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Abstract

In this paper, we study the problem of forming coalitions with
heterogeneous agents for allocating them to tasks. Several
agents work together to complete a given task. Due to the
inherent complexity of real-world tasks and limited capabili-
ties of a particular type of a physical agent such as a robot, it
is imperative to form a team consisting of different types of
robots to complete the tasks. Our work in this paper proposes
a distributed bipartite graph partitioning approach for coali-
tion formation with heterogeneous agents such as humans
and/or robots for instantaneous allocation to tasks (ST-MR-
IA). We also extend this approach to apply in the scenarios
where the tasks might have dependencies among each other
(ST-MR-TD). We have implemented the proposed algorithms
within the Webots simulator. The proposed strategy allocates
near-optimal (up to 98%) agent coalitions to tasks. Results
also show that our proposed approach can easily handle as
many as 100 agents and 10 tasks while spending an almost
negligible amount of time.

Introduction
Real world tasks are usually complex in nature. A team of
humans with different skill sets is formed to accomplish
them. Although autonomous robots can be used in place of
humans to complete computationally intensive or mechani-
cally intrinsic components of the tasks, not all task compo-
nents can be completed by these robots (yet!). For example,
first responders helping injured humans with both mental
support and medicine/water in a disaster management sit-
uation is still very much a human task. On the other hand,
a group of robots jointly deployed with the first responders
in the same situation is helpful to rapidly explore difficult-
to-navigate regions and locate victims (Kohlbrecher et al.
2015). Alternatively, robots equipped with different sensors
can form teams without humans to accomplish a given task.

Forming teams or coalitions in real-world situations in-
cluding both humans and robots of potentially different
types is an important and challenging problem. In this paper,
we prove that the heterogeneous coalition formation prob-
lem is a NP-hard problem. Most of the previous research in
coalition formation deals with homogeneous agents such as
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robots or software agents (Service and Adams 2011b),(Rah-
wan and Jennings 2008). The problem with most of the pro-
posed approaches is that the solution becomes computation-
ally intractable with a very small number of agents even as
low as in the 20’s (Rahwan and Jennings 2008).

This paper presents a distributed solution for heteroge-
neous coalition formation using a bipartite graph partition-
ing approach for both the cases where the tasks might or
might not have dependencies among each other. In the liter-
ature, these problems are known as single task (ST) multi-
robot (MR) instantaneous/dependent (IA/TD) task alloca-
tion (Zhang and Parker 2013). Unlike previous approaches,
the proposed solution can handle as many as 100 agents
while incurring an almost-negligible time-cost.

Related Work
One of the earliest studies on coalition formation by agents
for task allocation is due to Shehory and Kraus (Shehory
and Kraus 1998), in which the authors have proposed a
greedy algorithm that is guaranteed to find a solution within
a factor of (MAXC + 1) of the optimal solution, where
MAXC is the maximum size of any coalition formed.
Note that optimal solutions are expensive in terms of con-
sumed time and it might be impossible to use them for
a large number of agents and on any regular robot’s on-
board computer (Rahwan and Jennings 2008). Following the
taxonomy of coalition formation algorithms for task allo-
cation proposed in (Gerkey and Matarić 2004), this paper
solves a single-task agent and multi-agent task problem, i.e.,
we assume that each agent is assigned to one task at the
same time and each task might need a team consisting of
more than one agent to finish it. In (Service and Adams
2011a),(Zhang and Parker 2013), similar problems have
been studied and polynomial-time algorithms have been
proposed. Heterogeneous team formation has been studied
by Liemhetcharat and Veloso (Liemhetcharat and Veloso
2012a),(Liemhetcharat and Veloso 2012b).

Model and Notations
Let A = {a1, a2, .., an} denote a set of n agents (e.g., hu-
mans, robots), and let H = {h1, h2, .., hk} denote the set
of k types of agents. For example, a human, a flying robot,
and a ground robot may be three different types of agents
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available. Each agent is characterized by the tuple 〈Pi, hsi〉
where Pi denotes the position, and hsi the type of agent ai,
with 1 ≤ si ≤ k. Let T = {t1, t2, .., tm} denote a set of
m tasks (n > m). Any task tj is characterized by a tu-
ple 〈Pj , Oj〉 where Pj and Oj respectively denote the task
location and optimal distribution of heterogeneous agents
needed to finish that task, i.e., Oj = {oj1, oj2, .., ojk}. In
layman’s terms, Oj represents how many agents of each type
should be assigned to task tj to finish it optimally. Oj for
each task tj is fixed and this information is assumed to be
available with the agents for the purpose of task allocation.

A coalition (c ⊆ A) is a group of agents working together
for completing a given task. A partitioning of the agents
into non-overlapping coalitions is called a coalition struc-
ture (CS), i.e., CS = {c1, c2, · · · , cm} where ci is assigned
to task ti. We define a partial coalition structure pCSi to be
a set of non-overlapping m coalitions with only agents of
type hi constituting the coalitions. Note that a pCSi does
not cover all the agents.

With teams of heterogeneous agents, the effectiveness of
any agent coalition depends on the difference between the
allocated distribution of agent types to task ti, which we de-
note by Di, ti’s required optimal distribution of agent types,
which we denote by Oi. Note that Di = {di1, di2, · · · , dik}
represents the allocated distribution of the heterogeneous
agents. We define a value function V al that assigns a vir-
tual reward to a coalition and is defined as V al(ci) =
k∑

j=1

o2ij − (oij − dij)
2. V al ensures that if the coalition ci

assigned to the task ti has the optimal distribution of agents,
i.e., if Di = Oi, then that coalition earns the maximum
possible value. On the other hand, if Di is different from
the associated Oi, then the value of the coalition is not the
highest. This formulation checks the effectiveness of the al-
located coalition to the task in terms of the distribution of
agent types. We define the value of a coalition structure
as the summation of values of all the coalitions in it, i.e.,
V al(CS) =

∑
∀ci∈CS V al(ci). Note that the maximum

value of any coalition structure can be computed as follows:
MAX V AL =

∑
1≤j≤m

∑
1≤j≤k o

2
ij .

Cost of a coalition depends on the distance travelled by
all the member robots to reach the task location. The same
cost function proposed in (Dutta, Ufimtsev, and Asaithambi
2019) has been used in this paper. Finally, the problem ob-
jective is to find a set of coalitions for all the tasks such
that the generated coalition structure has the minimum cost,
while its value is the maximum.

Algorithm for ST-MR-IA
In this section, we discuss how we subdivide the problem
into k sub-problems. Let G = ((V,U), E, w) be an undi-
rected, weighted, bipartite graph. V is a set of vertices which
corresponds to the agents in A, and U is a set of vertices cor-
responding to the tasks in T . E is the edge set which con-
sists of all possible pairs with exactly one agent from V and
one task from U (thus |E| = |T | × |U |). The edge weight
function w : E → R is as defined in (Dutta, Ufimtsev,
and Asaithambi 2019). In the complete graph model used in

(Dutta, Ufimtsev, and Asaithambi 2019), |E| =
(|R|+|T |

2

)
.

In this paper, by using a bipartite graph, we are able to dras-
tically reduce the number of edges to be processed which in
turn significantly reduces the time complexity. For example,
in a complete graph with 100 agents and 10 tasks (one of
the test cases in (Dutta, Ufimtsev, and Asaithambi 2019)),
|E| = 5, 995 whereas the bipartite graph formulation in this
paper reduces this number to 1, 000, a reduction by a factor
of 5.995.

After the bipartite graph is created, one leader for each of
the k types of agents is elected. The algorithm described in
(Dutta, Dasgupta, and Nelson 2018) can be used to elect the
leaders. Each of these leaders will process a subgraph G′i =
((Vi, U), Ei, wi) of G to allocate agents of only its own type
to tasks. Vi = A′i where A′i represents all the agents of type
i. The corresponding edges and edge weights constitute Ei

and wi.
Let TAi denote the allocation of i-th type of agents to

tasks. TAi is represented as a 2D array, where the first col-
umn contains the agent IDs and the second column contains
the task IDs. It indicates which agent is allocated to which
task. As agents are forming coalitions, more than one agent
can be allocated to the same task. Once agents of the i-th
type are allocated to the tasks, i.e., once TAi’s are final-
ized using the algorithms proposed in (Dutta, Ufimtsev, and
Asaithambi 2019), the leaders will broadcast and share these
partial allocation information with the other leaders. Then
the complete coalition structure will be formed and conse-
quently the task allocation process will be complete. This
information will be stored in TA ← TA1 ∪ · · · ∪ TAk. In
this way, we are able to break down the allocation problem
into k sub-problems and solve it in a distributed manner. Ad-
ditionally, noting that each TAi actually corresponds to the
pCSi introduced earlier, we can say that the heterogeneous
agent coalition formation problem is the union of k homo-
geneous agent coalition formation sub-problems. Also, the
desired heterogeneous coalition structure CS is a member
of the Cartesian product of the k partial coalition structures
pCSi.

Algorithm 1: Allocation of heterogeneous agents to
tasks

Input: A: A set of agents; T : A set of tasks.
Output: TA: An allocation of agents to tasks;

1 Create the bipartite graph G.
2 Divide G into k subgraphs, each of which contains a

unique type agents and all the tasks.
3 ai

lead ← the leader of the i-th type of agents.
4 Each ai

lead executes the following:
5 TAi ← allocateTaskPerType(Gi) [following

(Dutta, Ufimtsev, and Asaithambi 2019)].
6 TA← TA1 ∪ · · · ∪ TAk.
7 return TA.

Allocation in ST-MR-TD
When considering real-world scenarios of task allocation,
task dependencies often come into play (Zhang and Parker
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2013),(Shehory and Kraus 1998). That is, some task ti must
be completed before the next task tj can begin. To appro-
priately consider task dependencies it is important to note
that tasks, based on their dependencies, may or may not be
able to be assigned simultaneously. In this section, we dis-
cuss the extension of the above-mentioned algorithms de-
veloped for the ST-MR-IA task allocation problem to incor-
porate the task dependencies. In order to do this, we define
a precedence order based on the given task dependencies.
Tasks within the same order of precedence are assigned to-
gether and can only be assigned if their predecessors have
been assigned (Shehory and Kraus 1998). More simply, we
consider the tasks which can be assigned together based on
their dependencies and group them together into bins. For
example, with a set of tasks T = {t1, t2, t3, t4}, suppose
that the task dependencies are as follows: t2 and t4 depend
on t1; and t3 depends on t2. Then, the resulting set of bins
would be B = {{t1}, {t2, t4}, {t3}}. The tasks in the bins
are assigned together in the order the bins are formed allow-
ing assignments for the tasks only after their dependencies
are met. Each bin in B is then given to the ST-MR-IA solu-
tion method (Algorithm 1) to make assignments. The tasks
that are already assigned are removed from T . We can either
remove the agents that are already assigned to a particular
task or we can update their current locations to the assigned
task locations in order to allocate them to remaining tasks.
Keeping the agents in A for future allocations will be impor-
tant if

∑
m

∑
k

omk < n.

Simulations
Settings We have implemented our distributed graph par-
titioning algorithm using the Java programming language
within the Webots simulator. The tests are run on a laptop
with an Intel i7-3615QM processor and 16GB RAM. The
number of agents (n) has been varied between 4 and 100,
and the number of tasks (m) has been varied between 4 and
10. We have made sure that in no test case the number of
tasks exceeds 50% of the number of agents used. The dis-
tinct 2D locations of the agents and the tasks are randomly
generated from a bounded square area with sides of length
100m. Task dependencies are built as a data structure simi-
lar to a tree. The root represents a task with no dependencies.
This data structure can have multiple roots. Each child node
is dependent on its parent nodes, i.e. the parent task must be
assigned before a child task can be assigned. Type counts
(|H|) of agents have been varied between 2 and 3. In each
run, a random set of Oi’s has been generated using an in-
teger partitioning program. We have run each test case 10
times and the average result is presented here. The bars in
the plots indicate the maximum and minimum y-axis values
in that plot.
ST-MR-IA results: First we are interested to see how well
our proposed algorithm scales with n and m. The results are
shown in Fig. 1 for two different values of H . The result
shows that the maximum run time of the proposed solution
scales almost linearly with n. As there are more partitions
to search for with higher values of m, it takes more time
to get the final solution for m = 10 than m = 2. The run
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Figure 1: Run time of the ST-MR-IA solution (a) |H| = 2;
(b) |H| = 3
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Figure 2: Total distance traveled by the agents to reach the
allocated tasks (H = 2): (a) IA, (b) TD (remove).

time is slightly higher with H = 3 as there are more types
of agents and each type gets allocated in an order. However,
the maximum run time is almost-negligible – 110 ms. with
n = 100,m = 2, |H| = 3. Next we see how the cost (i.e.,
the total distance that the agents need to travel to reach the
allocated tasks) of the solution varies with n. Fig. 2(a) shows
that the total cost increases in a linear fashion with increas-
ing n and it varies negligibly for different values of m.
ST-MR-TD results: We now present the results of the so-
lution for the ST-MR-TD problem. First we take the case
where the agents are removed from A if they are allocated to
one task once. Similar to IA allocation, we can see that the
total traveled distances are increasing linearly (Fig. 2(b)).
But as the agents allocated to one task are removed for fur-
ther allocation and also with less number of tasks, the inter-
task distances are higher, we notice that the agents travel
more distances with m = 4 than m = 10. Although the
same trend is noticed when we keep the agents in A, we see
that the total traveled distance by the agents reduces com-
pared to the case when we remove them (Fig. 3(a)). For ex-
ample, with n = 100,m = 10, the total distance is around
4374 m. while removing the agents, but this value reduces
to around 3438 m. while keeping the agents. If the inter-
task distances are lower than the initial inter-agent distances,
this phenomena can be observed. Similar result has been ob-
served for |H| = 3.

Next we are interested in observing the run times of the
proposed algorithm for the ST-MR-TD problem. The results
are shown in Fig. 3(b) and 4(a). Two noticeable changes can
be observed in these plots from the run times of ST-MR-
IA solution (Fig. 1). The overall run time has increased by
almost three time because of the fact that IA solution is run
for each of the task bins separately. Secondly, run times do
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Figure 3: ST-MR-TD (keep), |H| = 2: (a) Total distance
traveled by the agents to reach the allocated tasks; (b) Run
time.
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Figure 4: (a) Run time of ST-MR-TD (keep), |H| = 3; (b)
Performance ratio of the cost of ST-MR-IA to the optimal
cost (higher is better).

not change significantly with increasing n. All the agents
might not be assigned to the tasks at the same time. Because
of the uniform distribution in the agent requirement model,
the number of bins increases in proportion to the number of
agents. Thus, the number of agents required for the tasks in
each bin stay almost the same.

Comparison with the optimal: Finally, to check the so-
lution quality against the optimal solution, we implement
a brute-force method of generating all possible allocations
with n agents and m tasks (Orlov 2002). We could not test
against this approach beyond 12 agents and 4 tasks, the test
became prohibitive on our machine. After getting the final
optimal allocation from this implementation, we compare
the distance cost of it against the cost of the ST-MR-IA solu-
tion. Ratio of the optimal cost to our solution’s cost is named
Performance Ratio (PR) and the result is shown in Fig. 4(b).
As can be understood, if our solution’s cost is close to the
optimal, PR will be close to 1. In Fig. 4(b), we observe that
with m = 4, PR is always greater than 0.9, i.e, our solution
is at least 90% close to the optimal solution for both two and
three types of agents while the highest ratio reaching up to
98% with n = 8,m = 4, |H| = 3. With m = 6, the value
of PR is around 0.8 for |H| = 2 and it drops to 0.75 for 12
agents and |H| = 3.

Conclusion and Future Work
We have proposed a distributed solution for coalition forma-
tion with heterogeneous agents. Assuming there are k types
of agents, our solution strategy subdivides the multi-agent
heterogeneous coalition formation problem into k multi-
agent homogeneous coalition formation sub-problems. This

strategy has helped us obtain near-optimal solutions requir-
ing an almost-negligible computational power. We have also
gracefully handled the inter-task dependencies while extend-
ing the instantaneous task allocation model for the task de-
pendent model. We also plan to better distribute the graph
so that the leaders have similar load in terms of processed
number of edges.
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