
Detecting Slow HTTP POST DoS Attacks Using Netflow Features

Chad Calvert, Clifford Kemp, Taghi M. Khoshgoftaar, Maryam M. Najafabadi
Florida Atlantic University, Boca Raton, FL 33431

ccalver3@fau.edu, cliffkempfl@gmail.com, khoshgof@fau.edu, mmousaarabna2013@fau.edu

Abstract

Network security is a constant challenge, with new attacks and
vulnerabilities being frequently introduced. Application layer
Denial of Service (DoS) attacks are a rising attack variant,
which inflicts network stress and service interruptions. The im-
plementation of detection and mitigation techniques for such
attacks have been a priority for some time, but more sophis-
ticated attack permutations are constantly being introduced,
often making prior prevention techniques ineffective. In this
work, we focus specifically on the detection of Slow HTTP
POST DoS attacks. We execute several Slow HTTP POST
attack configurations within a live network environment to
represent a real-world attack scenario, with varying levels of
severity. For our methodology, we utilize features of network
flow (Netflow) traffic to detect these attack configurations.
Netflow has proven to be a more scalable solution compared
to full packet capture when performing data collection, al-
lowing for near real-time network monitoring. Eight machine
learners were implemented to determine which learner would
achieve optimal performance metrics when detecting Slow
HTTP POST attacks. As our data is very large, we also eval-
uate the use of data sampling techniques to increase attack
detection performance. Overall, our results show a high detec-
tion rate when detecting Slow HTTP POST attacks, achieving
relatively low false alarm rates.

Introduction
The reliability of web-based systems are paramount, and at-
tackers often exploit this reliability to render needed services
inaccessible. This form of attack, known as Denial of Ser-
vice (DoS), can be enacted through a number of techniques.
Newer DDoS attacks tend to focus on exploiting application
level protocols (Durcekova, Schwartz, and Shahmehri 2012),
as a way to bypass network layer prevention techniques. Ap-
plication layer attacks often target the Hypertext Transfer
Protocol (HTTP), for which there are known exploits. One
particular exploit utilizes legitimate HTTP POST headers to
enact an attack. Due to their use of legitimate connections,
Slow HTTP POST attacks can be difficult to detect before
services are denied (Hirakaw et al. 2016).

This work focuses on the collection of network flow (Net-
flow) traffic and the ability to detect Slow HTTP POST DoS
attacks using Netflow’s feature set. Other data collection
methods exist, such as full packet capture (FPC), but the

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

process of analyzing all features available within a FPC can
be quite costly in terms of time and computational resources.
Other HTTP related DoS attacks have focused on the col-
lection of web log traffic, which is often preferred as it can
be captured and analyzed relatively quickly (Calvert et al.
2017). However, based on the behavior of Slow HTTP POST
attacks, and how web logs handle requests, these logs are
not a feasible solution. Using Netflow data, we evaluate the
effectiveness of eight machine learners: 5-Nearest Neighbor
(5NN), Naive Bayes (NB), Multilayer Perceptron (MLP),
Support Vector Machines (SVM), JRip using RIPPER (Re-
peated Incremental Pruning to Produce Error Reduction),
Random Forest (RF), and two variants of C4.5 decision trees.
Many of these learners have been used successfully in the
detection of other HTTP DoS related attacks (Calvert et al.
2018).

Other works performing similar collection efforts (Jati et
al. 2016) are often limited in scope, and may not accurately
represent normal traffic that is observed during an attack. To
better represent these scenarios, our attacks were generated
within a live-network environment, hosting a substantial user
base. Performing our attacks in a live production environment
enables our data to be more representative of real-world
attack traffic. We also perform several configurations of Slow
HTTP POST DoS attacks, to represent varied approaches
potentially used by an attacker.

The primary contributions of this paper are as follows: 1)
the implementation of a Netflow based data collection exper-
iment with Slow HTTP POST DoS attacks on a live-network
environment, and 2) the analysis of Slow HTTP POST attacks
using Netflow features through Machine Learning.

The remainder of this paper is organized as follows. In the
Background section, we detail prevalent Slow HTTP POST
attack methods and tools. In the Related Works section, we
discuss works associated with the collection of network traffic
and detection of Slow HTTP POST attacks. The Experimen-
tal Procedure section outlines our collection procedure and
our empirical design. In the Results section, we discuss our
findings. Lastly, in the Conclusion section, we conclude our
works and identify future endeavors.

Background
In a Slow HTTP POST DoS attack, attackers begin by send-
ing a legitimate POST request to a server. The packet infor-
mation associated with this request specifies a content-length

The Thirty-Second International Florida 
Artificial Intelligence Research Society Conference (FLAIRS-32)

387



header value of an extreme size. However, as the request is
legitimate, communication between the server and attacker
is allowed to continue. The server then waits for the entire
message body specified by the header value to be received.
During this communication, the attacker will send data at
a rate as low as one byte per transmission. Since the data
is transmitted in regular time intervals, the server’s client
idle timeout is not triggered, thus tying up the server and its
resources until the request eventually completes.

This attack type can be implemented in a distributed fash-
ion using multiple hosts, or can be configured to enact multi-
ple attack instances from a single machine depending on the
tool used. This allows the attacker to perform a potentially
devastating attack while using very little resources. Various
Slow HTTP POST DoS tools and scripts are publicly and
freely available to attackers to utilize, such as Low Orbit Ion
Cannon (LOIC), R U Dead Yet (R.U.D.Y.), and Open Web
Application Security Project (OWASP) Switchblade.

Related Works
Bhosale et al. identify common defense strategies against
application layer DDoS attacks (Bhosale, Nenova, and Iliev
2017). Two general categories of defense techniques are iden-
tified, each with various subcategories focusing on the detec-
tion of specific attack variants. The first category proposed
is destination-based (server-side) identification. These ap-
proaches pertain to tools and techniques such as DDoS Shield,
reflection/amplification attacks, and anomaly detectors based
on a hidden semi-Markov model. The second outlines hybrid-
based approaches, which pertain to the communication be-
tween clients and servers. Some of these mechanisms include
Speak-Up, human/bot differentiation, and Trust Management
Helmet (TMH). This work does well to detail potential appli-
cation layer attack detection methods, but does not provide
much in the way of detection performance.

Tripathi et al. identify which specific HTTP servers are
vulnerable to Slow HTTP DDoS attacks (Tripathi, Hubballi,
and Singh 2016), and then suggest a method of detection
based on anomalies. In this work, four servers were config-
ured to serve as attack targets, each with a different platform.
The attack machine was configured with the SlowHTTPTest
framework. The initial findings of the researchers demon-
strated that several of the tested server platforms did indeed
have specific vulnerabilities to Slow HTTP POST attacks.
To further expand their experiment, attacks were performed
on 100 partner websites. The 100 sites were separated into
four categories and attacked from a single machine running
SlowHTTPTest. Results from this set of expanded tests con-
firmed that even live servers demonstrated vulnerabilities to
these types of attacks. For detection, a statistical abnormality
measurement technique is proposed. Specifically, the normal
web traffic is treated as a probability distribution consisting of
four HTTP request types. As most normal requests will con-
sist of complete headers and message bodies, the researchers
aim to exploit the abnormal behavior of attack traffic which
performs in a contradictory manner. This difference in ex-
pected behavior is measured using Hellinger distances. Their
experiments showed that Hellinger distance values are much

lower during normal traffic instances than traffic associated
with attacks.

Work completed by Dantas et al. re-purposes Adaptive
Selective Verification (ASV) (Danats, Nigam, and Fonseca
2014), typically used to mitigate network layer DDoS attacks,
to now mitigate application layer attacks. ASV successfully
detects network layer attacks by assuming communication
is a simple client-server stateless SYN-ACK interaction. Ap-
plication layer attacks introduce an element of “state”, due
to the protocols being used such as HTTP. SeVen, which is
based on ASV, is capable of taking state into account. SeVen
and several HTTP DDoS variations were formalized into
the computational tool Maude. Their defense mechanism is
verified using a statistical model checker known as PVeStA.
Results demonstrate that SeVen allows for robust detection
with strong traffic pattern analysis. The downside to this ex-
periment is that it is entirely simulated and has not been
validated on live-network traffic.

Experimental Procedure
The following section outlines our process for collecting data,
the network architecture, the implementation of our Slow
HTTP POST DoS attacks, the machine learning methods
applied, and the metrics used for performance evaluation.

Data Collection
Our data collection is performed within a real-world network
environment. Our campus network services substantial users,
handling a wide range of varying traffic types. The network
is comprised of a series of switches, servers, and routers
providing service to both local and online users. For our ex-
periments, we used a pre-existing Apache web server hosting
student resources. This server assumed the role of our attack
target. The server runs CentOS 6.8 on a Dell 2950 Poweredge
with two quad-core Intel Xeon 5300 processors and 16 GB
of memory.

Our student resource server is configured using WordPress,
and serves the primary role of hosting lecture material, assign-
ments, assessments, and other content required by student
users. The normal traffic for this experiment mostly relates
to course work consisting of downloads, uploads, website
navigation, and other communication with the web server.
The server also is accessible through our extended network,
which supports other faculty and student uses ranging from
virtualization, email, web hosting, and audio/video stream-
ing.

For our attack implementation, we used OWASP Switch-
blade 4.0 as our attack tool. We compared other common
tools and settled on using OWASP Switchblade as it provided
us with the most configurable options. We ran our attack from
a single physical host machine utilizing multiple connections,
rather than running the attack in a distributed fashion. It was
determined from our initial testing that the resulting traffic
from a distributed attack would be nearly identical to that
of a single machine running numerous connections. The key
feature difference would pertain to the multiple IP addresses
associated with a distributed attack. However, as these ad-
dresses can be commonly spoofed, we remove them from our

388



tested feature set. Therefore, to save on physical resources
and simplify our testing procedure, a single attack host was
used.

We chose to implement nine different attack configura-
tions, separated into three distinct categories. Our “stealthy”
configuration utilizes single connections to prolong potential
detection. We scaled up the connection amount to 125 to rep-
resent a “moderately stealthy” attack. Lastly, we increased the
number of connections to 250 to represent a “non-stealthy”
attack. For each of these three categories, we ran three at-
tacks with varying timeout values: 10 seconds, 50 seconds,
and 100 seconds. For all attacks, we used a content-length
value of 1000. This value was chosen as it was a default value
across most attack tools. All attacks targeted the same php
form element on our web server, and ran for one hour each
resulting in a total of nine hours of attack traffic.

FPCs allows us to observe all traffic communications as
they are received. The key issue with analyzing full packets is
that it can be quite resource intensive to analyze all available
packet features. To lessen this resource impact, we opted to
use Netflow features extracted from our FPCs. Netflow traffic
refers to a high-level summary of network communications.
A Netflow record is identified based upon the standard 5-tuple
attribute set that makes up a conversation: source IP, destina-
tion IP, source port, destination port, and transport protocol.
Based upon which Netflow standard is being implemented,
other attribute fields can also be produced. We utilize the
IPFIX (Claise, Trammell, and Aitken 2013) standard for our
flow extraction. The resulting features can be seen in Table 1.

Machine Learning Methods
We selected eight classification algorithms to build predictive
models based on our collected dataset: RF, JRip, K-Nearest
Neighbor (KNN), NB, MLP, SVM, and two variants of C4.5
decision trees. All models were built using the WEKA ma-
chine learning toolkit (Hall et al. 2009).

We employed default parameters for the selected classi-
fiers within Weka, except for C4.5 where we used the de-
fault parameters (denoted by C4.5D) as well as a version
(denoted by C4.5N) with Laplace smoothing activated and

Table 1: Description of Selected Netflow Features
Feature Name Description

Protocol Transport-layer protocol number of flow
Packets Number of packets in flow
Bytes Number of bytes in flow
Flags Logical OR of TCP flag fields of flow

Initial Flags TCP flags in initial packet
Session Flags All TCP flags in entire connection

Attributes Flow attributes [SFTC]
Duration Duration length (in milliseconds) of flow

Payload Bytes Size of payload measured in bytes
Payload Rate Non-overhead packet data per second

Packets/Second Number of packets per second
Bytes/Second Number of bytes per second
Bytes/Packet Number of bytes per packet

Class Class label (Attack or Normal)

tree-pruning deactivated. For KNN, K is assigned a value of
5 (for 5-nearest-neighbors).

Performance Metrics
Area Under the receiver operating characteristic Curve (AUC)
is used to evaluate the performance of each model (Seliya,
Khoshgoftaar, and Hulse 2009). The Receiver Operating
Characteristic (ROC) curve plots the True Positive Rate
(TPR) and False Positive Rate (FPR) of the model. TPR
represents the percentage of the Slow HTTP POST attack
instances that are correctly predicted as attack traffic. FPR
represents the percentage of the normal data which is wrongly
predicted as attack traffic. The ROC curve is built by plotting
TPR versus FPR as the classifier decision threshold is varied.
Higher AUC values tend to correlate to higher TPR and lower
FPR, both of which are preferred outcomes.

We applied 4 runs of stratified 5-fold cross validation to
evaluate our AUC values, resulting in 20 AUC values per
learner. Using 5-fold cross validation divides the data into
5 non-overlapping parts, representing our folds. For each
iteration, one part is reserved as test data and the remaining
four parts are used as training data. Our final AUC values
are calculated by aggregating the AUC values of the models
being tested for each of the 5 parts of the data.

The size of our resulting dataset consists of approximately
1.6 million total instances, with 2,391 attack instances. This
results in a significant class imbalance ratio, with less than
1% of data being attack traffic. Large amounts of class im-
balance can often lead to a classifier being biased in favor
of the majority class. To better balance data classification,
we utilize random under-sampling to randomly select fewer
instances of the majority class. We utilize a random under-
sampling ratio of 50:50 to provide a balanced dataset from
which to build our models. For comparison, we ran our eight
learners on our dataset with and without RUS applied. For
all learners, a marked improvement was shown with RUS. In
the following section, metrics both with and without RUS
are displayed in Table 2. However, due to the significant
performance increases, only values for our RUS dataset are
discussed.

Results
We calculated the average AUC values and their standard
deviations, seen in Table 2. RF performed the best out of the
eight total learners with a mean AUC of 0.9989. However, all
learners performed exceedingly well, with the worst learner

Table 2: Cross Validation Results
Classifier AUC-RUS AUC std-RUS AUC AUC std

RF 0.9989 0.02 × 10−2 0.9763 0.13 × 10−2

C4.5N 0.9971 0.04 × 10−2 0.9716 0.48 × 10−2

5NN 0.9970 0.02 × 10−2 0.9925 0.03 × 10−2

C4.5D 0.9923 0.07 × 10−2 0.9689 0.08 × 10−2

JRip 0.9922 0.20 × 10−2 0.7376 8.75 × 10−2

SVM 0.9899 0.04 × 10−2 0.9632 1.43 × 10−2

MLP 0.9897 0.18 × 10−2 0.9011 3.86 × 10−2

NB 0.9713 0.10 × 10−2 0.9694 0.05 × 10−2

389



(NB) resulting in a mean AUC of 0.9713. The overall result-
ing values demonstrate the effectiveness of Netflow features
when detecting this form of attack.

Evaluating both the C4.5 decision tree variants allows us
to further identify key discriminating Netflow features for
Slow HTTP POST detection. When evaluating the C4.5D
tree, a greater emphasis is placed upon duration. The first
level shows that a duration greater than 410.77 ms corre-
sponds to a majority of attack instances. This result is to be
expected, as a typical Slow HTTP POST attack will attempt
to keep a connection alive for significant amounts of time.
For instances with lesser duration values, bytes/second less
than 277 resulted in a high number of normal instances, with
a few outlying attack instances being found both above and
below this threshold. As the majority of attack instances had
already been accounted for due to the duration value, the re-
sulting tree levels serve more to segregate different varieties
of normal traffic.

The C4.5N tree places greater importance on relevant TCP
flags at the first level. Although duration serves as a discrimi-
nating feature in later levels, the first level focuses primarily
on separating instances based upon the flags associated with
each flow. Descriptions of each corresponding flag can be
found in Table 3. Flag values of particular relevance to this
attack are “F”,“S”,“R”,“P” and “A”, which stand for “FIN”,
“SYN”, “RST”, “PSH” and “ACK”, respectively. Flag com-
binations of “FSRPA”, “R”, and “A” result in the highest
number of classified attack instances. Attack instances result-
ing from the “FSRPA” combination at the first level, are then
distinguished by a duration <= 12.474ms at the second level,
and a bytes value <= 0.431 at the third. This represents a
rare occurrence where the duration values are relatively low
in comparison to the other attack instances. Both the “R” and
“A” tree nodes correspond to relatively short remaining tree
structures. This behavior could correspond to failed connec-
tion attempts by the attack tool, which would then need to
request resets to continue the attack.

Conclusion
Our work outlines an approach for collecting and detecting
Slow HTTP POST attack traffic in a live production envi-

Table 3: TCP Flags
TCP Flag Description
SYN Signals the first step in a three-way handshake between two

hosts.
ACK Acknowledge the successful receipt of a SYN packet.
FIN Finished send more data from the sender
URG Process the urgent packets before processing all other packets
PSH Process these packets as received instead of buffering them.
RST Indicates a reset packet has been sent from the host.
ECE Indicates if the TCP peer is Explicit Congestion Notification

capable.
CWR Congestion Window Reduced, indicates received an ECE

packet.
NS Nonce Sum, protects against malicious concealment of pack-

ets

ronment. Netflow data was selected to build our datasets, to
lessen the potential resource overhead required to analyze
other data sources and still allow for near real-time detection.
This work demonstrated the use of eight machine learning
models to aid in the detection of Slow HTTP POST attacks.
We performed 4 runs of 5-fold cross validation to obtain
our AUC performance metric. Our results showed that all
eight learners were capable of detecting our attack traffic
with strong performance, suggesting that Netflow features
are indeed a viable feature set for the detection of Slow HTTP
POST DoS attacks. Our future work will aim to compare traf-
fic patterns across several HTTP DoS variants and examine
the detection performance of various machine learners.

References
Bhosale, K. S.; Nenova, M.; and Iliev, G. 2017. The dis-
tributed denial of service attacks prevention mechanisms on
application layer. In 2017 13th International Conference on
Advanced Technologies, Systems and Services in Telecommuni-
cations (TELSIKS), 136–139. IEEE.
Calvert, C.; Kemp, C.; Khoshgoftaar, T. M.; and Najafabadi,
M. M. 2017. A framework for capturing http get ddos attacks
on a live network environment. In 23rd ISSAT International
Conference on Reliability and Quality in Design, 1–7. ISSAT.
Calvert, C.; Khoshgoftaar, T. M.; Kemp, C.; and Najafabadi,
M. M. 2018. Detection of slowloris attacks using netflow traf-
fic. In 24th ISSAT International Conference on Reliability and
Quality in Design, 1–6. ISSAT.
Claise, B.; Trammell, B.; and Aitken, P. 2013. Specification
of the IP Flow Information Export (IPFIX) Protocol for the Ex-
change of Flow Information. CISCO. Technical report, Cisco.
Danats, Y. G.; Nigam, V.; and Fonseca, I. E. 2014. A selec-
tive defense for application layer ddos attacks. In 2014 IEEE
Joint Intelligence and Security Informatics Conference, 75–82.
IEEE.
Durcekova, V.; Schwartz, L.; and Shahmehri, N. 2012. Sophis-
ticated denial of service attacks aimed at application layer. In
2012 ELEKTRO, 55–60. IEEE.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.;
and Witten, I. H. 2009. The weka data mining software: An
update. In SIGKDD Explor. Newsl, volume 11, 10–18. ACM.
Hirakaw, T.; Ogura, K.; Bista, B. B.; and Takata, T. 2016. A de-
fense method against distributed slow http dos attack. In 2016
19th International Conference on Network-Based Information
Systems (NBiS)), 519–523. IEEE.
Jati, G.; Hartadi, B.; Putra, A. G.; Nurul, F.; Iqbal, M. R.; and
Yazid, S. 2016. Design ddos attack detector using ntopng.
In Big Data and Information Security (IWBIS), International
Workshop on, 139–143. IEEE.
Seliya, N.; Khoshgoftaar, T. M.; and Hulse, J. V. 2009. A study
on the relationships of classifier performance metrics. In 2009
21st IEEE International Conference on Tools with Artificial In-
telligience, 59–66. IEEE.
Tripathi, N.; Hubballi, N.; and Singh, T. 2016. How secure are
web servers? an empirical study of slow http dos attacks and de-
tection. In 2016 11th International Conference on Availability,
Reliability and Security, 454–463. IEEE.

390




