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Abstract

Detecting intrusions and anomalies in Industrial Control Sys-
tems at early stages is important to prevent process failure.
Operator errors, device or equipment failures, and other non-
network events could lead to a critical state. As a result, these
events can indirectly lead to anomalous network traffic, and,
thus, a manually configured IDS that uses network traffic
alone can generate false positives and false negatives. In this
paper, we propose a novel approach that uses machine learn-
ing and incorporates both network data and device state infor-
mation to improve the detection accuracy. Our methodology
can detect anomalies as well as their root causes, which is es-
sential. To protect device state data, we use a secure data con-
tainer to store log records for devices in cyber-physical sys-
tems and IDS results. The secure data container provides data
protection in transit and at rest. It also supports role-based
and attribute-based access control.

Introduction
Industrial Control Systems (ICS) automate the manufactur-
ing process. They are responsible for controlling and man-
aging a potentially large number of field devices. The man-
ufacturing industry has seen a huge rise in the adoption of
ICS in recent years, and this growth will continue, accord-
ing to the study report published by Market Research Future
(MRFR) (Online7 2018). Many ICS are deployed in critical
infrastructures such as the Smart Grid, health care systems,
water purification systems, and nuclear plants. As a result,
security breaches and attacks can have significant impact on
human lives and are very costly. Securing these systems has
become a priority as a result of the increasing number of
attacks in this domain.

A primary method of securing an ICS uses intrusion de-
tection systems to attempt to send an alarm when the state
of the ICS has been compromised. These systems are often
manually configured, and use rules constructed by domain
experts that understand the network and device behavior of
the complex ICS. Unfortunately, the complexity of configu-
ration often gives less than optimal results that include false
positives and false negatives. False positives report attacks
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that do not exist and false negatives report that traffic is nor-
mal when an attack is actually occurring. Furthermore, an
Intrusion Detection System (IDS) is usually configured to
consider network data only. Network data alone gives only a
partial picture of the state of the ICS.

The on-going work presented in this paper attempts to
mitigate the weaknesses of typical approaches. In particu-
lar, this work attempts to use machine learning techniques
that incorporate state information of devices in the ICS to
augment network information for intrusion detection. Un-
fortunately, such state information is vulnerable to manip-
ulation by attackers just as is the network. Therefore, this
work also incorporates a method that ensures that state data
can be both securely stored and transferred by the intrusion
detection system.

The contributions of this work are as follows.
• A Design and implementation of a system architecture for

detecting ICS intrusions
• Identification of machine learning techniques to improve

intrusion detection over typical IDS that use network data
only

• Integration of a secure data-container technology to insure
device state is not compromised.
The rest of the paper is organized as follows. Section 2

presents an overview of related work. In Section 3 the core
design is presented. Experimental results are discussed in
Section 4. Section 5 discusses the future work and section 6
concludes the paper.

Related Work
The following related work focuses on the state of the art of
IDS. The IDS is not only a popular software-based solution
that is in practical use, but also has been a focus of research
in securing ICS.

Morris, Vaughn, and Dandass (Morris, Vaughn, and Dan-
dass 2012) proposed an IDS that focuses on devices that are
connected with serial links. The authors proposed a Snort-
based IDS for MODBUS® in both a passive mode and an
inline mode that dropped packets.

A signature-based IDS with state-based rules and stand
alone IDS rules was presented in a later work in (Gao and
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Morris 2014). A critical state analysis-based approach was
presented by Carcano et al. (Carcano et al. 2011) in SCADA
systems using state information to detect intrusions. The IDS
was implemented on the virtual image and an alert was trig-
gered if the current state was critical or moving towards a
critical state.

Unfortunately, both of the above mentioned approaches
require expert knowledge to model normal and critical de-
vice state. They also do not address the problem of integrity
of the state information from devices which can be attacked.
Our approach uses machine learning algorithms to automat-
ically identify important device state information and corre-
late it with the network packets. Moreover, we use a secure
data container to store the device state information, which
provides data privacy and integrity.

A multi-agent IDS was proposed by Tsan and Kwong
(Tsang and Kwong 2005) for industrial networks. This im-
plementation shows the improved performance of ant-based
clustering. K-Means clustering achieves 89.17% average de-
tection rate and 4.29% false positive rate with the Fast Inde-
pendent Component Analysis (FastICA) feature extraction.
Unfortunately, any false alarms could lead to disastrous con-
sequences.

More recently, (Shen et al. 2018) proposed a solution to
use device fingerprinting to enhance intrusion detection in
ICS. The proposed solution uses inter-layer communication
and network traffic to generate the fingerprints. In another
approach (Kleinmann and Wool 2017) uses the highly peri-
odic nature of the communication between HMI and PLC
devices to model the communication pattern. The model-
ing is done with Statechart Deterministic Finite Automa-
ton (DFA) that uses unsupervised learning. These two tech-
niques rely on network traffic to improve the intrusion de-
tection but in our approach, we focus on utilizing the device
state information to help the IDS.

(Al-Mamory and Zhang 2009) proposed to use clustering
and root cause analysis to reduce alarms generated by an
IDS. They believe that, generalized alarms from clustering
can suggest root causes. However, it would require expert
knowledge of network security and the environment to vali-
date the root causes. Our approach uses the device state in-
formation to identify the root cause of an alert by querying
information from the secure data container. Further valida-
tion by experts are not required in our approach as well.

Ranchal et al (Ranchal et al. 2018) proposed the EPICS
solution for web services to protect data throughout the ser-
vice interaction lifecycle. This solution expands the Active
Bundle concept (Lilien and Bhargava 2006), (Othmane and
Lilien 2009), (Ranchal 2015) for data protection. Datasets
are stored and transferred together with the access control
policies and with the data disclosure monitor. Our SDC so-
lution is substantially different since policies are enforced by
a Trusted Third Party (TTP) and policy enforcement engine
is not stored together with data.

Awad, Lopez, and Rogers (Awad, Lopez, and Rogers
2019) propose a framework for live memory forensics
of level 0-1 devices by continually acquiring portions of
volatile memory and monitoring changes. This work's pri-
mary use is for memory forensics, but could be complemen-

tary to our work as a source for generating log records.

Core Design
Initially, ICS were designed for local processes isolated from
Wide Area Networks (WANs) and, therefore, had little or
no security. However, as processes became more complex
and business needs grew, providing connectivity to WANs
became necessary. Unfortunately, the unlimited access of
the Internet made the ICS vulnerable to attacks. Further-
more, retrofitting ICS devices with new secure communi-
cation protocols is too expensive. In addition, field devices
cannot run computationally intensive algorithms due to lim-
ited resources.

Therefore, IDS have become a popular security method
for detecting attacks. An IDS can be added to an existing
network at a strategic point without needing to modify exist-
ing devices.

However, in the industrial network it is not always enough
to monitor the network traffic alone. For example, a se-
quence of (valid) control commands, device failures, faulty
raw materials, etc. could lead to a critical situation in the
process. This critical situation will likely result in unusual
network traffic as the control devices attempt to notify the
process control personnel. As a result, false positives indi-
cating that the network is being attacked are generated by
the IDS. Believing that a network attack is underway, the
process control personnel might not respond correctly to
the critical state, which could have disastrous results. Sim-
ilarly, as has been demonstrated with ICS attacks such as
StuxNet(Langner 2011), an attacker may modify network
traffic to mimic normal behavior even though device state
may indicate that something is wrong with the behavior of
the physical system. Such an attack results in false negatives.
In other words, the IDS will not alert the process control op-
erators, which can also have disastrous results.

We propose a novel approach where the IDS can vali-
date network traffic with the help from the device generating
the traffic.The secure ICS architecture is illustrated in Fig-
ure 1. Log records of device state information are created
and stored. The device state information is kept in an SDC
which can be accessed upon request. Log records stored in
SDC are protected from being attacked. Uncompromised log
records are used to verify IDS findings on whether the net-
work is compromised or not. Machine learning algorithms
learn what device state is associated with which network
communication patterns, and provide this information as a
database to the IDS. The IDS will monitor network patterns
and, when an anomaly is suspected, can query SDCs for in-
volved devices, and the database to validate its suspicions.
Secure ICS has five major components, illustrated in Fig-
ure 2, that are described as follows.

Embedded Components. The embedded components of
the system monitor ICS devices in real time, create log
records, and transfer the log records to the SDC. Two mod-
ules execute these actions. The first module is the State
Monitor and the other module is the State Router. The state
monitor module is responsible for real time monitoring of
the device state. It can collect device state information in var-
ious ways, including memory sampling, file sampling, and
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Figure 1: Secure Industrial Control System Architecture

Figure 2: Components of Secure Industrial Control System

querying JTag interfaces. The device state information col-
lected by the state monitor module is transferred by the state
router module to the SDC.

State Identification. This system component of the archi-
tecture is responsible for identifying and labelling important
information about the state of the device. This module uses
the information stored in the SDC to produce an image that
represents an instantaneous state of the system that may re-
sult in a change in the network transmissions of the device.

Secure Data Container. Our proposed solution for data
protection in transit and at rest, as well as role-based and
attribute-based access control, relies on the Secure Data
Container (SDC). The SDC is a self-protecting data con-
tainer that incorporates data in encrypted form, access con-
trol policies and metadata with watermarks in encrypted
form, as shown in Figure 3. SDC is used to store log files
and sensor data snapshots, as well as IDS results. It provides
data confidentiality and integrity and guarantees that a client
is able to access only those data subsets from an SDC for
which the client is authorized. The concept is similar to the
Active Bundle (Lilien and Bhargava 2006), (Othmane and
Lilien 2009), (Ranchal 2015), (Ulybyshev et al. 2017), (Ran-
chal et al. 2018) and the Extended Attribute-Aware Active
Bundle (EA3B) (Ulybyshev 2019) concepts, but the SDC
has the following substantial differences:
• SDC does not store a policy enforcement engine together

with data and access control policies. In contrast, policies
are enforced on a trusted back-end server

• SDC is implemented both as an encrypted spreadsheet file

and as a Java®1 Archive (JAR), with a separate encryption
key per separate data worksheet/subset.

• Different encryption/decryption key generation scheme.
Figure 1, based on the Purdue Enterprise Reference Ar-

chitecture (Williams 1994), illustrates the SDC application
in ICS. Each separate data subset in SDC is encrypted with
a separate 256-bit AES key, generated on-the-fly, based on
hash values of the following inputs:
• Metadata. It provides protection against attackers who try

to modify access control policies and gain privileges in
order to access unauthorized data.

• Authentication Server (AS)'s private key. This guarantees
that only authorized services whose identity was verified
by the AS can derive correct AES keys for decrypting ac-
cessible data subsets.

• Data subset's name. It provides fine-grained access con-
trol and makes the AES key different for each data sub-
set. Fine-grained access control is useful in case the fur-
ther forensics investigation needs to be done by autho-
rized users once intrusion has been detected by an IDS.

The SHA-256 hash function is used in the AES key gener-
ation process. When the client requests data from an SDC,
the client sends HTTP POST request, which contains client’s
username, hash of its password and what data subset(s) the
client wants, to an AS, which validates credentials. If cre-
dentials are valid, AS responds to the client with a unique
URL for a web service that corresponds to client’s role. This
URL contains an encrypted and signed authentication token
(AT). AT includes the username, the requested data subsets’
names, client’s IP address and attributes, token expiration
time and a hash value of AS’s private key. Then the client
application sends an HTTP GET request to the unique URL
to a back-end server, which runs on the same host as an AS.
Back-end server extracts the AT from the request, verifies
the signature and extracts AT fields for policies, attributes
and metadata evaluation. Not only is the client’s role evalu-
ated, but the client’s attributes are as well, including the type
of the client’s device (mobile vs. desktop) and the authenti-
cation method (password-based vs. hardware-based). Based
on these evaluations, the back-end server generates 256-bit
AES keys on-the-fly for the accessible data subsets, retrieves
these subsets from an SDC in a JSON form, decrypts them
and responds back to the authorized client. Client communi-
cates with an AS and a back-end server over https commu-
nication channel. Decryption keys are not stored inside the
SDC or on any TTP. They are generated on-the-fly each time
when a client requests data from an SDC.

To mitigate the insider’s threat issue, SDC contains a dig-
ital watermark that is stored as a ”magic” string in encrypted
form in a ”Metadata” worksheet. If this watermark is re-
moved then the hash value of metadata will change. Since
this hash value is one of the three inputs for the symmetric
key derivation scheme, described above, changed metadata

1Oracle and Java are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective own-
ers (Online1 )
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Figure 3: Secure Data Container

will result in the wrong decryption key derivation. Thus, re-
moved watermark will make the SDC data unreadable.
Unauthorized modification of access control policies or wa-
termark removal lead to an incorrect decryption key deriva-
tion. SDC implementation as an encrypted spreadsheet file
with RESTful API support provides an easier integration
into existing ICS and IT infrastructures.

Training. The training module is executed off-line to train
the system such that it learns what device state results in par-
ticular network behavior using the information from the state
identifying module. It also identifies the state information
which is most likely to make significant changes in the net-
work traffic. The training module is fed with data collected
from the state collection component and data collected by
sampling the network. The training module matches device
state with generated signal state which can be signal over
a wire, over serial lines, or over the network as packets,
and stores the information in a query-able dataset. Machine
learning algorithms are used to model the relationship be-
tween device state and specific network traffic. A dataset
that represents this relationship is created from the model
and stored for future use by the IDS. The IDS can query this
information to verify its alerts.

Intrusion Detection Process. In order to determine
whether unusual network behavior is caused by an intru-
sion, the IDS in this component does not rely on network
traffic alone. If an alert is generated from abnormal activity
in the network, the IDS queries the information stored by the
training module. The device state information related to the
specific network data is used to verify the alert. This allows
the IDS to reduce false positives. The IDS also receives real-
time information from the state router and performs analysis
to detect compromised device.

Additionally, If the IDS needs to verify its findings, it will
be able to query the dataset of relationships that was created
by the training module and reconstruct the cause and effect
chains to trace the sources of the generated network and de-
vice state data. This feature is not currently integrated into
our implementation, but will be in future iterations.

Evaluation
Our initial evaluation includes experiments that show im-
proved IDS results and the performance overhead of the
SDC. To show improved IDS results, we derived an exper-

Figure 4: TP Rate for Attack Detection in Water Storage
Dataset

Figure 5: Increased FN with Injected Data

iment that replayed a real dataset (Morris and Gao 2014)
created by the Mississippi State University SCADA Secu-
rity Laboratory and Power and Energy Research laboratory,
which is a collection of network data from a water storage
tank system. The dataset contains seven different classes
of network traffic which includes one normal instance and
six attack instances. The attack instances are naive mali-
cious response injection, complex malicious response injec-
tion, malicious state command injection, malicious param-
eter command injection, malicious function command in-
jection, denial-of-service and reconnaissance attacks. The
unique features of the water storage system were HH, H,
LL, L. H is the higher level and L is the lower level of wa-
ter storage. The alarm is triggered if the water level is above
the high alarm setpoint (HH) or below the low alarm set-
point (LL). Device state was derived based on the behav-
ior of the process. We used the Naive Bayes algorithm to
create a model with the dataset. The device state informa-
tion increases the machine learning algorithm's true positive
rate significantly (75%). The comparison is shown in Fig-
ure 4. Furthermore, we created a small test dataset with
231 records from the original dataset. 21 of the attack traf-
fic was injected with normal traffic measurement. We per-
formed this evaluation with the Decision Tree algorithm.
The most important feature selected by the algorithm was
the measurement of water level. The injected traffic had nor-
mal water level data which resulted in false negative (FN)
predictions by the algorithm. The attack traffic was classi-
fied as normal by the algorithm. These shows that just mon-
itoring network traffic can sometimes fool the IDS. The in-
crement of false positive rate is shown in Figure 5.

To measure the performance overhead of the SDC, we
collected data request Round-Trip Time (RTT) by measur-
ing the time starting from a web service's data request to
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Figure 6: SDC Data Request Round-Trip Time

SDC and ending with the receipt of the response from SDC.
RTT is a sum of times spent for authentication, evaluation of
access control policies and the client’s attributes, decryption
key derivation and data retrieval. The ApacheBench®2 util-
ity (version 2.3) and web browser developer consoles were
used for RTT evaluations. A web service (client) requesting
data, an authentication server, and the SDC are running on
the same host to exclude network delays from RTT measure-
ments. Experiments were conducted on two system config-
urations.
1. Hardware: MacBook®3 Pro, Intel®4 Core i7 CPU @ 2.2
GHz, 16GB memory; OS: macOS® Sierra 10.12.6.
2. Hardware: Arm7TM 5 Processor rev 4 @1.2GHz,
RAM 1GB (Raspberry Pi®6 3 Model B); OS: Raspbian
GNU/Linux®7 9.1
In the following experiment, we measured RTT as an aver-
age of 50 requests for 16 bytes of data from SDC, varying
hardware that hosts SDC and number of access control poli-
cies in SDC, implemented as a JAR® file.

As it can be seen from Figure 6, RTT strongly depends on
hardware that hosts SDC, and slightly depends on number
of access control policies in SDC. Typically, hardware on
level 1 in the secure ICS architecture (see Figure 1) has
less computationally powerful hardware to host SDC than
on levels 2 and 3. On level 1, represented as a Raspberry
Pi®, RTT increases by 284% for 4 policies and by 270.2%
for 8 policies in SDC. When the number of access control
policies is increased from 4 to 8, RTT increases by 0.23%
for Raspberry Pi® and by 4% for MacBook Pro®.

In the next experiment, we measured RTT as an average
of 1000 data requests, varying the amount of data requested
from SDC and the number of concurrent threads from 1 to

2We do not claim association or endorsement of/for/by the
Apache Software Foundation (ASF) (Online2 )

3This is an independent publication and has not been autho-
rized, sponsored, or otherwise approved by Apple Inc.(Online3 )

4Intel is a trademark of Intel Corporation or its sub-
sidiaries.(Online4 )

5Arm, Arm7, Arm7TDMI, Arm7TDMI-S and Arm7EJ-S are
registered trademarks or trademarks of Arm Limited (or its sub-
sidiaries) in the US and/or elsewhere. (Online5 )

6Raspberry Pi is a trademark of the Raspberry Pi Foundation
(Online6 )

7Linux® is the registered trademark of Linus Torvalds in the
U.S. and other countries. (Online8 )

Figure 7: Data Request RTT for a Spreadsheet SDC

10, requesting data from SDC, implemented as an encrypted
spreadsheet file. A client, an authentication server, and the
SDC are running on the same host to exclude network de-
lays from RTT measurements. AS listens to an open port
for incoming HTTP GET and POST requests. Experiments
were conducted on the following system configuration:
• CPU: Intel® Core i5-8350U @ 1.7GHz; RAM: 8GB

DDR4
• Microsoft Windows®8 10 Pro, 64 Bit
• Web framework: Node.js®9 server, ver. v10.16.3

As it can be seen from Figure 7, RTT grows by 7.31
times for 1 concurrent data request and by 7.16 times for
10 concurrent requests, when the size of data retrieved from
SDC increases from 0.5 to 842 kilobytes. In ApacheBench®

utility, having 10 concurrent requests and 1000 total re-
quests makes 10 requests open at a time. Node.js® is a
single-threaded server with multiple threads to execute asyn-
chronous code (Tesanovic ). As it can be seen in Fig. 7, the
RTT for 10 concurrent threads is smaller than for one thread,
except for data request for 0.5 kilobytes of data.

Future Work
In our current iteration, the relationships between the device
state data and the network traffic were manually derived. In
the future, we will evaluate machine learning methods to
automatically generate descriptions of the relationships be-
tween the network data and the important device state data.
We also plan to determine how to incorporate learned be-
havior into the IDS to improve its results and to reduce false
positives.

Conclusions
In this paper, we presented a method to improve IDS true
positive rate in ICS using extra information about device
state. This extra information is securely stored and trans-
ferred to the IDS by employing secure data containers that
protect log data and device state information in transit and at

8This paper ”Secure Industrial Control System with Intrusion
Detection” is an independent publication and is neither affiliated
with, nor authorized, sponsored, or approved by, Microsoft Corpo-
ration (Online9 )

9We do not imply sponsorship or endorsement by Node.js
Foundation (Online10 )
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rest. We have proposed a system for securely collecting and
transporting state data and machine learning techniques that
use this data to improve IDS results.
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