
Balanced k-Nearest Neighbors

Brian Cook, Manfred Huber
Dept. of Computer Science and Engineering

University of Texas at Arlington
brian.cook@mavs.uta.edu, huber@cse.uta.edu

Abstract

Classic k-Nearest Neighbor (kNN) algorithms approximate a
function at a query point based on the k-nearest training ob-
servations. In real-world datasets, however, the set of k neigh-
bors is frequently not uniformly distributed around a given
query point. This can result in a locally biased estimate and
thus in degraded results.
This paper presents two new kNN algorithms that adjust the
weight of the k-nearest neighbors to achieve a more bal-
anced distribution. Experiments on real-world and synthetic
datasets identify conditions under which the algorithms can
improve accuracy with minimal increase in computation time.

Introduction
k-Nearest Neighbor (kNN) algorithms have long been used
for regression and classification. They are simple, fast and
often perform as well or better than more complex methods
(Wu et al. 2008).

kNN methods estimate a function based on the k-nearest
neighbors of a query point in a set of training samples. Typi-
cally the estimate is a simple average of the neighbor values,
or an inversely-weighted average based on distance from the
query point. More generally, the estimator may use locally-
weighted regression to fit a function to the neighbors.

These approaches only consider the distance of the neigh-
bors, not their spatial distribution, and implicitly assume a
uniform distribution around the query point. Yet local vari-
ation in sample density is common, arising naturally when
training samples are randomly distributed in the input space,
as well as from bias in the training data collection process.
As a result, kNN estimates are more heavily influenced by
regions of higher sample density in the local neighborhood,
since those regions are over-represented in the set of k-
nearest neighbors. In general, this local neighborhood bias
is not desirable since there is no a priori reason to prefer
samples in any particular region.

Figure 1a illustrates this using a random set of samples
from the function y = sin(x). In the highlighted regions,
5-NN overestimates or underestimates the function because
most of the neighbors are on one side of the query point. In

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

regions where the nearest neighbors are more equally dis-
tributed, the estimate is much closer.

Motivated by this observation, we can adjust the neigh-
bor weights to approximate an equal distribution along each
feature axis in the input space. In this example, if 4 neigh-
bors are in the negative x direction, and 1 neighbor is in the
positive x direction, we can adjust the relative weight of the
positive neighbor by a factor of 4. Intuitively, that neighbor
is likely to provide more information since it is in a region
that is under-represented among the neighborhood samples.
Figure 1b shows results of the Axis-balanced 5-NN algo-
rithm described below using the same sample points as 1a.
The mean-squared error (MSE) is reduced by 11%.

A further observation is that if we have noise-free sam-
ples and multiple neighbors are in the same direction from
the query point, the nearest neighbor in that direction will
be the most informative. Additional neighbors further away
in the same direction may reduce accuracy rather than im-
prove it. This motivates us to consider at most one neighbor
in each axis direction from the set of nearest neighbors, us-
ing a subset of neighbors that form an axis-aligned bounding
box around the point. Figure 1c shows the effect of this Box
5-NN algorithm. The MSE is reduced by 58%.

Approach
For real-valued outputs y ∈ R, regression approximates a
function f : X 7→ R where X ∈ Rd is a metric space with
distance function δ : X×X 7→ R. Similarly, for categorical
outputs y ∈ C, classification approximates a function f :
X 7→ C.

Let S be a set ofN training samples {x(i), y(i)}Ni=1 where
x(i) ∈ X is an input variable and y(i) is the corresponding
output variable. For query point q ∈ X and distance func-
tion δ, define the ordered set A ⊂ S of k-nearest neighbors
{a(i)}ki=1 such that:

|A| = k

∀a ∈ A, b ∈ S −A, δ(a.x, q) ≤ δ(b.x, q)

∀a(i), a(j) ∈ A, i < j, δ(a.x(i), q) ≤ δ(a.x(j), q)
Let w(i) be the weight associated with neighbor a(i).
Let ω be an initial weighting function that calculates

weights ω(i) from A, ω : Rd × Rd×k 7→ Rk.

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

112

(a) 5-NN (b) Axis-balanced 5-NN (c) Box 5-NN

Figure 1: Local Neighborhood Bias

Standard kNN regression uses a weighted average of the
k-nearest neighbors. For query point q ∈ X , the true func-
tion f(q) is estimated by:

f̂(q) =
1

Zq

k∑
i=1

w(i)y(i) (1)

where y(i) is the output value of the i-th nearest neighbor,
w(i) is the corresponding weight from the used weighting
function, and Zq =

∑k
i=1 w

(i) is a normalization factor.
Similarly, kNN classification predicts discrete class labels

y ∈ C as:

f̂(q) = argmax
c∈C

k∑
i=1

{
w(i) if y(i) = c

0 otherwise
(2)

Basic kNN weights all k-nearest neighbors equally with
w(i) = 1/k. Effectively it assumes a uniform function value
in the local neighborhood spanned by the k neighbors.

Distance-weighted kNN (w-kNN) assigns greater influ-
ence to neighbors closer to the query point than neighbors
farther away. A wide variety of weighting functions based on
distance have been investigated (Titterington 1987). A sim-
ple choice is to use the inverse distance, w(i) = 1/δ(x(i), q).

Axis-balanced kNN
The Axis-balanced kNN algorithm uses Equations (1) and
(2) but modifies the weighting factors w(i) as follows.

For query point q, find the k-nearest neighbors A. For
each a(i) ∈ A, assign weight w(i) using some initial weight-
ing function ω. Now for each dimension j ∈ [1..d], partition
the neighbors in each direction along axis j.

Lj = {a(i) : a(i) ∈ A, a.x(i)j < qj}

Rj = {a(i) : a(i) ∈ A, a.x(i)j > qj}

Ej = {a(i) : a(i) ∈ A, a.x(i)j = qj}

(3)

If |Lj | > 0 and |Rj | > 0 then adjust weights w(i) using:

w(i) ←


w(i)(|Lj |+ |Rj |)/|Lj | if a(i) ∈ Lj

w(i)(|Lj |+ |Rj |)/|Rj | if a(i) ∈ Rj

w(i) if a(i) ∈ Ej

(4)

Compared to standard kNN the additional computation
time is O(dk).

Box kNN
The Box kNN algorithm also uses Equations (1) and (2) but
modifies the weighting factors w(i) as follows.

For query point q, find the k-nearest neighbors A. For
each a(i) ∈ A, assign weight w(i) using some initial weight-
ing function ω. Partition the neighbors along each axis j as
in Equation (3) and identify nearest neighbors in each di-
mension as:

L̃j = {l ∈ Lj : l.xj = max
a∈Lj

a.xj}

R̃j = {r ∈ Rj : r.xj = min
a∈Rj

a.xj}

Using this, adjust weights w(i) using:

w(i) ← w(i)
d∑

j=1


2 if a(i) ∈ Ej

1 if a(i) ∈ L̃j ∪ R̃j

0 otherwise
(5)

As with Axis-balanced kNN, the additional computation
time is O(dk).

Synthetic Experiments
To study the effects of different dataset properties on
the estimation accuracy of the kNN algorithms, synthetic
datasets were generated using the radial sin function f(x) =
sin(2π‖x‖) for sample points generated in a unit hyper-
cube. The standard and balanced kNN algorithms were all
distance-weighted using inverse Euclidean distance as the
initial weighting function ω(i) = 1/‖q, x(i)‖.

Figure 2 shows results for 2 dimensions. Plots show the
ratio of MSE vs. standard kNN to make comparison easier.

113

(a) Effect of Sample Density (b) Effect of Noise (c) Effect of Cluster Density

Figure 2: Synthetic Datasets: Ratio of MSE vs. kNN

Effect of Uniform Sample Density
Figure 2a compares the algorithms over a range of uniform
sample densities. In areas with very low density and low
noise, Box kNN works best. As density increases, Axis-
balanced kNN performs increasingly better.

Effect of Noise
Figure 2b compares the algorithms over a range of noise lev-
els. Box kNN performs relatively poorly for noisy data. This
is not surprising since it considers only a subset of its near-
est neighbors, resulting in higher variance in its estimates.
Axis-balanced kNN performance is more tolerant of noise,
but also deteriorates relative to kNN as noise increases.

Effect of Non-uniform Sample Density
To observe the effect of a non-uniformly generated train-
ing set, training samples were drawn from 10 normally dis-
tributed clusters x ∼ N(µi, σcluster) and the density of
the clusters was varied by varying the standard deviation
σcluster. Test sample points were drawn from a quasiran-
dom uniform distribution over the unit hypercube using a
Hammersley sequence.

Figure 2c compares the algorithms over a range of
σcluster densities.

For small dense clusters, Box kNN works best. As clus-
ter density decreases and the training distribution becomes
more uniform, Axis-balanced kNN performs increasingly
better. Note that one of the balanced kNN algorithms always
outperformed standard kNN on these synthetic datasets.

Real-World Experiments
Experiments were performed on regression and classifica-
tion datasets from the UCI machine learning repository
(Dheeru and Karra Taniskidou 2017).

Each experiment performed 5-fold cross-validation to
measure performance and was repeated until reaching con-
fidence level P > 0.99 that relative error is less than 0.01.

Simple forward and backward stepwise feature selection
was performed for each combination of dataset and algo-
rithm. In addition, each experiment was performed using
original unscaled features and with features scaled to unit
standard deviation, and results are shown using the best scal-
ing option.

Each algorithm was further tested using initial weighting
functions ω(i) = 1/k and ω(i) = 1/δ(x(i), q) and results are
shown using the best weighting.

Each experiment varied k from 1 to 40 and selected the k
value with the best accuracy. For a fair comparison, it is nec-
essary to allow different k values for each algorithm since
each one utilizes the k nearest neighbors differently.

Tables 1 and 2 show summary results. For each dataset
the total number of samples and dimensions is shown. Each
algorithm shows the number of selected features d and the
value of k with the best accuracy.

In the majority of datasets, balancing using one of the two
algorithms can improve performance with only two datasets
leading to standard kNN having slightly better performance
and two sets where it is tied.

Higher values of k suggest increasing noise since bet-
ter accuracy is obtained by averaging more samples from
a larger neighborhood. The results show standard kNN is
likely the best choice in this case. Balancing in the presence
of high noise increases variance and is less effective.

The results indicate that the balancing algorithms work
best on datasets in which the intrinsic dimensionality is less
than around 10 dimensions. Beyond this level the sample
density is likely insufficient to perform effective balancing.

Related Work
The choice of distance metric is crucial for nearest-neighbor
algorithms and much effort has focused on learning dis-
tance metrics for classification. Global methods described
in (Weinberger and Saul 2009) apply global linear transfor-
mations to the input data. Locally discriminative transforma-
tions are applied in (Hastie and Tibshirani 1996) and (Mu,
Ding, and Tao 2013). In (Wang, Neskovic, and Cooper 2007)
the distance to each training point is scaled inversely with its
distance to the class boundary, resulting in fewer neighbors
from high-variance regions.

Other approaches vary the neighborhood size. In (Garcia-
Pedrajas, Romero Del Castillo, and Cerruela-Garcia 2017)
locally-adaptive k values are determined for each train-
ing sample. In (Pan, Wang, and Ku 2017) the local k-
neighborhood is extended to include training samples whose
k-neighborhood includes the query point, increasing the in-
fluence of neighbors from lower-density regions.

Yet to our knowledge, no existing methods directly take

114

Dataset Samples Dim kNN Axis-balanced kNN Box kNN
d Best K MSE d Best K MSE d Best K MSE

3D Roads 434874 2 2 2 1.070 2 2 1.059 2 3 0.925
Airfoil Self Noise 1503 5 5 2 5.10 4 4 4.99 3 30 4.95

Concrete 1030 8 5 4 48.2 6 4 47.3 5 10 52.4
Energy Cool 768 8 7 4 3.47 7 4 3.20 4 16 3.88
Energy Heat 768 8 5 1 0.355 6 4 0.379 6 2 0.345

Parkinson’s Motor 5876 16 16 13 44.1 16 2 56.1 16 13 44.9
Power 9568 4 4 7 13.5 4 5 15.1 4 18 11.8
Protein 45731 9 9 6 13.7 9 2 15.1 9 10 12.9

Red Wine Quality 1599 11 4 31 0.326 4 37 0.346 8 31 0.341
White Wine Quality 4898 11 8 20 0.369 4 50 0.392 10 31 0.369

Yacht 308 6 2 8 1.95 2 8 1.96 2 3 2.05

Table 1: Real-World Regression Datasets

Dataset Samples Dim kNN Axis-balanced kNN Box kNN
d Best K Error % d Best K Error % d Best K Error %

Balance 625 4 4 17 10.06 4 13 9.44 4 11 19.01
Iris 150 4 4 13 3.15 4 20 1.90 4 1 4.24

Wine 178 13 8 32 0.742 6 12 3.621 9 11 1.040

Table 2: Real-World Classification Datasets

into account asymmetric distribution of samples in the local
neighborhood.

Conclusions and Further Work
This paper introduces two modifications of standard kNN.
Axis-balanced kNN adjusts the weights of the k-nearest
neighbors to approximate a balanced distribution along each
feature axis. Box kNN adjusts the weights of the k-nearest
neighbors to include only the nearest neighbors in each fea-
ture axis direction. Neither method requires additional pa-
rameters or tuning beyond that required by kNN.

Experiments using synthetic and real-world data demon-
strate balanced kNN approaches can outperform standard
kNN when correctly selected, and often show more stabil-
ity for varying values of k.

Axis-balanced kNN performs better when training data is
more dense and there is little to moderate noise. Box-kNN
performs better when training data is more sparse and there
is little noise. When there is a high level of noise, or the
intrinsic dimensionality of the data is 10 or higher, standard
kNN is likely the best choice.

Balancing here is performed along feature axes of the
original sample data. Balancing in other directions may yield
further improvement, such as using whitened data, or by first
globally transforming the sample data using distance metric
learning methods.

References
Dheeru, D., and Karra Taniskidou, E. 2017. UCI Machine
Learning Repository.
Garcia-Pedrajas, N.; Romero Del Castillo, J. A.; and
Cerruela-Garcia, G. 2017. A Proposal for Local k Values
for k-Nearest Neighbor Rule. IEEE Trans on Neural Net-
works and Learning Systems 28(2):470–475.

Hastie, T., and Tibshirani, R. 1996. Discriminant adaptive
nearest neighbor classification. IEEE Trans on Pattern Anal-
ysis and Machine Intelligence 18(6):607–616.
Mu, Y.; Ding, W.; and Tao, D. 2013. Local discrimina-
tive distance metrics ensemble learning. Pattern Recognition
46(8):2337–2349.
Pan, Z.; Wang, Y.; and Ku, W. 2017. A new general nearest
neighbor classification based on the mutual neighborhood
information. Knowledge-Based Systems 121:142–152.
Titterington, D. M. 1987. A Re-Examination of the
Distance-Weighted k-Nearest Neighbor Classification Rule.
IEEE Trans on Systems, Man, and Cybernetics 17(4):689–
696.
Wang, J.; Neskovic, P.; and Cooper, L. N. 2007. Improving
nearest neighbor rule with a simple adaptive distance mea-
sure. Pattern Recognition Letters 28(2):207–213.
Weinberger, K. Q., and Saul, L. K. 2009. Distance Metric
Learning for Large Margin Nearest Neighbor Classification.
Journal of Machine Learning Research 10:207–244.
Wu, X.; Kumar, V.; Ross, Q. J.; Ghosh, J.; Yang, Q.; Motoda,
H.; McLachlan, G. J.; Ng, A.; Liu, B.; Yu, P. S.; Zhou, Z. H.;
Steinbach, M.; Hand, D. J.; and Steinberg, D. 2008. Top 10
Algorithms in Data Mining. Knowledge and Information
Systems 14(1):1–37.

115

