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Abstract

The representation of semantic meaning of sentences using
neural network has recently gained popularity, due to the fact
that there is no need to specifically extract lexical syntactic
and semantic features. A major problem with this approach
is that it requires large human annotated corpora. In order to
reduce human annotation effort, in recent years, researchers
made several attempts to find universal sentence representa-
tion methods, aiming to obtain general-purpose sentence em-
beddings that could be widely adopted to a wide range of NLP
tasks without training directly from the specific datasets. In-
ferSent, a supervised universal sentence representation model
proposed by Facebook research, implements 8 popular neu-
ral network sentence encoding structures trained on natural
language inference datasets, and apply to 12 different NLP
tasks. However, the relation classification task was not one
of these. In this paper, we re-train these 8 sentence encod-
ing structures and use them as the starting points on relation
classification task. Experiments using SemEval-2010 datasets
show that our models could achieve comparable results to the
state-of-the-art relation classification systems.

Introduction
The mission of SemEval-2010 task 8 (Hendrickx et al. 2009)
is to predict semantic relations between pairs of nominals.
Formally, given a sentence S with the annotated pairs of
nominals e1 and e2, the task is to identify the semantic rela-
tion between e1 and e2 from a pre-defined relation set. For
instance, the following sentence contains an example of the
CAUSE-EEFFECT (PRESSURE, BURST) relation between the
nominals burst and pressure.

The burst has been caused by water hammer pressure.

Recent work on relation classification has focused on the
use of deep neural networks. Most of these models follow a
standard architecture: (1) a sentence embedding layer (sen-
tence encoder) that generates sentence embeddings which
represents the semantic meaning of the original text, and (2)
a classification layer that generates a probabilistic distribu-
tion of the potential relations from the sentence embeddings.
In recent years, several neural network-based sentence em-
bedding structures were proposed, such as Recursive Neural
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Networks (Socher et al. 2012), Convolutional Neural Net-
works (Zeng et al. 2014) (Santos, Xiang, and Zhou 2015),
Long Short Term Memory Networks (LSTM) (Xu et al.
2015), Bidirectional LSTM (Zhang and Wang 2015), and
Bidirectional LSTM with attention (Zhou et al. 2016). How-
ever, all these structures are trained in a supervised manner
directly on the training data of SemEval-2010 dataset. Re-
lying on SemEval-2010 training datasets hinders new appli-
cations. An obvious answer to this problem is to use unsu-
pervised architectures to learn the sentence representation.
Recent works include Paragraph Vectors (Le and Mikolov
2014), Skip-thoughts (Kiros et al. 2015) and FastSent (Hill,
Cho, and Korhonen 2016). However, these models have not
reach satisfactory performance in practice. Another possible
solution is to use transfer learning.

Transfer learning is a machine learning strategy where
a model trained on a task is re-used as the starting point
for a new task, so the new task will take the advantage
of the pre-learned knowledge from the previous task. The
idea of transfer learning has been proven successful in com-
puter vision (Taigman et al. 2014), (Antol et al. 2015). On
the contrary, it has attracted less attention in the NLP com-
munity. Facebook AI research released InferSent (Conneau
et al. 2017) that performs supervised learning of universal
sentence representation from Natural Language Inference
data. It implemented 8 popular sentence encoding structures
such as GRU, LSTM, BiLSTM (with mean or max pool-
ing), self-attentive network and Hierarchical ConvNet, and
trained them on the Stanford Natural Language Inference
Datasets (SNLI) (Bowman et al. 2015) which contains 570K
human-generated English sentence pairs. After the sentence
encoding structures are trained to learn the representation of
sentences, they have been applied to 12 different NLP tasks
such as Semantic Textual Similarity, Paraphrase Detection
and Caption-Image Retrieval. The results show that transfer
learning-based models outperform the models using unsu-
pervised sentence representation methods like SkipThought
and are very comparable to state-of-the-art models that di-
rectly trained from the training data of each of these 12 spe-
cific tasks.

Even though Infersent has been transferred to 12 differ-
ent NLP tasks, the evaluation on Relation Classification task
was not covered in their paper. The primary contribution of
our paper is to fill in this gap and extend their research to
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Figure 1: The main structure of our system. A BLSTM with max-pooling network is used as an example of sentence encoder
defined in InferSent.

the area of relation classification. To the best of our knowl-
edge, this is the first attempt to solve Relation Classification
problem using transfer learning.

Approach
In this section, we will introduce our approach consist-
ing of five steps: (1) data processing, (2) sentence encoder
trained on Natural Language Inference task (original task),
(3) neural network model built for Relation Classification
task (transferred task), (4) sentence encoder architecture and
(5) parameter setting. Figure 1 illustrates the structure of our
system.

Data Processing
Based on previous literature (Xu et al. 2015), the shortest
dependency path between two nominals is mostly sufficient
to represent the semantic relation between them. Instead of
feeding in the whole sentence, we utilize the words in the
shortest dependency path between two nominals as the raw
input to the sentence embedding layer. Figures 2 and 3 illus-
trate the dependency graph of the sentence “The burst has
been caused by water hammer pressure”, and the shortest
dependency path between nominals burst and pressure. In
this example, the words sequence “burst caused pressure”
will substitute the whole sentence as the system input.

Sentence Encoder Trained on Natural Language
Inference Task
The task of Natural Language Inference, also known as Tex-
tual Entailment, is to detect the relationships between two
sentences, a premise sentence and a hypothesis sentence.
The relation between the sentence pair is one of three cate-
gories: entailment (hypothesis cannot be false when premise

Figure 2: The dependency graph of sentence “ The burst has
been caused by water hammer pressure”. nsubjpass, nmod,
case etc. are the dependency relations between tokens

burst caused
nsubjpassoo nmod // pressure

Figure 3: Figure 3: The shortest dependency path between
burst and pressure. in the sentence. “ The burst has been
caused by water hammer pressure.”

is true), contradiction (hypothesis is false whenever premise
is true) and neutral (the truth of hypothesis could not be de-
termined on the basis of premise).

Figure 1 Part (a) shows how the pre-defined sentence en-
coders in InferSent are trained on Natural Language Infer-
ence Task. The sentence pairs (premise and hypothesis) are
first passed through a sentence encoder to generate sentence
embeddings (u and v), u is the sentence embedding for the
premise sentence and v is the sentence embedding for hy-
pothesis sentence. A connection layer will later concatenate
u, v, the element-wise absolute difference of u and v, and
the element-wise multiplication of u and v, and generate a
concatenated vector (u, v, |u − v|, u ∗ v) that represents the
relationships between the original sentence pairs. The con-
catenated vector (u, v, |u− v|, u ∗ v) is fed into a 3-classifier
(Entailment, Neutral and Contradiction) to perform classifi-
cation and generate the probabilistic distribution of the three
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candidate relations.
After the system is trained, parameters in the sentence en-

coder are saved to be used in transfer task.

Sentence Encoder on Relation Classification Task
Figure 1 Part (b) shows how the pre-trained sentence en-
coders are transferred to Relation Classification task. First,
we will set up the sentence encoder by re-loading the param-
eters trained from the previous task. The words in the short-
est dependency path between nominals will be fed into the
sentence encoder and generate the embeddings that could
represent the semantic relations between nominals. An 18-
classifier is built on top of the embedding layer to generate
the probabilistic distribution of the 18 candidate relations
defined in SemEval-2010 relation set.

Sentence Encoder Architectures
In this section, we will briefly introduce the structures of
encoders defined in InferSent.

InferSent pre-defined 8 different sentence encoding struc-
tures. (1) InferSentEncoder (2) BLSTMprojEncoder (3)
BGRUlastEncoder (4) InnerAttentionMILAEncoder (5) In-
nerAttentionYANGEncoder (6) InnerAttentionNAACLEn-
coder (7) ConvNetEncoder and (8) LSTMEncoder. Except
from encoder (7) ConvNetEncoder with the structure of Hi-
erarchical Convolutional Architecture, the rest are all se-
quential encoders based on (Bi-)GRU/(Bi-)LSTM that could
model the sequential information and long-distance patterns
in the text. In the following section, InferSentEncoder (1)
will be used as an example to introduce the math behind
these sequential encoder architectures.

The architecture of InferSentEncoder is a Bi-directional
LSTM neural network with max-pooling layer. The structure
of the model is shown in Figure 1 part (c). We will first illus-
trate the structure of LSTM neural network, then extend it to
bi-directional model, and at last introduce the max-pooling
strategy. The mathematical formulation of LSTM units is as
follows:

it = σ(W (i)xt + U (i)ht−1) (1)

ft = σ(W (f)xt + U (f)ht−1) (2)

ot = σ(W (o)xt + U (o)ht−1) (3)

c̃t = tanh(W (c)xt + U (c)ht−1) (4)

ct = ft ◦ ct−1 + it ◦ c̃t (5)

ht = ot ◦ tanh(ct) (6)

It contains five components: an input gate it, a forget gate
ft, an output gate ot, a new memory cell c̃t, and a final mem-
ory cell ct. Three adaptive gates it, ft, ot and new memory
cell c̃t are computed based on the previous state ht−1 , cur-
rent input xt, and bias term b. The final memory cell ct is a
combination of previous cell content ct−1 and new memory
cell c̃t weighted by the forget gate ft and input gate it. The
final output of the LSTM hidden state ht is computed with
the output gate ot and final memory cell ct.

A Bi-LSTM could be viewed as a network that maintains
two hidden LSTM layers together, one for the forward prop-
agation−→h t and another for the backward propagation←−h t at
each time-step t. The final prediction ŷt is generated through
the combination of the score results produced by both hid-
den layers −→h t and←−h t . The mathematical representation of
a simplified Bi-LSTM is shown as follows:

−→
h t = f(

−→
Wxt +

−→
V
−→
h t−1 +

−→
b ) (7)

←−
h t = f(

←−
Wxt +

←−
V
←−
h t−1 +

←−
b ) (8)

ŷt = g(Uht + c) = g(U [
−→
h t−1;

←−
h t−1] + c) (9)

The idea behind max pooling is that the local features (the
output of hidden state at each time step t) are not strong
enough to represent the entire sentence but could represent
the local patterns well. The final representation of the sen-
tence could be achieved by merging the representations of
each strongest local patterns together.

Besides the max pooling, attention mechanism is another
strategy to learn which local pattern is important for the fi-
nal representation. The attention mechanism is calculated in
3 steps. First, we feed the hidden state ht through a one-layer
perceptron to get ut which could be viewed as a hidden rep-
resentation of ht. We later multiply ut with a context vector
uw and normalized the results through a softmax function to
get the weight at of each hidden state ht. The context vec-
tor could be seen as a high-level vector to select informative
hidden state and will be jointly learned during the training
process. The final sentence representation is computed as a
sum over of the hidden state ht and its weights at. The math-
ematic representation is as follows:

ut = tanh(Wht + b) (10)

at =
exp(uTt uw)∑
t exp(u

T
t uw)

(11)

S =
∑
t

atht (12)

Sentence encoders (4) to (6) all use different kinds of
attention mechanisms. InnerAttentionMILAEncoder is in-
spired from (Lin et al. 2017), InnerAttentionYANGEncoder
is based on (Liu et al. 2016), and InnerAttentionNAACLEn-
coder is built on top of (Yang et al. 2016).

For more details about encoder structures, please refer
to the aforementioned citations and its implementation on
GitHub 1.

Parameter Setting
Natural Language Inference task (original task) and Relation
Classification task (transferred task) are both classification
problems. We use cross-entropy loss between the system
output and the gold annotated output as the training func-
tion. Glove.840B.300d (Pennington, Socher, and Manning
2014) is used to initialize the word embeddings.

In the training procedure of Natural Language Inference
task, we only change the number of hidden units in sentence

1https://github.com/facebookresearch/InferSent
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Relationship Sentences with labeled nominals
Entity-Destination(e1, e2) [People]e1 have been moving back into [downtown]e2 .
Instrument-Agency(e2, e1) Even commercial [networks]e1 have moved into [high− definition broadcast]e2 .
Message-Topic(e2, e1) Bob Parks made a similar [offer]e1 in a [phonecall]e2 made earlier this week.
Cause-Effect(e2, e1) He had chest pains and [headaches]e1 from [mold]e2 in the bedrooms.
Entity-Origin(e1, e2) The [staff ]e1 was removed from his [position]e2
Product-Producer(e2, e1) The [bacterial aerosol]e1 was generated from an up-draft [nebulizer]e2 .
Component-Whole(e2, e1) I have recently developed creases in my [ear]e1 [lobes]e2
Content-Container(e1, e2) The [key]e1 was in a [chest]e2 .
Cause-Effect(e2, e1) In the same way, a [society]e1 is built up of many [individuals]e1 .

Table 1: Examples of relations and Sentences with labeled nominals in SemEval-2010

embedding layer (sentence encoder) and keep the rest of the
parameters as default settings in InferSent. The gradient de-
scent optimizer is SGD with learning rate of 0.1.

In the Relation Classification task, the number of hidden
nodes in the embedding layer are the same as in the original
task. The number of hidden nodes in the classification layer
is associated with the number of nodes and the structure of
the embedding layer. For example, if the number of nodes
in embedding layer is n, and the structure of the embedding
later is LSTM or Bi-LSTM, then the number of nodes in
the classifier will be n or 2n. ADAM is used as the gradient
descent optimizer with learning rate of 0.01.

Experiment and Results
Dataset
We use the SemEval-2010 Task 8 dataset to perform our ex-
periments. This dataset contains 10,717 instances (8000 for
training and 2717 for testing) annotated with 9 ordered re-
lationships (with two directions) and an undirected Other
relation, resulting in 19 relation classes. Table 1 shows ex-
amples of relations and sentences with labeled nominals in
SemEval-2010 Task 8 dataset.

Experimental Setup
We build our experiment in 4 steps:

1. Extract the Shortest Dependency Path between Nominals
using Stanford CoreNLP (Manning et al. 2014).

2. Re-train 8 sentence encoders within InferSent on SNLI
dataset and save these well-trained encoders.

3. Reload the encoders for relation classification task and
build an 18-way classifier (exclude Other class) as output
layer.

4. Evaluate the new relation classification model on
SemEval-2010 Task 8 testing dataset.
We use the official evaluation metric of SemEval-2010

which is based on macro-average F1 score that takes the di-
rectionality of 9 relations into consideration and ignore the
Other class.

Empirical Results
The results obtained are shown in Table 2. We compare
our results with other state-of-the-art relation classification

systems using deep learning approach trained directly on
SemEval-2010 training dataset. Table 2 shows the system
name and F1 score of 5 recent state-of-the-art systems and
our 8 universal sentence encoding systems evaluated on
SemEval-2010 Task 8 testing dataset. Since we do not en-
hance our sentence embeddings with linguistic features such
as POS, WordNet, NER, for a fair comparison, in Table 2,
we list the results of recent systems obtained without using
linguistic features as well. Their results optimized with lin-
guistic features are in parentheses.

Models F1
Recent Model (directly trained from training data)
RNN (Socher et al. 2012) 74.8 (77.6)
MV-RNN (Socher et al. 2012) 79.1 (82.4)
CNN (Zeng et al. 2014) 69.7 (82.7)
SDP-LSTM (Xu et al. 2015) 82.4 (83.7)
BLSTM (Zhang et al. 2015) 82.7 (84.3)
Att-LSTM (Zhou et al. 2016) 84.0
Our model (transfer learning model)
InferSent 80.2
BGRUlast 80.7
BLSTMproj 76.4
InnerAttentionMILA 74.6
InnerAttentionYang 77.5
InnerAttentionNAACL 76.9
ConvNet 77.9
LSTM 80.8

Table 2: Comparison of relation classification systems. We
did not list the variation of word embeddings in the table.
(Socher et al. 2012) (Zeng et al. 2014) use 50-d word em-
bedding. (Zhang et al. 2015) (Zhou et al. 2016) use 100-d
word embedding. (Xu et al. 2015) use 200-d word embed-
ding.

Results Analysis
From the results, we have several observations:

First, our model could achieve comparable results com-
pared with current state-of-the-art models, especially com-
pared with the models that solely take word embeddings as
features without using human annotated linguistic features.
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Some of our architectures can even outperform the (Socher
et al. 2012) RNN model that includes linguistic features.
This shows the effectiveness of our approach. However, the
overall results indicate that the universal sentence encoder
still performs below than the supervised encoder (used in the
current state-of-the-art models) that was directly trained for
the specific task. For example, except ConvNetEncoder, the
rest of the encoders all use (Bi-)GRU/(Bi-)LSTM structure,
and none of them could beat the results of (Xu et al. 2015),
(Zhang et al. 2015) and (Zhou et al. 2016) that use simi-
lar structures. As observed in (Conneau et al. 2017), using
transfer learning on a new task can be viewed as an unsuper-
vised approach.

Second, among the transfer learning models, encoders
with simple structure like LSTMEncoder could outperform
the encoders with complicated structure like InnerAttention-
MILAEncoder (BiLSTM with Attention). This is because
complicated structures could overfit on the original SNLI
dataset, hence they could not generalize well when being
transferred to SemEval dataset. We set up an experiment to
prove this. We initialized the number of hidden nodes in In-
nerAttentionMILA to 25, 50 and 100 (more hidden nodes
imply stronger learning ability), and the model received an
increasing 0.80, 0.81 and 0.82 F1 score on SNLI testing data.
However, when transferred to SemEval 2010 testing data,
we obtained a decreasing F1 score of 74.6, 73.9 and 73.0.
We can overcome this issue by an early stop of training pro-
cess of the encoders before they are over-specified for the
original tasks.

At last, in this paper, we just implemented a shallow ex-
periment that does not consider linguistic features and fine-
tuning the weights (we use most of the default parameters in
InferSent). The next step is to improve the results by com-
bining extra features and fine-tuning the weights to see if
it can overperform supervised encoders directly trained for
the task. We would also like to compare our encoder with
other universal sentence encoding methods such as Para-
graph Vectors, FastSent and SkipThought.

Related Work
Over the years, various methods have been proposed for uni-
versal sentence representation.

(Arora, Liang, and Ma 2016) proposed a simple but
tough-to-beat baseline for sentence embeddings. They repre-
sent the sentence simply as a weighted average of word vec-
tors and modified a bit with PCA, but their model improves
the performance by about 10% to 30% in textual similarity
tasks compared with sophisticated supervised methods such
as RNN and LSTM.

(Le and Mikolov 2014) represented Paragraph Vectors
that represents each document by a dense vector which is
trained to predict words in the document. It overcome the
weaknesses of bag-of-word models that loss the ordering of
the words and could capture the semantic of the words.

(Kiros et al 2015) proposed Skip-Thought Vectors. They
train an encoder-decoder model based on the continuity of
text (Si) from books and to predict the sentences around
them (Si−1 and Si+1). In this case, sentence that share se-
mantic and syntactic properties will be clustered together.

(Hill et al., 2016) developed FastSent, a simple log-
bilinear model that predicts adjacent sentences based on a
Bag-of-word representation of sentences in context, similar
to Skip-Though, but it needs much lower computational ex-
pense. They also point out that the task on which sentence
embeddings are trained significantly impacts their quality.

Conclusion
In this paper, we extend (Conneau et al 2018)’s research
work on transfer learning to a new problem, relation clas-
sification between pairs of nominals. Our model re-trained 8
popular sentence encoding architectures defined in InferSent
with natural language inference data (SNLI) and transferred
the encoder to relation classification task and evaluated their
performance on SemEval 2010 dataset. Results have shown
that our transferred universal sentence encoders obtain com-
parable results with the supervised encoders trained directly
for the relation classification problem.

References
Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.;
Lawrence Zitnick, C.; and Parikh, D. 2015. Vqa: Visual
question answering. In Proceedings of the IEEE interna-
tional conference on computer vision, 2425–2433.
Arora, S.; Liang, Y.; and Ma, T. 2016. A simple but tough-
to-beat baseline for sentence embeddings.
Bowman, S. R.; Angeli, G.; Potts, C.; and Manning, C. D.
2015. A large annotated corpus for learning natural language
inference. arXiv preprint arXiv:1508.05326.
Conneau, A.; Kiela, D.; Schwenk, H.; Barrault, L.; and Bor-
des, A. 2017. Supervised learning of universal sentence
representations from natural language inference data. arXiv
preprint arXiv:1705.02364.
Hendrickx, I.; Kim, S. N.; Kozareva, Z.; Nakov, P.;
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