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Abstract

Technical and fundamental analysis are traditional tools
used to analyze stocks; however, the finance literature has
shown that the price movement of each individual stock is
highly correlated with that of other stocks, especially those
within the same sector. In this paper we propose a general-
purpose market representation that incorporates fundamental
and technical indicators and relationships between individual
stocks. We treat the daily stock market as a ‘market image’
where rows (grouped by market sector) represent individual
stocks and columns represent indicators. We apply a convo-
lutional neural network over this market image to build mar-
ket features in a hierarchical way. We use a recurrent neural
network, with an attention mechanism over the market fea-
ture maps, to model temporal dynamics in the market. Our
model outperforms strong baselines in both short-term and
long-term stock return prediction tasks. We also show another
use for our market image: to construct concise and dense mar-
ket embeddings suitable for downstream prediction tasks.

Introduction

In recent years there have been multiple proposals for meth-
ods to adopt machine learning techniques in quantitative
finance research. Modeling stock price movement is very
challenging since stock prices are affected by many exter-
nal factors such as political events, market liquidity and
economic strength. However, the rapidly growing volume
of market data allows researchers to upgrade trading algo-
rithms from simple factor-based linear regression to com-
plex machine learning models such as reinforcement learn-
ing (Lee 2001), k-nearest neighbors (Alkhatib et al. 2013),
Gaussian processes (Mojaddady, Nabi, and Khadivi 2011)
and many deep learning approaches, e.g. (Kwon, Choi, and
Moon 2005; Rather, Agarwal, and Sastry 2015; Singh and
Srivastava 2017).

A variety of financial theories for market pricing have
been proposed, which can serve as the theoretical foundation
for designing tailored machine learning models. First, the
efficient market hypothesis (Malkiel and Fama 1970) states
that all available information is reflected in market prices.
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Fluctuations in stock prices are a result of newly released
information. Therefore, through analyzing individual stock
price movements, a machine learning-based model should
be able to decode the embedded market information.

Second, value investing theory (Graham and Dodd 2002)
suggests to buy stocks below their intrinsic value to limit
downside risk. The intrinsic value of a company is calcu-
lated by fundamental indicators which are revealed in quar-
terly and annual financial reports. A machine learning-based
model should therefore be capable of discovering the rela-
tionships between different types of fundamental indicator
and the intrinsic value of a company.

Third, the methodology of technical analysis intro-
duced in (Murphy 1999) includes well-known context-
dependent leading indicators of price movement such as
relative strength index (RSI) and moving average con-
vergence/divergence (MACD). A machine learning-based
model should be able to estimate the predictive power of tra-
ditional technical indicators in different market situations.

Fourth, the stock market has a well-defined structure. In
the macro, people have invented different financial indexes
for major markets such as the NASDAQ-100 and Dow Jones
Industrial; these are composite variables that may indicate
market dynamics. In the micro, the stock market is usu-
ally divided into 10 major sectors and tens of subsectors
for key areas of the economy. Stocks in the same sector
have a shared line of business and are expected to perform
similarly in the long run (Murphy 2011). Traditional ways
of dealing with market information are to include hand-
crafted microeconomic indicators in predictive models, or
to construct covariance matrixes of returns among groups
of stocks. However, those hand-crafted features can become
gradually lagged and unable to dynamically adjust to market
changes. Therefore, a machine learning-based model should
leverage information from the whole market as well as the
sector of each included company.

Inspired by these financial theories, we implement an
end-to-end market-aware system that is capable of captur-
ing market dynamics from multimodal information (funda-
mental indicators (Graham and Dodd 2002), technical indi-
cators (Murphy 1999), and market structure) for stock return



Indicator Set Time Scale Indicators
Close-to-Open ratio,
High-to-Open ratio,
. . Low-to-Open ratio,
Price-Volume | Daily Close—to—P?igh ratio,
Close-to-Low ratio,
High-to-Low ratio
. . last {1,2,3,4,5}-day return,
Historical | pay last {{5,10,15,2%),25,30}-day
eturn ;
cumulative return
Technical Dail BOLL,DMI,RSI,
Indicators y MACD,ROC,MOMENTUM
EPS,CUR_RATIO,
TOT_DEBT_TO_TOT_EQY,
Fundamental FNCL_LVGR,
Indicators | Quartly RETURN _TOT_EQY,
PE_RATIO,
SHORT_INT_RATIO

Table 1: Indicators used in our *market image’

prediction’. First, we construct a ‘market image’ as in Fig-
ure 1, in which each row represents one stock and each col-
umn represents an indicator from the three major categories
shown in Table 1. Stocks are grouped in a fixed order by their
sector and subsector (industry). Then we apply state-of-the-
art deep learning models from computer vision and natural
language processing on top of the market image. Specifi-
cally, our contributions in this work are to: (1) leverage the
power of attention-based convolutional neural networks to
model spatial relationships between stocks in the market di-
mension, and of recurrent neural networks for time series
forecasting of stock returns in the temporal dimension, and
(2) use a convolutional encoder-decoder architecture to re-
construct the market image for learning a generic and com-
pact market representation.

In the following sections, we present our market image,
then our models for market-aware stock prediction, and fi-
nally our method for computing generic and compact market
representations. We present empirical results showing that
our model for market-aware stock prediction beats strong
baselines and that our market representation beats PCA.

The Market Image

We represent the daily market as an image M, a m X n matrix
where m is the number of unique stocks and n is the num-
ber of extracted traditional trading indicators. In our experi-
ments, we used the indicators from Table 1. A sample market
image is depicted in Figure 1. The market image serves as a
snapshot of market dynamics. These market images can be
stacked to form a market cube as shown in Figure 2, thus
incorporating a temporal dimension into the representation.

For our experiments later in this paper, we collected the 40
indicators from Table 1 for each of the S&P 500 index con-
stituents on a daily basis from January 1999 to Dec 2016,
and used this to construct daily market images. The size of

IStock return is appreciation in price (plus any dividends) di-
vided by the original price of the stock.
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Figure 1: 1-day market image snapshot

the daily image is 500 (stocks) X 40 (multimodal indica-
tors), denoted as My = {m;=1_ 500,7j=1,.40 € R}q. In
each market image, stocks are grouped first by the ten sec-
tors in the Global Industry Classification Standard (GICS),
and within each sector, by the GICS subsectors. We normal-
ize the values for each indicator into a 0-1 scale by applying
a min-max scalar using the min and max values of that indi-
cator in the training data (see equation (1)).

{M; j}a —min({M;}(ay)
(maz({M;}ay) — min({M;}ay)

Some fundamental indicators are updated quarterly; to fill
these blank cells in our market images, we applied a back-
ward fill policy to the affected columns.

{M; j}a= (D

Market-Aware Stock Return Prediction

Let us assume that we want to predict the return of stock,,
at day d based on information from the previous ¢ days. This
means that we have to learn a market representation with
respect to stock,, given the previous ¢ market images as
the market context. First we describe our Market Attention
model (MA; right side of Figure 2), which builds market-
aware representations for individual stocks. Second, we de-
scribe how we add temporal modeling to this model to get
our Market-Aware Recurrent Neural Network model (MA-
RNN; left side of Figure 2). Third, we present empirical
results demonstrating that these models outperform strong
baselines for stock return prediction.
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Figure 2: Market Cube

Market Attention Model

We rotate and stack ¢ market images to construct a 3-D mar-
ket cube E € R**™*X" Rows (t) index the temporal dimen-
sion, columns (m) index stocks, and channels (n) index in-
dicators, as shown in Figure 2. Let 7 € R™ refer to the
m-dimensional vector indexed by ¢ in the temporal dimen-
sion and n in the factor dimension of the market cube £ and



y;" € R™ refer to the n-dimensional vector indexed by ¢ in
the temporal dimension and m in the stock dimension.

Separately, we initialize stock embeddings S =
{s',s%,...s™} to non-zero vectors, where s™ € RI*/*1 in-
dexes the m-th column’s stock embedding.

Then, we use a convolutional neural network (CNN) to
generate multiple feature maps of the market cube through
multiple convolution operations (right side of Figure 3).
Each convolution operation involves a filter w € R!*™,
which is applied to a window of one day to produce a new
feature ¢’ by:

T N
=1 v

t n=1

2P +b),beR 2)

7 denotes the j-th kernel; in our experiments, we use 192
different kernels. f is a ReLU active function for introducing
non-linearities into the model. So we have a 1-D convolution
filter that slides its window vertically with stride=1 along the
first dimension of the market cube to produce a feature map
column vector ¢/ =< cl,c%, ] >T.

Given a target stock embedding s™, the attention model
will return a weighted arithmetic mean of the {¢/}, where
the weights are chosen according the relevance of each
¢ to the stock embedding s™. We use the additive atten-
tion mechanism explained in (Bahdanau, Cho, and Bengio
2014). In equation 3, wy, and wg, are learned attention pa-
rameters.

™ 4w, - Y) 3)

z; = tanh(ws, -
We compute attention weights using a softmax function

el x)
! Zl exp(v; - 2;)

The conditioned market embedding p™
pm = Z CLjCj
J

Intuitively, each filter serves to summarize correlations be-
tween different stocks across multiple indicators. Each ker-
nel is in charge of finding different types of patterns among
the raw indicators. The attention mechanism of the CNN is
responsible for selecting the patterns on which to focus for
a particular target stock. The conditioned market embedding
summarizes the information contained in the market cube E
that is pertinent to the target stock.

“
is calculated by

&)

Market-Aware RNN

In parallel, we deploy a long-short-term memory recurrent
neural network (LSTM) to model the temporal dependen-
cies in a sequence of multidimensional features y;"of a spe-
cific stock,,. Recurrent neural networks (Hochreiter and
Schmidhuber 1997; Mikolov et al. 2010) are widely ap-
plied in natural language processing applications to cap-
ture long-range dependencies in time series data (Sutskever,
Vinyals, and Le 2014; Cho et al. 2014; Dyer et al. 2015;
Yang et al. 2017). The attention mechanism (Bahdanau,
Cho, and Bengio 2014; Luong, Pham, and Manning 2015)

100

has become an indispensable component in time series mod-
eling with recurrent neural networks; it provides an evolving
view of the input sequence as the output is being generated.

The sequence of multidimensional features for stock,,
W, vy, ...yf") are sequentially encoded using a LSTM cell
of size 25. The mechanism of the LSTM is defined as:

it (o

fi _ o

or| = . W[htfla wt]
Tt tanh

= fiOc—1+1i OJ

he = 0y © tanh(cy)

We treat the last hidden LSTM output, ¢", as the represen-
tation of the target stock,,,’s performance in the past ¢ days.

Finally, we feed both our learned dense market perfor-
mance embedding p™ and stock performance embedding
g™ to a feedforward neural network. They are non-linearly
transformed separately in the first layer ¢ and concatenated
together to predict the target stock return:

= Q(Z Wip1(p™), p2(q

")) +0) (6)

Evaluation

We conducted an evaluation of our Market-Attention RNN
model (MA-RNN). For labels, we built stock return ma-
trices for each market image. We used 1-day and 5-
day returns for short-term predictions and 15-day and 30-
day returns for long-term predictions, denoted as Ry =
{ri=1,...500,j=1,...10 }d- In order to reduce the effect of
volatility on returns, we divide the individual daily return
by its recent past standard deviation of return (cf the Sharpe
ratio). The moving window size to calculate the standard de-
viation is 10, see equation (7).

{rijta=

Ti,j
U(T’j,{d—lo:d—l})

)

We divided our input market images into training, valida-
tion and backtest sets by time, as shown in Table 2.

Training Validation | Backtest
Period 1999-2012 | 2012-2015 | 2015-2016
#Trading Days | 3265 754 504

Table 2: Data Split

We trained our MA-RNN model with the following hy-
perparameters: a convolution stride size of 1; a dimensional-
ity of 100 for the trainable stock embeddings; a dimensional-
ity of 32 for the attention vector of the convolutional neural
work; a dimensionality of 40 for the final market represen-
tation vector; a cell size of 32 for the LSTM; hidden lay-
ers of dimensionality 100 and 50 respectively for our fully
connected layers; ReLu non-linearity; and a time window ¢
of 10. All the initialized weights were sampled from a uni-
form distribution [-0.1,0.1]. The mini-batch size was 10. The
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models were trained end-to-end using the Adam optimizer
(Kingma and Ba 2014) with a learning rate of 0.001 and
gradient clipping at 5.

For benchmarking our MA-RNN model, we chose several
standard machine learning models. We report MSE of the %
return prediction as our metric.

We conducted two experiments. First, we compared the
performance of models with and without market informa-
tion. Linear regression (LR), a feedforward neural network?
(FFNN), a long-short term memory recurrent neural network
(LSTM-RNN) that uses only individual stocks’ price histo-
ries® and support vector regression* (SVR) (Drucker et al.
1997) serve as our market info-free comparison models. Our
Market-Attention model (MA) relies solely on the learned
market representation, p,, (with reference to Figure 3, it
uses only the CNN with attention, and ignores the output of
the LSTM). We found that market awareness can be suc-
cessfully modeled to improve stock return prediction. As
shown in Table 3, at every time interval (n = 1 day, 5 days,
15 days and 30 days) the Market-Attention (MA) model has
lower MSE than the other models, which have no informa-
tion about the market as a whole®.

Model n=1 n=5 n=15 n=30
LR 3711 | 6.750 | 12.381 | 18.429
SVR 2411 | 4917 | 8.149 11.930
FFNN 1.727 | 3.952 | 6.967 9.088
LSTM-RNN | 1.426 | 2.896 | 5.854 7.923
MA 0.91 1.63 4.383 5.114

Table 3: Mean Squared Error of % Return Prediction

>We used two hidden layers of size 50 and sigmoid non-
linearity.

3We used a LSTM cell size of 25.

*We used a linear kernel function with penalty parameter c=0.3.

3Obviously, the further away from the current day, the higher
the error is expected to be.

é Stockp, return prediction

Figure 3: Architecture of Market-Attention Recurrent Neural Network Model (MA-RNN)
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Second, we compared the MA model with the full MA-
RNN model to show the value of explicitly modeling tem-
poral dependencies. We found that temporal awareness
can be successfully used in a market-aware model for
improved stock return prediction. As shown in Table 4,
our MA-RNN model has lower MSE than our baseline MA
model.

Model n=1 n=5 n=15 | n=30
MA 0.91 1.63 4383 | 5.114
MA-RNN | 0.790 | 1.210 | 3.732 | 4.523

Table 4: Mean Squared Error of % Return Prediction

Generic Market Representation:
MarketSegNet

Based on our finding from the previous section that market
awareness leads to improved stock prediction accuracy, we
propose a novel method to learn a generic market represen-
tation (MarketSegNet) in a end-to-end manner. The market
representation learning problem is to convert market images
(potentially of variable dimensions) to fixed-size dense em-
beddings for general purpose use. As a test of the fidelity
of this representation, from the generic market embedding
it should be possible to reconstruct the input market image
pixel wise.

Inspired by (Badrinarayanan, Kendall, and Cipolla 2017),
we developed a deep fully convolutional autoencoder archi-
tecture for pixel-wise regression (Figure 4). The convolu-
tional encoder-decoder model was originally proposed for
scene understanding applications, such as semantic segmen-
tation (Long, Shelhamer, and Darrell 2015; Badrinarayanan,
Kendall, and Cipolla 2017) and object detection (Ren et al.
2015). A convolutional encoder builds feature representa-
tions in a hierarchical way, and is able to take in images of
arbitrary sizes, while a convolutional decoder is able to pro-
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Figure 4: Architecture of MarketSegNet

duce an image of a corresponding size. By using convolu-
tional neural networks, the extracted features exhibit strong
robustness to local transformations such as affine transfor-
mations and even truncations (Zheng, Yang, and Tian 2017).
In a stock market modeling application, after representing
each day’s overall stock market as an image, we believe that
(1) building features in a hierarchical way can provide a bet-
ter summary of the market, since stocks exhibit an inherent
hierarchical structure, and (2) robustness to local transfor-
mations is desirable, since the stock universe is constantly
changing, with new companies being added, and other com-
panies removed, while we do not want the overall market
representation to be greatly affected by the addition or re-
moval of a single company.

Since our market image has a different spatial configura-
tion from a normal image, we customize the structure of our
end-to-end architecture. The encoder network is composed
of traditional convolutional and pooling layers which are
used to reduce the resolution of the market image through
max-pooling and subsampling operations. Meanwhile, the
encoder network stores the max-pooling indices used in the
pooling layer, to be applied in the upsampling operation in
the corresponding decoder network. The decoder network
upsamples the encoder output using the transferred pool in-
dices to produce sparse feature maps, and uses convolutional
layers with a trainable filter bank to densify the feature map
so0 as to recover the original market image. Since companies
are grouped in the market image by sector, max-pooling in
the encoder network can capture the trends of stocks in the
same sector.

To evaluate MarketSegNet, we compare its ability to re-
construct input market images with that of a well-known
algorithm for dimensionality reduction, Principal Compo-
nent Analysis (PCA). PCA uses singular value decomposi-
tion to identify variables in the input data that account for the
largest amount of variance. We used our training data to train
our MarketSegNet model and to fit a PCA model. We then
used the MarketSegNet and PCA models to compress and
then reconstruct the market images in our test data. We com-
pared the reconstruction error rates of PCA and our Market-
SegNet model. Since we varied the sizes of our learned mar-
ket embeddings from 16 to 128, for each size we created a

Reconstruction Error
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Figure 5: Market Image Reconstruction Error Rates
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PCA model with that number of principal components.

Our results are shown in Figure 5. For every size of mar-
ket embedding, MarketSegNet has lower reconstruction er-
ror than PCA.

Conclusions and Future Work

In this paper, we present a method for constructing a ‘market
image’ for each day in the stock market. We then describe
two applications of this market image:

1. As input to ML-based models for stock return prediction.
We demonstrate (a) that market awareness leads to re-
duced error vs non-market-aware methods, and (b) that
temporal awareness across stacks of market images leads
to further reductions in error.

2. As input to a ML-based method for constructing generic
market embeddings. We show that the learned market em-
beddings are better able to reconstruct the input market
image than PCA across a range of dimensionality reduc-
tions, indicating that they capture more information about
the input market image.

We should emphasize that our MA model, our MA-RNN
model and our MarketSegNet market embeddings do not
represent trading strategies. They are agnostic to trading
costs, lost opportunity cost while out of the market, and
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other factors that matter with an active trading strategy. That
said, they may provide information that is useful for other
Al-driven financial prediction tasks. Other research groups
that have used the models described here have reported im-
proved performance in predicting the directionality of stock
price moves on earnings day, and in assessing which events
will move markets. We leave further exploration of the ap-
plications of these models to future work.
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