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Abstract

We consider learning problems of an intuitive and concise
preference model, called lexicographic preference lists (LP-
lists). Given a set of examples that are pairwise ordinal pref-
erences over a universe of objects built of attributes of dis-
crete values, we want to learn (1) an optimal LP-list that de-
cides the maximum number of these examples, or (2) a near-
optimal LP-list that decides as many examples as it can. To
this end, we introduce a dynamic programming based algo-
rithm and a genetic algorithm for these two learning prob-
lems, respectively. Furthermore, we empirically demonstrate
that the sub-optimal models computed by the genetic algo-
rithm very well approximate the de facto optimal models
computed by our dynamic programming based algorithm, and
that the genetic algorithm outperforms the baseline greedy
heuristic with higher accuracy predicting new preferences.

Introduction
Preferences are ubiquitous and important to research fields
such as recommender systems, decision making and social
sciences. In this work, we study preference relations of ob-
jects that are combinations of values in discrete attributes.
Preference relations vary and the research community has
seen promising preference models such as graphical mod-
els such as conditional preference networks (Boutilier et al.
2004), lexicographic preference trees (Booth et al. 2010;
Liu and Truszczynski 2013; 2015), and lexicographic pref-
erence (Liu and Truszczynski 2016; 2018), and logical
models such as penalty logic (De Saint-Cyr, Lang, and
Schiex 1994), possibilistic logic (Dubois, Lang, and Prade
1994), and answer set optimization (Brewka, Niemelä, and
Truszczynski 2003). We focus on a particular lexicographic
preference model, called lexicographic preference lists, or
LP-lists for short, an intuitive and concise model describing
the importance ordering of the attributes and the preference
orderings of the values in the attributes (Fishburn 1974). In
particular, we examine the learning problem of LP-lists for
a given description of the set of objects and a given set of
examples. This problem is considered in two settings: learn-
ing the LP-lists that agree with the maximum, or close to the
maximum, number of examples.
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Learning optimal LP-lists with maximum number of sat-
isfied examples has been proven NP-hard (Schmitt and Mar-
tignon 2006; Liu and Truszczynski 2015). In this paper,
we introduce a dynamic programming based approach that
learns optimal LP-lists in exponential time in the number of
attributes and the size of attribute domains. Despite this ex-
ponentiality, it is a considerable reduction from the factorial
time complexity of the brute force algorithm that checks ev-
ery ordering of attributes and every preference order within
each attribute domain. We show the optimality of our al-
gorithm, and present experimental results demonstrating its
effectiveness for large domains of objects.

Algorithms to learning near-optimal LP-lists have been
proposed in the literature, including the greedy heuristic al-
gorithm (Liu and Truszczynski 2018). Local search algo-
rithms have been used to learn other preference models,
e.g., tree-structured conditional preference networks (Allen,
Siler, and Goldsmith 2017). To the best of our knowledge,
learning algorithms based on local search techniques have
not been applied to learning LP-lists. In this paper, we pro-
pose to learn near-optimal LP-lists using a genetic algo-
rithm (Mitchell 1998), one of the promising local search
algorithms, where LP-lists are straightforward represented
as chromosome strings. We conduct empirical evaluation of
our genetic algorithm and compare it with the greedy heuris-
tic and our optimal algorithm. Our results suggest that the
genetic algorithm performs very close to our optimal algo-
rithm and outperforms the greedy heuristic by a margin.

In the following, we first formally define what LP-lists
are. We then present our optimal algorithm using dynamic
programming, as well as our near-optimal genetic algorithm.
We will discuss our experimental results before we conclude
and point to future work.

Lexicographic Preference Lists
Let us denote by A = {X1, . . . , Xn} a finite set of at-
tributes. Each attribute Xi ∈ A has a finite domain Di of
values such that Di = {xi,1, . . . , xi,m1}. The universe UA
defined by A is the Cartesian product of the attribute do-
mains D1 × . . . × Dn. We call elements in UA objects. A
lexicographic preference list (LP-list) over A is a list of at-
tributes inA, each labeled by a total order over that attribute
domain. Attributes in a LP-list are distinct and a subset of
A.
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Let L = Xi1 . . . . . Xip be an LP-list over A, and o and
o′ two objects in UA. We say that o is at least as good as o′
in L, denoted o �L o′, if (1) o(X) = o′(X) for all X ∈ A,
or (2) there is ij ∈ [i1, ip] such that o(Xij ) � o′(Xij ) and
o(Xq) = o′(Xq) for all q ∈ [i1, ij). Then, we say that o
is strictly preferred to o′, denoted o �L o′, if o �L o′ and
o′ 6�L o, and that o is equivalent to o′, denoted o ≈L o′, if
o �L o

′ and o′ �L o.
Accordingly, given two objects o and o, and an LP-list L,

objects can be compared by an LP-list as follows. For each
attribute Xij in L, starting from the first one, we check if o
has a better (or worse) value on Xij than o′. If so, we stop
and report o �L o′ (o′ �L o, resp.). Otherwise, o and o′
having same value on Xij , we continue to the next attribute.
If we finish having checked all attributes, we stop and report
o ≈L o′. Therefore, this task is done in linear time in the
size of the input.

Consider a universe of vehicles of four attributes: Body-
Type (B) with values sedan (s) and truck (t), Color (C) with
black (k), white (w) and blue (b), Make (M ) with Toyota (t)
and Chevrolet (c), and Price (P ) with low (l), medium (m)
and high (h). An LP-list can beB.M.C, whereB is labeled
by s � t, M by t � c, and C by w � b � k. According to
this LP-list, we see that a medium-priced blue Toyota sedan
is preferred to a low-priced white Chevrolet sedan, and two
differently priced black Chevrolet trucks are equivalent.

Dynamic Programming Algorithm
Given a set E of examples and an attribute X ∈ A, we want
to compute the optimal local preference ordering of X , de-
noted LPO(X), that satisfies the maximum number of ex-
amples in E just by X alone.

From E we first build a matrix M where Mi,j denotes the
number of examples in E that prefer i to j on attribute X .
Examples with same value of X in both are not counted
in M , so that Mi,j = 0 if i = j. This first step takes
O(|Dom(X)|2) both space and time. Then, we use M to
compute the LPO(X) as follows.

Let S ⊆ Dom(X) be a subset of the domain of X , where
|S| > 1. We denote by C(S, E) the maximum number of
examples in E that can be satisfied by any total order on S.
Thus, we have the following.

C(S, E) =


max
i,j∈S
{Mi,j ,Mj,i} if |S| = 2

max
i∈S
{C(S − {i}, E) +

∑
j∈S−{i}

Mj,i} if |S| > 2

Therefore, LPO(X) is the total order on X that satisfies
C(Dom(X), E) examples in E . Both LPO(X) and E are
computed using the following procedure in Algorithm 1,
a dynamic programming based procedure recording calcu-
lated results in tables T and L.

We now analyze the space and time complexity of Algo-
rithm 1 as follows. The space complexity results from the
matrix M , and tables L and T . Let x = |Dom(X)| be the
number of values in X’s domain, and m the number of ex-
amples in E . Then, space complexity is O((2x) · x2 + x2 +
2x) = O(x·2x). This asymptotic prohibitive space is accept-
able, if the size of the attribute’s domain is relatively small,
often the case in practice.

Algorithm 1: computeLPO(E , X) % computes
LPO for an attribute for given examples

Input: E is the set of example, and X ∈ A is an
attribute in A

Output: LPO(X)
1 Procedure computeLPO(E , X):
2 Create an empty table L s.t. L[U ] is an empty list

for every U ⊂ Dom(X);
3 Create matrix M as described earlier;
4 Create an empty table T s.t. T [U ] = 0 for every

U ⊂ Dom(X);
5 Set T [U ] and L[U ] for |U | = 2 according to

above formula;
6 for i← 3 to |Dom(X)| do
7 foreach S ⊂ Dom(X) s.t. |S| = i do
8 T [S]← max

i∈S
{T (S − {i}) +

∑
j∈S−{i}

Mj,i};

9 L[S]←
argmax

(L[S−{i}],i):i∈S
{T (S − {i}) +

∑
j∈S−{i}

Mj,i};

10 end
11 end
12 return L[Dom(X)];

To calculate the time complexity, we examine the algo-
rithm closely. We assume structures M , T , and L are con-
stant time accessible. Lines 2 to 5 take timeO(2x+m+2x+(
x
2

)
), respectively. The loop from line 6 to line 11 considers

all subsets S ⊂ Dom(X) and |S| ≥ 3, for each of which
T [S] and L[S] are computed. Each takes time O(|S| · |S|).
So this loop takes time O(

∑
S⊂Dom(X)∧|S|≥3

|S|2). Then, we

have
∑

S⊂Dom(X)∧|S|≥3

|S|2 =
(
x
3

)
· 32 + . . . +

(
x
x

)
· x2 ≤

(
(
x
3

)
+ . . . +

(
x
x

)
) · x2 ≤ 2x · x2. Therefore, the time com-

plexity of Algorithm 1 is O(m + x2 · 2x). This is a clear
reduction from the factorial performance of the brute-force
approach that checks all permutations of Dom(X).

Let us denote by Attr(T ) the set of attributes inA labeling
the nodes in LPL T , by α|T the partial obtained from object
α restricted to attributes showing up in T . Then, we define
E|T = {(α|T , β|T ) : (α, β) ∈ E and α|T 6= β|T } to be the
multi-set of examples obtained from E restricted to attributes
showing up in T .

We say an LPL is optimal to E if it satisfies the maximum
number of examples in E . Inspired by the Held-Karp algo-
rithm (Held and Karp 1962), we see that, if an LPL T is
optimal to E , then every T ’s subtree T ′ rooted at r is opti-
mal to E|T ′ . Clearly, this property is true because, were the
subtree T ′ to be not optimal, T could be changed to satisfy
more examples by altering the order of Attr(T ′) in T ′.

We devise the Algorithm 2 to learn optimal lexicographic
preference lists. It is brute-force enhanced by memorizing
the optimal subtrees for all subsets of A.

Let us consider the space and time complexities of Algo-
rithm 2. We let n = |A| be the number of attributes, and
x̄ = max{|Dom(X)| : X ∈ A} the maximum attribute do-
main size. As with the space complexity, the algorithm uses
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Algorithm 2: computeLPL(E ,A) % computes op-
timal LPL for given examples

Input: E is the set of example, and A is the set of
attributes

Output: LPL
1 Procedure computeLPL(E , A):
2 Create an empty table T s.t. T [U ] = 0 for every

U ⊂ A;
3 Create an empty table L s.t. L[U ] is an empty list

for every U ⊂ A;
4 Set T [U ] and L[U ] for |U | = 1 using

computeLPO in Algorithm 1;
5 for i← 2 to |A| do
6 foreach S ⊂ A s.t. |S| = i do
7 T [S]← max

X∈S
{T (S − {X}) + C(Dom(X), {(α, β) ∈

E : α(Y ) = β(Y ) for all Y ∈ S − {X}})};
8 L[S]← argmax

(L[S−{X}],computeLPO(X)):X∈S
{T (S −

{X}) + C(Dom(X), {(α, β) ∈ E : α(Y ) =
β(Y ) for all Y ∈ S − {X}})};

9 end
10 end
11 return L[A];

tables T and L, and the space designated by the calls to Al-
gorithm 1. The size of L is bounded by

∑
0≤i≤n

(
n
i

)
· i · x̄ ≤

n · x̄ ·
∑

0≤i≤n

(
n
i

)
= n · x̄ ·2n. This gives us a space complexity

of O(2n +n · x̄ · 2n + x̄ · 2x̄), which is O(n · x̄ · 2n + x̄ · 2x̄).
Lines 2 to 4 take time O(2n + 2n + n · (m + x̄2 · 2x̄))

respectively. The loop from line 5 to line 10 takes time∑
S⊂A∧|S|≥2

|S|·(m+x̄2 ·2x̄). Therefore, the time complexity

of Algorithm 2 is O(2n + 2n +n · (m+ x̄2 · 2x̄) + (m+ x̄2 ·
2x̄) · 2n · n), which is O((m+ x̄2 · 2x̄) · 2n · n).

Genetic Algorithm
The idea of the genetic algorithm is inspired from the natural
selection theory in biology. Generally, the population’s fit-
ness will increase until a steady state. In such steady state, no
improvement can be done once the population has reached
this stable state. This state could contain a global or local
optimal solution.

Each candidate solution or chromosome is composed of
many traits, features, attributes, or simply “genes” with each
gene being one value or “allele”. For our learning problem
of LP-lists, chromosomes are encoded as follows a string
of attributes and values in their domains, where upper-case
letters represent attributes and lower-case letters represent
values the attributes can be of. Taking the previous example
of the LP-list in the cars domain: B .M . C with the same
local preference orderings. Its chromosome representation
clearly is “Bst Mtc Cwbk”.

Using the fitness function that returns the number of cor-
rectly classified examples by the LP-list, we devise the ge-
netic algorithm as follows. Step 1: create 100 random LP-
list as initial chromosomes. Step 2: select the top 50 chro-

Figure 1: Testing accuracy

mosomes overall according to the fitness function and let
them produce two children by crossover and mutation re-
spectively. Step 2 is repeated for 100 generations before ter-
mination. In step 2, crossover is achieved by shuffling the
ordering of the attributes in the chromosomes, and mutation
by shuffling the ordering of values of a randomly chosen at-
tribute.

Results
In this section, we present our empirical analysis of our two
algorithm: the dynamic programming based algorithm, for
which we call DPA, and the genetic algorithm, which we
short-hand to GA.

To evaluate our algorithms DPA and GA, we take the
greedy algorithm as a baseline and perform empirical analy-
sis on sets of examples given by hidden randomly generated
LP-lists. The examples are produced with a noise percentage
of examples that are flipped to create inconsistent examples
to simulate practical settings.

Domains of 10 attributes, each of 5 values, are used for
our experiments. Thus, the universe contains 510 objects,
giving

(
510

2

)
≈ 5×1013 possible examples. We first generate

a random LP-list of these attributes with random orderings
as their local preferences, and a set D of random examples
for training and testing. Then, set D is processed based on a
noise percentageN : |D|·N examples are randomly selected
and flipped. We reserve 80% of D to train an LP-list model
and the other 20% to test it. Our experiments are for N of
value 15%, and forD of size 103, 104, . . . , 106. The instance
for every D is repeated 5 times and the average accuracies
and computational time are reported as follows.

We see, in Figure 1, that DPA obtains the highest accuracy
on the testing examples. GA finishes as a very close second,
within 1% compared to DPA. Greedy finishes last. We at-
tribute this to the fact that our GA’s stochastic beaming start
with multiple LP-lists and generations of improvements of
them.

Figure 2 shows the total computational time, including
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Figure 2: Computational time

both training and testing, for various training data sizes.
Clearly, DPA, despite of its exponential time complexity,
outperforms GA on all datasets. This is because the compu-
tational time of GA accumulates over generations. Greedy
takes the least amount of time until the size of the training
set picks up to very large. This is attributed to the larger con-
stant in the asymptotic notion of Greedy than that of DPA.
GA takes the most time as it goes through generations of the
selecting processes.

Conclusion and Future Work
We studied the learning problems of LP-lists, a preference
formalism that is intuitive and concise over objects consist-
ing of categorical attributes. We introduced an algorithm
DPA that computes optimal LP-lists that decide the most
number of given examples. DPA is based on dynamic pro-
gramming, and it reduces the factorial time complexity of
the pure brute force algorithm to exponential, at a cost of
exponential space. Besides, we introduced a genetic algo-
rithm GA for computing near-optimal LP-lists that satisfy
as many given examples as it can. To evaluate our algo-
rithms, we conducted substantial experiments showing that,
for large example sets of sizes up to 10 million over the uni-
verse of over 9 million objects, DPA outperforms GA and
baseline Greedy in both testing accuracy and computational
time, with GA being a very close second in accuracy. For
future work, we plan to perform experimental studies on
preferential data generated from real-world datasets such as
classification and regression datasets in the machine learn-
ing community. We also intend to extend our algorithms to
allow learning more general lexicographic preference mod-
els (Liu and Truszczynski 2015).

References
Allen, T. E.; Siler, C.; and Goldsmith, J. 2017. Learning tree-
structured cp-nets with local search. In Proceedings of the
International Florida Artificial Intelligence Research Soci-
ety Conference.

Booth, R.; Chevaleyre, Y.; Lang, J.; Mengin, J.; and Som-
battheera, C. 2010. Learning conditionally lexicographic
preference relations. In ECAI, 269–274.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-nets: A tool for representing and reason-
ing with conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research 21:135–191.
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