over-
come the problem of class size imbalance in the dataset and
given its relative small size, we consider a binary classifica-
tion where all instances in the incorrect, correct but incom-
plete, and contradictory categories are deemed as incorrect.

The rest of the paper is organized as follows: Section 2
presents a brief review of several research works that used a
transformer network for the semantic similarity task.
Section 3 explains the proposed model’s architecture.
Section 4 summarizes the experiments we conducted to
validate the effectiveness of the proposed model and provide
results on the DT-Grade dataset. We end the paper with
conclusions and highlighting future research directions.

Related Work

Several NLP researchers have applied attention-based
mechanisms to boost the capabilities of Convolutional
Neural Networks (CNN) and Recurrent Neural Networks
(RNN) models in terms of performance and training cost
when applied to text processing tasks. To this end, Vaswani
and colleagues (2017) proposed a transformer network
without recurrence and convolutions and based only on
attention mechanisms to capture global relations between
input and output texts. This transformer network allows for
significantly more parallelization and yielded new state of
the art results in machine translation in shorter training time.
In this work, we use only the encoder component of the
Transformer to assess the correctness of the students
answers in dialogue based ITSs. Additional research studies
have applied various encoders for the task of Short Textual
Similarity (STS). Tang et al. (2018) proposed a shared
sentence encoder to improve the multilingual semantic
textual similarity (STS) in low resource languages with
insufficient labelling (e.g. Spanish, Arabic, Thai etc..). By
exploiting the nature of a multilingual encoder, one sentence
can have multiple representations for different target
languages which led to improved semantic similarity
(between two short texts) results. Their proposed encoder
STS model architecture consists of the following

components: 1) Word embedding, 2) Masked Multi Self-
Attention and 3) Feed Forward network. This transformer-
based model architecture is different from our proposed
model in numerous ways. First, only Fasttext embeddings
(Bojanowski et al. 2017) were used in their experiments. In
our work, we used three different word embeddings: Glove,
ELMo and Word2vec. Second, their attention mechanism is
different from ours as it is based on an inter-sentence
attention that follows the approach described in (Wang et al.
2016). Our self-attention mechanism is an attention
mechanism relating different positions of a single sequence
in order to compute a representation of the sequence.
Finally, their proposed model was evaluated on a different
task than ours. Our model is the first encoder transformer-
based model applied for assessing the correctness of student
answers in the context of dialogue-based intelligent tutoring
systems. Yang et al. (2018) proposed an encoder-based
network applied on the Semantic Textual Similarity (STS)
benchmark and SemEval 2017’s Community Question
Answering (CQA) question similarity subtask. An encoder-
transformer, as described in Vaswani et al. (2017), has been
used to compute a sentence embedding of the input u and
the response embeddings v which are passed through an ad-
ditional fully connected layer to get the output v'. The final
dot product between u and v’ is computed to get the seman-
tic score between the input and the response. The results of
the conducted experiments for the STS Benchmark showed
the competitiveness of the sentence encoding based models.

The Proposed Attention Based Model

The proposed model consists of the following components:
1) an embedding layer, 2) a positional encoding layer, 3) a
transformer layer, and 4) a SoftMax layer/classifier (see
Figure 1).
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Figure 1. Model Architecture

We consider an extended student answer as the first
input consisting of the concatenation of the corresponding
problem description, the previous tutor question (which
accounts as prior context), and the student answer. In the
student answers described in Table 1, the extended student
answer will be [PD,TQ, A1]. The inputs to the embedding
layers are tokenized.



Embedding

Given a student answer X and a reference answer X', we
tokenize them into a sequence of word tokens:
X=[wy,...,w,] and X' =[w'y,..,w',]. Afterwards,
each token is converted into a d-dimensional
( d=300,1024) vector through the embedding layer. We
considered the following three-word embeddings: Glove
(Pennington et al. 2014), Word2vec (Mikolov et al. 2013),
and ELMo (Peters et al. 2018).

Positional Encoding

Positional Encoding is used to capture the order of the
tokens in the input. Since the embedding layer captures the
meaning of words and there is no recurrence and
convolution in the proposed transformer network, the
positional encoding is added to the input embeddings to
inject the token order information. The positional encoding
outputs have the same dimension d,,,4.; as the embedding
outputs so they can sum up.

The position encodings are calculated using the sin and
cosine functions as in the following:

PE(pos20) = Sin p"s/ ; 1
(pos,2i) ( 1000021/dmad61 ( )

0s
PE(pos,2i+1) = €OS (p / 2i ) @)
10000 /dmodet

where pos is the position and i is the dimension? That is,
each dimension of the positional encoding corresponds to a
sinusoid to get help of its cyclic nature.

The resulting sum vector of each embedding vector and
its position encoding vector is fed to the multi-attention head
mechanism.

The Transformer Layer

The Transformer consists of a stack of identical encoder
layers (see figure 3). Each encoder is composed of two
major components: 1) Multi-Head Attention mechanism and
2) Position-wise Feed-Forward Network. What follows is a
detailed explanation of each component.
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Figure 3. Transformer architecture that consists of several
identical encoders (left). Encoder structure (right).

Multi-Head Self-Attention Mechanism

The multi-head attention mechanism, as depicted in the
following figure, consists of several attention layers running
in parallel. This mechanism has been introduced by Google
and uses multiple iterations of computation to capture
relevant information. In addition, this component improves
the performance of the attention layer in two ways. First, it
expands the model’s ability to focus on different positions.
Second, it gives the attention layer multiple “representation
subspaces”. The major advantage of Self-Attention is that it
ignores the distance between words, computing directly
dependency relationships. Thus, making it capable of
learning the internal structure of a sentence.
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Figure 4. Scaled dot product attention (left). Multi-Head
Attention Structure (right).

An attention function consists of mapping a query and
a set of key-value pairs to an output, where the query, keys,
values and output are all vectors. As mentioned by Vaswani
et al (2017), the self-attention calculation can be done using
matrices instead of vectors. In this case, we can we compute
the multi-head attention as in the following:

MultiHead(Q,K,V) = Concat(head,, head,, ..., head,)W° (3)

where  head; = Attention (QW,°, KWX, v W) %)
. _ okT
Attention (Q,K,V) = softmax (ﬁ) |4 %)

where the queries, keys and values are packed into matrices
Q,KandV .

Since the multi-head attention component (see figure 4)
is based on multiple attention heads mechanism that runs
through the scaled dot-product attention multiple times in
parallel. We end up with multiple outputs from each
attention head. Since the Feed Forward Network accepts one
input, we concatenate the attention heads (zy,...,2,)
associated with each input and then multiply this
concatenation with a learned weight matrix W,. This
produces the final outputs Z and Z'of the multi-head



attention component for the student answer input X and the
reference answer input X', respectively.

Position-wise Feed-Forward Networks

The resulting vector of the Multi-Head attention module Z
is passed through a fully connected forward network that
computes linear transformations of the input. In this work,
we consider two 1-dimension convolutions with kernel size
inner heaa» @ dropout to avoid overfitting and a
normalization layer (see Table 2). The dimensionality of
input and output is d,,pqer -

Layer Kernel size Stride

Convolution dinner head 1
ReLU - -
Convolution dinner head 1
ReLU - -
Dropout - -
Normalization Layer - -

Table 2. Feed Forward Network Architecture

Afterwards, we concatenate the outputs of the
Feed-Forward Network [v,,v,] and pass it to the final
SoftMax layer to compute classification probabilities p;, p,
for the two classes, correct answer versus incorrect answer.

Experiments

Our experiments were conducted in the context of student
freely generated answers in response to hints (in the form of
questions) in conversational intelligent tutoring systems. To
this end, we have used a previously annotated dataset as

described next.

The DT-Grade Dataset

The DT-Grade dataset (Banjade et al. 2016) was created by
extracting student responses from logged tutorials
interactions between 36 junior level college students and a
state of the art conversational ITS. During the interactions,
each student solved 9 conceptual physics problems and was
asked to provide solutions to each problem in the form of an
answer and a full justification based on Physics principles.
Their answer was evaluated and if the answer was incorrect
or incomplete, e.g., a full justification was not provided, a
dialogue followed in which the ITS helped the students to
discover the solution through personalized scaffolding in the
form of hints that varied in their degree of information/help.
Each annotation example in the DT-Grade dataset consists
of the following attributes: (1) problem description
(describes the scenario or context), (2) tutor question, (3)
student answer (without correcting spelling and
grammatical errors) and (4) reference answer(s). In addition,
the data includes the correctness class of each student

answer as judged by a human expert. Each student response
was categorized into one of the following four classes: (1)
Correct: Answer is correct. (2) Correct-but- incomplete:
The response provided by the student is correct, but
something is missing, (3) Incorrect: Student answer is
incorrect and (4) Contradictory: The student answer is
contradicting the reference answer.

In this work, we consider only two classes: correct and
incorrect. The correct answers are those labeled as “correct”
in the DT-Grade dataset. All the other instances are
considered “incorrect”. As a result, we obtained the
following class distribution shown in Table 3 below.

Dataset Correct (%) Incorrect (%)
Training 41 59
Testing 41.58 58.41

Table 3. The distribution of classes in training (800 instances) and
testing data (100 instances)

Experimental Settings

To evaluate the importance of the components of our
attention-based transformer, we have conducted several
experiments by varying the transformer architecture and
using different embedding approaches.

A first set of experiments have been conducted using
word2vec embeddings with 300 dimensions and different
settings of the attention-based transformer. Based on the
experiments conducted by Vaswani et al. (2017), we have
tried various values of the number of attention head
(8, 10,15, 32). This has been done to test the impact of
increasing and/or decreasing the number of attention heads
(n_head) on the performance of our model. We have, also,
varied the depth of the transformer by experimenting with
different number of encoder layers. Other parameters have
been modified as well such as the attention key dimension
(d_k), the attention value dimension (d_v), and the number
of the kernel size (d;yner neaq) Of the convolution layers in
the Feed-Forward Network.

Another set of experiments has been conducted using
Glove pre-trained embeddings with 300 dimensions.
Following the same setup of the first set of experiments, we
have used the same values of the major parameters: number
of heads of attention, the attention key dimension, the
attention value dimension, and the number of layers.

As stated in several research works, ELMo embedding
boosted the performance of several deep learning models
applied to various NLP tasks. ELMo word vectors are
computed on top of a two-layer bidirectional language
model (biLM). These biLM layers efficiently encode
different types of syntactic and semantic information about
words in-context. Using all layers improves overall NLP
tasks’ performance. For this reason, we have conducted



another set of experiments using ELMo embeddings with
1,024 dimensions. We followed the same setup as for the
previous sets of experiments and used the same values of the
transformer ‘s parameters. The only difference is the value
of dppqer Which is set to 1,024 to be consistent with the
ELMo embeddings dimension so we can sum up via the
position encoding.

Hyperparameters

In all experiments, the model was trained with a categorical
cross entropy loss function. For optimization, we used the
Adam optimizer with a learning rate of 0.0001, beta,; =0.9
and beta, = 0.99 . The gradients are clipped to 0.5 to
prevent exploding gradients. To avoid overfitting, we
applied a dropout = 0.9 to the sums of the embeddings
and the positional encodings of each layer of the
transformer. In all experiments, we trained our model for
1,000 epochs to obtain the results. An increasing number of
epochs, particularly when using the ELMo embedding,
showed an increase in overall accuracy.

Experimental Results

Table 4 shows the accuracy of different architectures of our
model using the word2vec embedding. The highest accuracy
of 59% was reached when using (15,8,16) heads of attention
and (2,6,6) layers, respectively. This result outperforms
Bi-GRU-Capsnet with word2vec embeddings (Ait Khayi
and Rus 2019) for the same dataset.

Ainodel | Dinner heaa | N_head | d_k | d_v | layers | accuracy
300 512 15 64 | 64 2 59
300 512 10 64 64 2 57
300 2048 8 64 64 1 58
300 2048 32 128 | 128 8 58
300 2048 8 64 | 64 6 59
300 512 10 64 64 1 58
300 4096 16 128 | 128 6 59

Table 4. Results of variations of the transformer architecture
using word2vec embeddings.

Table 5 shows results for different architectures of our
model using Glove embeddings. The highest accuracy of
60% was reached when using 16 heads of attention and 6
layers of the encoder. It seems that increasing the number of
heads of attention above 16 has led to a decrease in
accuracy. This led us to our first observation: there are spe-
cific heads of attention that play an important role in the
transformer and a specific number of these heads of
attention is sufficient to achieve good results. Thus, adding
more heads of attention can be considered redundant for the
transformer ‘s architecture. This performance is better than
the performance obtained with the word2vec embeddings

and outperforms the approach based on Bi-GRU-Capsnet
with Glove embeddings.

Ainodel | Dinner heaa | N_head | d_k | d_v | layers | accuracy
300 512 15 64 64 2 59
300 512 10 64 64 2 57
300 2048 8 64 64 1 56
300 2048 32 128 | 128 8 56
300 2048 8 64 64 6 56
300 512 10 64 64 1 58
300 4096 16 128 | 128 6 60

Table 5. Results using Glove embeddings.

Table 6 shows results for different architectures of our
model using ELMo embeddings. We can observe an im-
provement in the overall accuracy in comparison with the
results obtained with the Glove and Word2vec embeddings.
The highest accuracy of 71.5% was achieved when using 10
heads of attention and 2 layers only. This is a very
competitive result that compares with the Bi-GRU-Capsnet
approach in combination with ELMo embeddings (72.5%).

dinodel | Ainner heaa | N_head | d_k | d_v | layers | accuracy
1024 512 15 64 64 2 61
1024 512 10 64 64 2 71.5
1024 2048 8 64 64 1 64
1024 2048 32 128 | 128 8 61
1024 2048 8 64 64 6 61
1024 512 10 64 64 1 67

Table 6. Results using ELMo embeddings.

The results provided in Table 7 show that the
attention-based transformer outperformed the Bi-GRU Cap-
snet based approach when using Glove embeddings: 65%
versus 56.25 % accuracy, respectively. It has outperformed
also the Bi-GRU Capsnet when using the Word2vec embed-
dings: 61 % versus 56.25%. The highest accuracy of 71.5%
was achieved with ELMo embeddings. The results show
also that our proposed model displays a superior
performance over the baseline models: Bi-GRU and LSTM.
An interesting finding in the conducted experiments is that
the proposed attention model handles the assessment of
short answers with a small number of words less than 6
better than the recurrent networks: Bi-GRU and LSTM. This
can be explained by the fact that the self-attention
mechanism in our proposed model allows the selection of
the most relevant words in the students answer and reference
answer while also accounting for the larger context provided
by the problem description and the previous tutor question.
Then, the similarity score is computed based on those
relevant words. For example, giving the following reference
answer “The ball is slowing down at a constant rate *, the
attention mechanism allows to focus on the most relevant



part of this input: “slowing down”. This selected part has a
similar semantic representation with the following student
answer: “it is decreasing”. Thus, the transformer is capable
to assess this answer correctly. Similar observations were
made for other short student answers with fewer words

Model Accuracy

Transformer (ELMo) 71.5
Bi-GRU-Capsnet (ELMo) 72.5
Transformer (Glove) 60
Bi-GRU-Capsnet (Glove) 56.25
Transformer (word2vec) 59
Bi-GRU-Capsnet (Word2vec) 56.25
Bi-GRU 56.25
LSTM 60

Table 7. Comparison with other deep learning models

Conclusion

In this paper, we proposed an attention-based transformer to
assess the correctness of student answers freely generated
by student in dialogue-based ITSs. To the best of our
knowledge, this is the first time an attention-based approach
has been applied to the task of assessing the correctness of
student responses. The proposed approach was chosen due
to promising results that transformers achieved in various
NLP tasks, especially in semantic similarity and text
classification. ~ Furthermore, adding attention to
deep learning models has led to a significant gain in their
performance. Experimental results on the DT-Grade dataset
show high competitiveness of the proposed model, rivalling
previously proposed state-of-the-art methods. The highest
accuracy obtained was 71.5% using ELMo embeddings
which is very close to the best results achieved by
Bi-GRU-Capsnet (72.5) on the DT-Grade dataset. The main
advantage of our proposed model over the Bi-GRU-Capsnet
is reducing the training time and giving more space for
parallelization. As a future work, we will keep applying
novel deep learning to improve our current results.
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