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Abstract
A crucial point for ensemble learning systems is the capacity
of making different errors on any given sample, which high-
lights the importance of diversity for ensemble-based decision
systems. A usual way of increasing diversity is to combine tra-
ditional ensemble methods. Based on this context, we propose
a novel combining-based algorithm of pool generation using
a merging of bagging, random patches, and boosting tech-
niques for ensemble regression problems. Numerical results
indicate that, depending on both the dataset and the diversity
measurement, our proposal generates a pool of regressors with
more diversity when compared to single ensemble generator
approaches.

Introduction
An outstanding growth of data-oriented systems has been
noticed in recent years. This evidence is motivated by the
increasing of data volume generated by Internet users. In this
context, machine learning (ML) techniques have played a cen-
tral role, making it possible to solve complex problems such
as face recognition (A. A. Mohammed and Sid-Ahmed 2012),
stock price prediction (C. K. S. Leung and Wang 2014), con-
sumer mood prediction (J. Bollen and Zeng 2011), and other
applications. Over the last couple of decades, ensemble learn-
ing systems have experienced increasing attention within ML
community. According to (J. Mendes-Moreira and de Sousa
2012), ensemble learning deals with methods that produce
several models which are combined to obtain a prediction,
either in classification or regression. The assumption of using
ensemble-based decision systems is based on the fact that we
examine other opinions before making a decision, trying to
take advantage of not only the variability of the past history,
but also the accuracy of the individual decision makers.

Making different errors on any given sample is a crucial
point for ensemble learning systems. The combination of
predictors will be useless if all ensemble components give
the same output. So, we need diversity in the decisions of
ensemble members, specifically when they are making an
error. The importance of diversity for ensemble-based sys-
tems is well-established in the literature (Breiman 1996;
Ho 1998; Avnimelech and Intrator 1999; Brown 2004;
Brown et al. 2005).
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A way of increasing diversity in ensemble-based systems
is to combine traditional ensemble methods. In this context,
several initiatives can be found in the literature. For example,
concerning classification, a combination of bagging and ran-
dom subspace, two single ensemble approaches, is proposed
in (Panov and Džeroski 2007). In this work, the authors show
that the combining has similar performance to that of ran-
dom forests (Breiman 2001), with the advantage of being
applicable to any base-level algorithm, without the need of
randomize it.

Regarding regression problems, an ensemble of bagging,
random subspace, and boosting is proposed in (Kotsiantis and
Kanellopoulos 2012). In this case, eight regressors are used
for each component method. Then, an averaging methodol-
ogy is used to obtain the final prediction. It is shown that
the proposed methodology gives better correlation coefficient
(diversity gain) in most cases. In (Hadavandi, Shahrabi, and
Shamshirband 2015), boosting and subspace projection are
used to model multi-target regression problems with high-
dimensional feature spaces and a small number of instances.
It is demonstrated that the proposed method offers the capa-
bility to improve diversity and accuracy of the neural network
ensembles.

In this work, we introduce a new combining-based method
of pool generation for ensemble regression problems. Our mo-
tivation is based on the fact that single ensemble approaches
usually present some weaknesses. For example, the boosting
algorithm is sensitive to noise, while the bagging method
reduces the variance, but has little effectiveness in bias re-
duction (Louppe and Geurts 2012). Concerning the random
patches algorithm, it is hard to apply it in problems with a
low number of features. With this in mind, we propose a
combination approach focused on the merging of popular
ensemble-based strategies to increase diversity. The objective
is to create weak predictors, which are experts in different
subspaces of the training set (instances and features).

The outline of the paper is as follows. In Section , we
present some basic concepts about ensemble regression as
well as the definitions of correlation coefficient and disagree-
ment measure, two types of diversity measurements. In Sec-
tion , we propose a new method of pool generation based on
the combination of single ensemble learning algorithms. Nu-
merical results comparing our proposal to some well-known
ensemble learning approaches are shown in Section . Finally,
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Figure 1: Diagram of the ensemble learning building process:
generation, selection, and integration steps.

conclusions are drawn in Section .

Background
Ensemble regression
Regression is one of the most important and widely used task
in machine learning whose goal is to construct a hypothesis
function using known data. This constructed function is used
to assign a continuous value to an unknown test pattern, that
is, the use of the hypothesis function allows the regressor to
make a generalization based on already known data.

The generalization capability of a regression model is a key
point in ML design (Kuhn and Johnson 2013). ML systems
based on aggregated predictors, also named ensemble learn-
ing, have a better generalization capacity when compared to
single predictors (Kuncheva 2004; Rooney et al. 2004). In
recent years, the increasing processing power has enabled
the usage of ensemble learning, which has performed better
than individual predictors (Kuncheva 2004). A detailed de-
scription of the reasons that justify the best performance of
ensemble learning is presented in (Dietterich 2000).

Fig. 1 illustrates the ensemble building process, that can
be divided into three steps named generation, selection, and
integration. The generation step creates the pool, which can
be defined as the set of all predictors. These predictors can
be regressors or classifiers, depending on the task to be per-
formed. Considering that this work focuses in regression
problems, we will refer to the predictors as regressors from
now on. As can be seen in Fig. 1, the training data is used to
train the regressors by using several pool generation strate-
gies, such as bagging, random subspace or boosting, that
can be adopted to guarantee a better generalization capac-
ity (J. Mendes-Moreira and de Sousa 2012). In other words,
these strategies are employed to increase diversity between
the regressors.

After the generation stage, the next step is the selection
(pruning), which consists of selecting a subset of the models
generated in the previous step. The goal of the selection is
to decrease the number of regressors without significantly
reducing the accuracy of the predictions (Hernández-Lobato,
Martı́nez-Muñoz, and Suárez 2006). The reduction of com-
putational cost can be considered as an important argument

that justifies the selection (J. Mendes-Moreira and de Sousa
2012). It is worth to stress that, in some cases, an appropriate
selection of regressors may considerably outperform the full
set of regressors (Bakker and Heskes 2003).

After the selection, the output of the models are integrated
to generate the final prediction of the system. This last phase
can be seen as a combination stage, where the strategies can
vary depending on the task at hand. For example, voting
can be used for classification, while averaging of the models
outputs is an alternative for regression problems.

Ensemble diversity
Diversity can be seen as a disagreement measurement, which
is directly correlated to the generalization capacity (Kuncheva
2004). Making different errors is essential for ensemble gen-
eralization capacity, because if all ensemble members pro-
vide the same output, their combination will be meaningless.
Therefore, we want the regressors outputs to have diversity.
Ideally, regressors outputs should be independent or nega-
tively correlated (Zhang and Ma 2012).

There is no formal definition to measure diversity. Re-
garding to ensemble regression, different types of pairwise
diversity measurements are presented in (Dutta 2009), which
are correlation coefficient, covariance, disagreement measure,
and mutual information. In this paper, we assume the corre-
lation coefficient and the disagreement measure as diversity
measurements. While the former is a more traditional ap-
proach, the latter is one of the most recent ways to evaluate
diversity (Dutta 2009).

To define the diversity measurements considered in this
work, let us assume a training dataset D with N instances.
For the i-th instance, we have a continuous valued target yi,
that depends on both a regressor and a vector of features
as input. In other words, the regressor output assume one
continuous value for each instance of the set D.

Given that, let us consider a regressorRa whose output Y a

can assume N values in the set Ya = [ya1 , . . . , y
a
i , . . . , y

a
N ].

In a similar way, consider also a regressor Rb whose
output Y b is one of the N values in the set Yb =[
yb1, . . . , y

b
i , . . . , y

b
N

]
.

Correlation coefficient The linear correlation coefficient
ρab between the regressors outputs Y a and Y b is given by

ρab =
N∑
i=1

 (yai − µa)(ybi − µb)√∑N
i=1(yai − µa)2

∑N
i=1(ybi − µb)2

 (1)

where µa and µb are the averages of the values of Ya and Yb,
respectively. The diversity between Y a and Y b is inversely
proportional to ρab .Thereby, a pair of regressors with a low
correlation coefficient is better for the pool regarding ones
with high correlation (Dutta 2009).

Disagreement measure This measure was originally used
to represent the diversity between base and complementary
classifiers (Skalak and others 1996), and posteriorly for mea-
suring diversity in random subspace method (Ho 1998). It is
defined as the ratio between the number of observations on
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which one classifier is correct and the other is incorrect to the
total number of observations (Kuncheva 2004).

Assume two classifiers denoted as Ca and Cb. Consider
also that “0” represents a correct classification and that “1”
represents an incorrect classification. The total number of
instances predicted by Ca and Cb, denoted as Nab, is given
by

Nab = N00 +N01 +N10 +N11 , (2)

where N00 is the number of instances classified correctly by
Ca and Cb, while N01 (N10) depicts the number of predic-
tions in which only Ca (Cb) hit. Finally, N11 is the number
of instances predicted incorrectly by both classifiers.

For regression problems, the disagreement measure is ex-
tended as follows (Dutta 2009): for each instance, we obtain
the standard deviation σ of the estimated target variable by
all predictors. If the true value of the target is α then a pre-
diction β is considered to be correct. If β < α + σ and
β > α− σ, the prediction has to fall within a margin of one
standard deviation of the value of the target variable. Other-
wise, the prediction is taken to be incorrect. Thus, we can
define disagreement measure as follows:

dab =
N01 +N10

Nab
. (3)

Since the diversity measurements previously mentioned
are pairwise measures, we consider the average of all possible
pair of regressors to calculate the pool diversity.

Proposed Method
In this section, we present an innovative combining-based
approach to generate a pool of regressors, the first stage of
the ensemble building process illustrated in Figure 1. New
ensemble elements are created based on bagging (BAGG),
boosting (BOOS), and random patches (RAPT), a derivation
of the random subspace method, to increase the ensemble
diversity. The main difference between random subspace and
RAPT is that while only instances are sampled in the former,
both instances and features are sampled in the latter (Louppe
and Geurts 2012).

The proposed method is depicted in Algorithm 1 and it has
the following input variables: M , the number of regressors in
the pool; D, the training dataset; Sb, the number of instance
samples for BAGG method; Fmin and Fmax, minimum and
maximum numbers of features for RAPT approach, respec-
tively. The main idea of the proposed method is to increase
diversity by using strategies employed in BAGG, RAPT, and
BOOS approaches. Our combining-based method returns a
pool Ψ of M regressors, each one trained with a different
training set.

Considering Ri and Di as the i-th trained regressor and its
training set, respectively, different pool generation strategies
are used, depending on the amount of previously generated
regressors. Every two regressors generated by using BAGG
and RAPT methods, a third regressor is produced by means
of a combination of the BOOS algorithm with the two pre-
vious methods. To put it differently, when the index i is not
multiple of 3, BAGG and RAPT methods are used to con-
struct the i-th regressor. Otherwise (when i is multiple of 3),

Algorithm 1 Proposed combining-based method for pool
generation.
Inputs:

D, training set
M , the number of pool regressors
Sb, number of samples for BAGG
Fmin, minimum number of features for RAPT
Fmax, maximum number of features for RAPT

Returns:
Ψ = Pool of regressors
Initialize:

1: Ψ← empty list of regressors
2: wu ← Vector of unit probability weights
3: for i = 1 to M do
4: if i is not multiple of 3 then
5: Di ←SAMPLE (D, Sb, Fmin, Fmax, wu);
6: else
7: Γ← Set of instances that were not used to train
8: the previous regressors Ri−1 and Ri−2;
9: we ← Sum of the prediction errors obtained by

10: Ri−1 and Ri−2 for each instance of Γ;
11: Di ←SAMPLE (Γ, Sb, Fmin, Fmax, we);
12: end if
13: Train the regressor Ri using Di;
14: Include Ri in Ψ;
15: end for
16: return Ψ

the BOOS algorithm is used in combination with BAGG and
RAPT methods to produce the i-th regressor. The goal of the
combination is to create weak predictors, which are experts in
different subspaces of the training dataset (instances and fea-
tures). The keypoint of the combining-based idea proposed in
this work is indicated by the lines 4− 12 of the Algorithm 1.

BAGG and RAPT methods are applied by using the
SAMPLE function, which is described in Algorithm 2. The
input parameters of the SAMPLE function are Ds, the sam-
ple source; w, the vector of probability weights of the sam-
ples; and finally, Sb, Fmin, and Fmax, the same parameters
adopted in Algorithm 1. The SAMPLE function selects in-
stances χ and features Φ from Ds to build a new dataset ∆.
As can be seen in Algorithm 2, the instances χ are taken
randomly with replacement and using the vector of proba-
bility weight w, while the features Φ are selected without
replacement.

When the regressor Ri is trained without boosting (when
i is not multiple of 3), the vector w is assumed to be wu,
which represents the uniform distribution. In other words,
all instances in Ds will have the same probability to be
taken. Furthermore, the complete training set D is used as
source of the samples (line 5 of the Algorithm 1). Differ-
ently, when boosting is used for training (i is multiple of
3), a dataset Γ is created with instances that were not used
for training the two prior regressors (Ri−1 and Ri−2), i.e.,
Γ = D − (Di−1 ∪ Di−2). The dataset Γ is used as input
for the SAMPLE function, a first aspect that differs from the
approach without boosting. A second aspect regards to the
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Algorithm 2 Sample function using probability weights and
combining BAGG and RAPT methods.
Inputs:

Ds, training set
Returns:

∆, sampled data
1: function SAMPLE( Ds , Sb , Fmin, Fmax, w)
2: χ← Take Sb samples from instances of Ds, with
3: replacement using probability weights in w;
4: Φ← Take between Fmin and Fmax samples
5: from features of Ds without replacement;
6: ∆← New dataset with instances χ and features Φ;
7: return ∆

probability weights, which are calculated from errors made
by the regressors Ri−1 and Ri−2 when predicting instances
of Γ.

Considering K as the number of instances in the dataset
Γ, such that Γ = [γ1, . . . , γj , . . . , γK ]. We define a vector of
probability weights w = [w1, . . . , wj , . . . , wK ], where the
j-th probability weight wj , associated with each instance γj ,
is given by

wj = εi−1
j + εi−2

j , (4)

where εi−1
j and εi−2

j are the prediction errors of the regres-
sors Ri−1 and Ri−2, respectively, for the instance γj . That
is, the probability of selecting γj is proportional to the sum
of its prediction errors related to the two previous regres-
sors. Therefore, the new regressor Ri will focus on instances
that have been poorly learned. Finally, the training dataset
Di is constructed from the set Γ, and after the training, the
regressor Ri is included in the pool Ψ.

Results
The proposed method is experimentally evaluated by using R
programming language, with emphasis on the package caret
(Kuhn and Johnson 2013). For all experiments, we use the
k-Nearest Neighbors (k-NN) algorithm as the base regressor
and assume pools of M = 36 predictors. For all regressors in
the pool, the 10-fold cross-validation re-sampling technique
is used for model tuning, while the best k is searched in the
interval [1; 11]. The k-NN technique was chosen because its
computational cost has a direct relationship to the dataset
properties (number of instances and features), which allow
us to analyze the computational cost trade-offs. Indeed, the
proposed method can be easily extended to other regressors,
such as ANNs or support vector regressors (SVRs).

Table 1 shows ten public datasets used in the experiments.
These datasets cover different types of problems, having
continuous, discrete, and categorical features. Furthermore,
they differ in number of training instances and features.

The measurements previously defined in Subsection are
used to evaluate diversity. For each dataset listed in Table 1,
90% of the instances are used for pool generation (train-
ing set), whereas 10% are used to evaluate the diversity.
Pools of regressors using BAGG, RAPT, BOOS methods
and our approach are created for each dataset to compare di-
versity. BAGG, RAPT, and BOOS methods are referred as our

Table 1: Public datasets used in the experiments.

Dataset Number of features Number of instances

Airquality 5 153
CPUs 6 209
Autompg 7 392
Concrete 8 1030
Abalone 8 4177
Carseats 10 400
Wage 11 3000
Forestfires 12 513
Boston Housing 13 506
Hitters 19 322

Table 2: Correlation coefficients obtained for the 10 pub-
lic datasets considering bagging (BAGG), random patches
(RAPT), boosting (BOOS), and the combining-based (CBAS)
methods.

Dataset BAGG RAPT BOOS CBAS

Airquality 0.91 0.76 0.84 0.66
CPUs 0.90 0.87 0.86 0.80
Autompg 0.91 0.80 0.84 0.78
Concrete 0.84 0.68 0.76 0.59
Abalone 0.74 0.53 0.63 0.48
Carseats 0.52 0.26 0.38 0.20
Wage 0.91 0.50 0.82 0.61
Forestfires 0.38 0.15 0.23 0.08
Boston Housing 0.89 *0.74 0.85 *0.73
Hitters 0.61 0.57 0.49 0.46
W-D-L 0-0-10 1-1-8 0-1-9 8-1-1
(*) Not statistically relevant

benchmarks, while the proposed approach is denoted by the
combining-based (CBAS) method, from now on. Throughout
this Section, the best method for each dataset and each diver-
sity metric is highlighted in bold when we present the results.
To verify if the differences between the performances of the
pool generation methods are statistically relevant, Friedman
test with the Nemenyi post-hoc test are applied (Demšar
2006). When the difference between the methods is not statis-
tically relevant, we have a draw, with more than one method
indicated in bold.

Table 2 shows the correlation coefficients obtained for all
datasets considering the benchmarks and the CBAS method.
Also in Table 2, we have a win-draw-lose (W-D-L) compar-
ison between the pool generation methods for each dataset.
Considering that the lower correlation coefficient, the greater
the diversity, the CBAS method wins in eight of ten datasets.
We can also see that, for Boston Housing dataset, the differ-
ence between RAPT and CBAS methods is not statistically
relevant, meaning that the two approaches are equivalent1.

Table 3 illustrates the disagreement measures obtained for
all datasets considering BAGG, RAPT, BOOS, and CBAS
methods. In this case, the higher the disagreement, the greater
the diversity. So, the results behave in an opposite way when
compared to those obtained by correlation coefficient. Sim-
ilarly to the previous case, the CBAS method is the winner
for the same eight datasets. In addition, our proposal is equiv-
alent to the RAPT method for the Boston Housing dataset,
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Table 3: Disagreement measures obtained for the 10 pub-
lic datasets considering bagging (BAGG), random patches
(RAPT), boosting (BOOS), and the combining-based (CBAS)
methods.

Dataset BAGG RAPT BOOS CBAS

Airquality 0.06 0.13 0.10 0.18
CPUs 0.04 0.06 0.07 0.10
Autompg 0.04 0.11 0.08 0.12
Concrete 0.09 0.21 0.14 0.25
Abalone 0.12 0.23 0.16 0.24
Carseats 0.26 0.40 0.34 0.43
Wage 0.04 0.22 0.08 0.18
Forestfires 0.34 0.41 0.40 0.45
Boston Housing 0.05 *0.11 0.06 *0.12
Hitters 0.23 0.22 0.25 0.28
W-D-L 0-0-10 1-1-8 0-0-10 8-1-1
(*) Not statistically relevant

Table 4: Root mean square error (RMSE) obtained for the
10 public datasets considering the generation of three pools
of regresssors (Kotsiantis and Kanellopoulos 2012) and our
proposal (CBAS).

Dataset 3 pools of regressors CBAS

Airquality *12.17 *10.07
CPUs *37.15 *26.53
Autompg *2.96 *3.15
Concrete *7.58 *7.86
Abalone *2.58 *2.40
Carseats *2.22 *1.94
Wage *12.54 *8.30
Forestfires *1.38 *1.34
Boston Housing *3.22 *3.34
Hitters *550.12 *541.44
W-D-L 0-10-0 0-10-0
(*) Not statistically relevant

since the difference between them is not statistically relevant,
as it was observed for the correlation coefficient.

Table 4 exhibits the root mean square error (RMSE)
achieved for all datasets considering method proposed in
(Kotsiantis and Kanellopoulos 2012). In this case, three pools
of regressors are generated, one for each re-sampling tech-
nique (BAGG, RAPT and BOOS). For the final prediction,
an averaging methodology is used. In the second column of
Table 4, we have the RMSE for the same method, however
using the CBAS approach to generate a single pool of re-
gressors. Similar to the calculation of the diversity measures,
the RMSE is obtained over 10% of the instances (test set).
Friedman test with the Nemenyi post-hoc test shows that the
difference between them is statistically irrelevant, meaning
that the methods are equivalent1. On the other hand, our pro-
posal reduces the number of pools without compromising the
accuracy of the predictions.

Another important aspect to compare the pool generation

1Diversity measures and RMSE values used for the statistical
tests are available on https://github.com/timotrob/CBASDiversity.

Table 5: Normalized average computational cost for BAGG,
RAPT, BOOS, and CBAS methods for all datasets considered
in this work.

Dataset BAGG RAPT BOOS CBAS

Airquality 1.00 1.05 1.05 1.05
CPUs 1.07 1.00 1.06 1.07
Autompg 1.00 1.00 1.06 1.06
Concrete 1.09 1.08 1.00 1.08
Abalone 1.00 1.16 1.22 1.16
Carseats 1.08 1.00 1.08 1.08
Wage 1.00 1.17 1.13 1.20
Forestfires 1.00 1.08 1.08 1.09
Boston Housing 1.10 1.11 1.00 1.10
Hitters 1.00 1.10 1.11 1.10
W-D-L 5-0-5 3-0-7 2-0-8 0-0-10

Figure 2: Complexity-performance trade-off considering the
cost variation and the performance gain between the CBAS
method and the best benchmark (BAGG, RAPT or BOOS):
(a) Correlation coefficient, (b) Disagreement measure.

methods is the computational cost. Table 5 exhibits the nor-
malized average computational cost for each pool generation
method and each dataset. For all pool generation methods, it
is assumed the use of the same hardware. For each method
and dataset, the lowest time consumed is made equal to one
(reference value highlighted in bold) and the other times
are compared to it. For example, considering the Airquality
database, the computational cost of the RAPT, BOOS, and
CBAS methods are 5% larger than the cost of the BAGG
one. Concerning the W-D-L comparison, we note that the
BAGG method has the lowest computational cost among the
strategies, winning in 50% of the datasets. For the remain-
ing datasets, the RAPT method wins in three of them, while
the BOOS approach is the least complex for two datasets
(Concrete and Boston Housing). Although the CBAS method
does not have the lowest computational cost for any of the
datasets, it does not always have the highest cost.

The complexity-performance trade-off considering the
cost variation and the performance gain between the CBAS
method and the best benchmark is exhibited in Figs. 2(a) and
2(b) for correlation coefficient and disagreement measure, re-
spectively. For each dataset (represented by a labeled point),
the computational cost variation and the performance gain,
both in percentage, of the CBAS method are compared to the
same parameters of the best benchmark (BAGG, RAPT, or
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BOOS).
In general, we observe that, depending on the dataset and

the diversity measure, the complexity-performance trade-off
presents a different behavior. For example, for correlation
coefficient as diversity measure and assuming the Forestfires
dataset, the best benchmark is the RAPT method (0.15 in
Table 2). In this case, we can see in Fig. 2(a) that the CBAS
method offers approximately 46.7% of performance gain
associated to 1% of cost variation, i.e., practically without
increasing complexity. Considering again the correlation co-
efficient, but now the Carseats dataset (RAPT is the best
benchmark according to Table 2), we see that the CBAS
method provides roughly 23.1% of performance gain at the
price of 8% of cost increasing. Finally, for both diversity mea-
sures and assuming the Wage dataset, the best benchmark
is the RAPT method (0.50 in Table 2 and 0.22 in Table 3),
even better than the CBAS approach. In this case, we have
a decreasing of the performance gain around 20% with a
increasing of 3% in terms of computational cost.

With this in mind, the complexity-performance trade-off
of the CBAS pool generation method depends on both the
dataset and the diversity measurement. In most of cases, the
CBAS method gives a performance gain with increasing or
similar cost.

Conclusion
In this study, a new combining-based method of pool genera-
tion was proposed to increase the diversity of ensemble learn-
ing systems in regression problems. Traditional ensemble-
based algorithms such as bagging, random patches, and boost-
ing, were used as reference for comparison. Also, our pro-
posal is compared to a combining-based technique in terms of
root mean square error. For all experiments, k-Nearest Neigh-
bors (k-NN) algorithm was assumed as the base regressor
and ten public datasets covering different types of problems
were considered. In addition, correlation coeficient and dis-
agreement measure were used to evaluate the diversity of the
proposed method as well as the adopted benchmarks. Nu-
merical results showed that the proposed combining-based
method won the single ensemble generator approaches in
80% of the datasets considered in this work. In these cases,
our proposal gave a performance gain with increasing or sim-
ilar cost. In terms of root mean square error, our proposal of
a single pool generation reached an equivalent performance,
without compromising the accuracy of the predictions, when
compared to another combined approach using three pools
of regressors.
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