
Generative NNI Transformation Strategies in
Binary Trees Using Reinforcement Learning

Shirin Shirvani, Manfred Huber
Department of Computer Science and Engineering

University of Texas at Arlington, Arlington, TX 76019-0015
shirin.shirvani@mavs.uta.edu, huber@cse.uta.edu

Abstract
Learning strategies to address problems on graph and tree
structures with no a-priori size limitations in cases where no
known solution exists (and thus supervised data is hard to
obtain), is a difficult problem with potential applications in
a wide range of domains ranging from biological networks
to protein folding and social network search. The main chal-
lenges here arise from the variable size representation that
needs to be resolved in the context of Reinforcement Learn-
ing (RL) to address the problem. In this paper we consider
a common, specific tree problem and show that it can be
addressed using a combination of feature engineering and
carefully designed learning processes. In particular, we con-
sider the classical Nearest Neighbor Interchange (NNI) dis-
tance between unrooted labeled trees, which is defined as the
minimum-cost sequence of operations that transform one tree
into another. We introduce a representation and a reinforce-
ment learning method that learns the transition dynamics and
iteratively changes an arbitrary initial labeled tree into a goal
configuration reachable through NNI. The differential tree
representation and NNI actions permit the system to learn a
strategy that is applicable to arbitrary sized trees. To train the
system, we introduce a training process that uses randomly
sampled trajectories to incrementally train more and more
complex problems to overcome the difficulty of the overall
strategy space. Experiments performed show that the system
can successfully learn a strategy for effective NNI on com-
plex trees.

Introduction
Graph or tree structures are a very commonly used in many
fields to represent problems or information, to encode pro-
cesses, or to encode information sharing constraints. Com-
paring two given trees to determine their similarity or dis-
tance is a problem that is highly important in a variety of
contexts, including in applications in natural language pro-
cessing, document similarity evaluation, medical image pro-
cessing, comparison of RNA secondary structures, quantify-
ing neuronal morphology, discovering and comparing shape
classes, character recognition, similarity joining and query-
ing of XML documents, and information extraction. Dissim-
ilarity between combinatorial trees has been computed in the

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

past literature largely by recourse to one of two approaches:
either comparing edges or counting edit distances. In struc-
ture prediction problems, such as the NNI problem, where
the possible structures are unlimited, the complete underly-
ing representation for the problem instances is usually ex-
ponential in the size of the structure and thus unlimited for
the complete problem domain. This frequently make exact
methods intractable for large size trees and generally make
it impossible if no upper limit on the tree size exists. We
thus have to rely on approximations in terms of the effec-
tively used representation of the tree and the specification of
the problem to make the problem tractable. An example is
the conversion of the problem into an approximate Markov
Decision Process. In this paper we take this route to address
the general NNI problem by mapping it first to a sequential
decision problem with a fixed action set and then developing
a finite representation that captures the approximate differ-
ences between the current tree and the target tree, indepen-
dent of size. Using this representation and process model,
we use Reinforcement Learning to learn a strategy that con-
verts the tree into the goal tree with the fewest possible inter-
change operations. The resulting strategy can then be used
to either show the transfer or, by analyzing the number of in-
terchange operations applied, to determine the approximate
NNI distance between the initial and target tree.

To permit training with arbitrary size trees, we develop
an automatic, sampling-based training approach that incre-
mentally trains the system with increasingly more complex
instances, resulting in a strategy that can address trees in-
dependent of their size. Evaluation shows that the system
is successful at learning a generative strategy that is effec-
tive at approximately addressing most instances of the NNI
problem.

Related Work
The NNI distance between two trees is the minimum number
of NNI moves required to transform one binary tree into an-
other. Computing the NNI distance is an NP-complete prob-
lem (Li, Tromp, and Zhang 1996), (Robinson 1971), (Kri-
vanek 1986) and has been actively studied in recent years.
An important property of NNI is that the number of trees in
the one step neighborhood increases linearly with the num-

The Thirty-Second International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32)

74

ber of leaves of the tree, making NNI practical for very large
trees. For n leave nodes, there are (n−3) internal edges in an
unrooted tree; we can split on each of these edges resulting
in two new trees. By splitting on each internal edge we gen-
erate a NNI neighborhood of (2n − 6) trees. The relatively
small neighborhood size of NNI leads to small increases in
the search space with each iteration and in a tendency to-
ward less local optima (Whelan 2007). Dasgupta et al. (Das-
Gupta et al. 1997) have proven that given two trees τ1 and
τ2 with unique leaf labels, computation of the NNI distance,
δnni(τ1, τ2), is NP-complete. Therefore, there is no com-
putationally tractable discrete algorithm for computing the
NNI distance between two trees and the only way to com-
pute the exact answer is to enumerate all possible answers.
In an attempt to solve the problem, Waterman et al. (Wa-
terman and Smith 1978) have introduced the ”closest par-
tition metric”, dcp, and conjectured that dcp is equal to the
NNI distance. The CP algorithm is based on the partitions
induced by the interior branches of a binary tree (Jarvis,
Luedeman, and Shier 1983). In their method, the closest par-
tition distance, CP (T1, T2), for trees sharing a partition is
found recursively as the sum of the two distances between
the related induced trees resulting from clustering each tree
into two. For trees T1 and T2 that do not have a shared par-
tition, k−step NNI operations are made to achieve a shared
partition between T1 and T2, dcp = k +C(T

′
, T2), where k

is the minimum number of NNI operations required to trans-
form a tree T1 into tree T

′
that shares a partition with tree T2.

CP is a weak measure, however, because it leads to multi-
ple choices as results for T

′
. Li et al. (Li, Tromp, and Zhang

1996) and Jarvis et al. (Jarvis, Luedeman, and Shier 1983)
presented counter examples against Waterman et al.’s theo-
rems and proved that there exist some trees T1 and T2 that
share a partition that is not shared by any intermediate tree
on a shortest path from T1 to T2. This lemma shows that the
shape of the shortest path between two trees can significantly
depend on whether two subtrees (partitions) are within a cer-
tain linear distance from each other, and gives the problem a
sense of discontinuity. This phenomenon can possibly be ex-
ploited to prove an NP-completeness result (Li, Tromp, and
Zhang 1996).

A number of approximation algorithms have been pre-
sented, attempting to design an efficient solution for com-
puting NNI distances. In all these approximation algorithms,
finding non-shared edges is a key step, and typically is the
most time-consuming part. More precisely, all these approx-
imation algorithms run in O(n log n + β) time where β is
the time complexity to find the non-shared edges between
each pair of trees T1 and T2 (Hon et al. 2004),(Hon and Lam
1999). For unweighted degree-3 trees, an O(n log n)-time
algorithm has previously been presented (Li, Tromp, and
Zhang 1996). For trees of varying degree, existing approx-
imation algorithms take O(n2) time for both un-weighted
and weighted cases (DasGupta et al. 1997),(Hon et al. 2004).

Background and Notation
For our problem, we consider an unrooted, undirected full
binary tree Gτ = (Vτ , Eτ). In other words, we consider

an acyclic connected graph, with nodes Vτ , consisting of
n labeled leaves (nodes with a degree of one) and (n − 2)
internal, unlabeled nodes, all having a degree of three, and
edges Eτ consisting of n− 3 edges between internal nodes,
and n edges connecting leaves to internal nodes. The mea-
sure we consider is derived from Nearest Neighbor Inter-
change (NNI), a simple tree transforming operation (swap
operation) over given internal edges eτ .

Let Φ(τ) denote the set of unrooted non-degenerate bi-
nary trees with n labeled leaves which is generated by NNI
operations from tree τ . For each tree τi in Φ(τ) we generate
the NNI neighbors. This is done by performing an NNI op-
eration on each internal edge iek in τi. The NNI operation
swaps the subtrees attached to each internal edge. As shown
in Fig. 1, there are 2 new trees created by applying an NNI
operation.

Figure 1: An NNI operation swaps two subtree that are sep-
arated by an internal edge.

The set of new trees created in this manner is the 1-nni
neighborhood of τi, where the k-nni neighborhood would
contain all trees that can be obtained by performing at most k
successive NNI operations on the given tree. By applying the
NNI operation on all possible internal edges {iei}i≤(n−3) of
a given tree τi, its 1-nni neighborhood,ϕ<1−nni>, would be:

ϕ<1−nni>(τi) = {τ ′j}j≤(2n−6) (1)

NNI Distance δnni
The Nearest Neighbor Interchange (NNI) Distance is a tree
rearrangement technique that has been widely used to calcu-
late the distance between trees. In general the NNI distance,
δnni, between two trees τi and τj is defined as follow:
δnni(τi, τj) = Min{ ρ(A) | set A is a sequence of swap

actions taking τi to τj }.
Before we formalize our framework for transferring the

underlying problem into a sequential decision problem on an
MDP space, consider a motivating example. Suppose given
inputs of τ1 and τ2 with the same labeled leaves but dif-
ferent topology, and the output δnni(τ1, τ2), which is the
NNI distance between these two trees. In general, there is a
non-unique sequence of NNI operations that, if performed,
would transfer τ1 to τ2. The tree space along all possible
NNI sequences between two trees, Φ(τ) grows exponen-
tial as the number of leaves increases. Thus, the brute-force
search becomes exponential in terms of time and space in
this context. We thus propose to transform the problem and
use reinforcement learning to find an approximate solution
in the form of a generated, compact sequence ρi.

75

Reinforcement Learning and MDP
The concept of reinforcement learning (Sutton and Barto
2017) provides a way in which agents can optimize their
control of an environment. To use reinforcement learning
successfully in situations approaching real-world complex-
ity, however, agents must derive efficient representations of
the environment from high dimensional inputs, and use these
to generalize past experiences to new situations. Usually the
control process in these problems is modeled as a Partially
Observable (POMDP) or fully-observable Markov Decision
Process (MDP).

An MDP is a tuple < S,A, T,R > where S is the state
space, representing the relevant aspects of the environment,
A is the available action set for the agent, and R(s, a, s′) is
the reward for taking action a in state s and ending in state
s′. P (s′|s, a) = T (s, a, s′) is the probability of transitioning
to state s′ given a prior state s and action a with γ ∈ [0, 1]
as a discount factor. Standard approaches for solving MDPs
include value and policy iteration. The optimal policy pro-
vides a mapping of states to actions such that the long-term
expected reward of the policy is maximized.

To treat the NNI Task described here as a generative de-
cision problem in this framework, the current and target tree
have to be converted into observations, and ultimately a state
representation, and the NNI operations have to be converted
into a finite action space. During neighboring tree explo-
ration in the NNI task, the complete state can be observed
since the complete tree configurations are known. Because
we can directly observe the state at all times, we can use
this tree navigation problem as a Markov Decision Process
(MDP). The main problem arising here is that if the size
of the trees is unlimited, a complete representation of the
current and target trees would require an infinite number of
features and thus a more tractable, potentially approximate
representation has to be derived.

Reinforcement Learning of a Tree NNI
Transformer

To apply Reinforcement Learning to the NNI problem, a
tractable representation for the tree pairs (current and tar-
get) as well as a finite representation for the discrete action
set have to be derived, both of which should be independent
of the tree size. Given such a transformation to a tractable
(PO)MDP representation, a policy can be learned that se-
quentially converts the current tree into the target tree.

Reduction to an RL Problem
Consider S to be the space of states representing pairs
of trees, and A be a set ai, . . . , ak of actions. The goal
of RL is to find a policy π : S → A that maximizes
the expected cumulative rewards E[Vρ∗], where Vρ =∑T−1
t=0 R(st, at, st+1, at+1). To facilitate this for the NNI

problem, a state, action, and reward representation has to be
derived.

Action Set In the traditional NNI problem, the set of avail-
able operations consists of two swap operations for each in-
ternal edge of the tree. For a tree, τi, with n leaves it there-

fore contains 2(n− 3) operations, making the original set of
operations specific to the tree size. To address this issue, the
action set for the (PO)MDP formulation is defined here lo-
cally with respect to a current active edge, eii, which forms
the center of the swap operations and which can be changed
using local walk operations which allow the active edge to
move over the tree.

Given an active edge eii as shown in Fig. 2, there are
thus two types of possible discrete actions: (i) two swap op-
erations that exchange subtrees attached to the current ac-
tive edge as shown in Fig. 1, and (ii) four move operations
which move the active edge from its current location to one
of the four neighboring edges. For each active edge the four
possible move directions, LL: Left-Left, LR: Left-Right, RL:
Right-Left, RR: Right-Right are defined as {a1, a2, a3, a4}
and the two possible swap (NNI) operations are {a5, a6}.

Figure 2: Active edge iei = (A,B) with partial observation
zone.

State Space To make the generative NNI problem ad-
dressable, we also need to transfer the current and target tree
configuration into a fixed length feature representation that
permits observations of the current problem instance. To ob-
tain a representation that captures the information efficiently,
we represent each pair of current and goal tree, (τc, τg), in
terms of differential features aimed at expressing the differ-
ences between the trees. To be able to do this in the context
of the proposed action set, this has to be done relative to the
current active edge, iec, in the current tree which represents
a virtual root for the tree, leading to a rooted tree, τ̄c. Using
this, the pair of trees, (τ̄c, τg), is represented by 4 normalized
feature categories F̄ = (f̄1, f̄2, f̄3, f̄4), where the number of
features is independent of the size of the tree and captures
differences to the target tree.

The performance of our model is directly related to the
existence of good and reliable meta-features for the action-
state evaluation. We here design generic normalized meta-
features that have strong predictive power across the dataset.
The features are a combination of statistical, matching dis-
tance, geometric distance, and similarity measures. One of
the principles considered is that the meta-features should
be calculated fast. In order to satisfy the need to capture

76

relevant information and to be easily computable, we ap-
ply decomposition on the current tree to generate 6 induced
subtrees as shown in Fig. 3. Then, we calculate normalized
meta-features on each of the subtrees that capture their dif-
ferences with respect to the corresponding subtrees in the
target tree. To achieve a unique differential feature represen-
tation, we first identify the best virtual root for the target tree
by evaluating which edge yields the most consistent subtree
composition relative to the rooted current tree. Using this,
the subtrees of the current and target tree are aligned and the
meta-feature of the current state are derived as the combina-
tion of all extracted features for all partitions.

Figure 3: Dynamic decomposition strategy recursively de-
composes the current state around the active edge, into a set
of 6 induced subtrees Bτ = {π1, π2, π3, π4, π5, π6}. The
features are calculated based on each induced piece.

To derive the differential representation we defined the
following meta-feature for trees τ̄i and τ̄j
• Matching Distance: Given an active edge, Dm(τ̄i, τ̄j) be-

tween rooted trees τ̄i and τ̄j is the weight of the minimum-
weight perfect matching of the trees with size of [1× 6].
• Maximum agreement subtree: This is the maximum nor-

malized cordiality (largest) isomorphic subset of the cur-
rent and goal trees.

• Statistical features: These are normalized statistics of the
tree nodes, such as the ratio of the shared population of
nodes, and the standard deviations of node distances

• Geometric distance: These are geometric measures cap-
turing aspects of the structure such as minimum relative
eccentricity, and depth, and diameters.

Each of the features is computed for each of the 6 pairs of in-
duced subtrees, resulting in a feature vector, F̄ (τ̄ c, τ̄g), with
total |F̄ | = 1 × 32 normalized features. Important to note
here is that this normalized, differential feature representa-
tion is designed to be independent of the size of the tree
and the specifics of the target tree, and thus permits learned
strategies to transfer to different sized trees.

Using this representation we can formulate the generative
NNI problem. In particular, we want to learn a strategy such
that, given an instance pair of (τc, τg), it generates a trajec-
tory output, ρy such that ρy = {τ̄1, ..., τ̄k}, where τ̄1 = τ̄c
, τ̄k = τ̄g , and transition τ̄i ⇒ τ̄i+1 for 1 ≤ i ≤ k − 1
is generated by an action ai ∈ A. To solve the NNI prob-
lem, let C be a Cost function that assigns costs to the oper-
ations (for the standard NNI problem this would be a cost
of 1 for a swap and a cost of 0 for a move operation),

C(ρ) =
∑i=|ρ|−1
i=1 C(ai). The best solution is here a tra-

jectory with the lowest cost.
To transform our problem into the RL framework, let each

virtually rooted tree pair be a state, st = F (τ̄t, τ̄g). More-
over, let the reward of a transition from st to st+1 using ac-
tion at be defined as:

R(st, at, st+1) = −C(at) (2)
with an additional reward, Rs, for successfully generating a
trajectory (i.e. reaching the goal tree).

The objective is then to learn a policy that maximizes the
expected cumulative rewards.

Approximate MDP The generated meta features provide
a finite dimensional observation space for unlimited trees by
building a differential representation that captures the ap-
proximated differences between the local information of the
current tree with respect to the goal tree. While each obser-
vation, Ft, is local since it represents information in the lo-
cal neighborhood of the active edge more precisely than for
parts of the tree that are further removed, treating the result-
ing system as a POMDP is computationally very expensive
and not generally tractable. However, since the differential
features also include features of the subtrees, we can inter-
pret the feature representation also as an approximate state
estimate, and thus treat the problem as an MDP and try to
solve for an approximate solution. The rationale here is that
since the meta features represent the differential statistic not
just of the current neighbors but also, at a coarser resolution,
for the remainder of the tree, they contain global informa-
tion that permit treatment as an approximated MDP. The key
components of the approximated MDP model are:
• The continuous state space: S = {F (τ̄i, τ̄j) : τi, τj ∈ τ}
• The discrete action set A = {a1...a6}
• Transition Probabilities: Pt(st+1|st, at)
• A reward function: R(st, at, st+1) = C(at), R(sg =
F (τ̄g, τ̄g)) = Rs

To approximately solve the generative NNI problem, we
then use Reinforcement Learning to find a strategy that
achieves maximum expected cumulative rewards.

Function Approximation
Since the state space formed by our differential features for
the NNI problem is continuous, a function approximator has
to be used to represent the value function. We use the engi-
neered meta-features as parameters of the function approx-
imation for a Q-function, q̂(s, a, w) ∈ IR, where w is a pa-
rameter vector for the function approximator.

q̂(s, a, w) ≈ qπ(s, a) (3)
Since the state representation is already in the form of

a real-valued feature vector and the action set is discrete,
the most direct function approximation scheme would na-
tively use the features fi(s) as the basis for either a linear or
non-linear function approximation. For linear function, this
would yield:

q̂(s, a, w) = f(s)Tw(a) =
k∑
i=1

fi(s)wi(a) + b (4)

77

Tile Coding as Function Approximation Based on gen-
erated normalized meta-features, the state is represented by
multi-dimensional continuous spaces. Considering the char-
acter of the features used here, which represent normalized
differences over (sub)tree statistics, a linear function approx-
imator would not be sufficient to capture the relation be-
tween the features and the value function. To achieve ef-
ficiency, we use tile coding as a non-linear approximation
of the function. In tile coding, the approximation is repre-
sented by a set of overlapping partitions of the feature space,
called tilings. We use tilings generated by diagonal, vertical,
and horizontal stripes in 2-dimensional sub-spaces. Each el-
ement of a tiling, called a tile, is a binary feature activated
if and only if the a given state falls in the region delineated
by that tile. The approximated function that the tile coding
represents is determined by a set of weights, one for each
tile in each tiling, such that

q̂(f(s), a, w) =
n∑
i=1

bi(f(s))wi(a) (5)

where bi is a binary vector for tiling i with a single 1 for the
tile within the tiling that state s falls in.

Trajectory Sampling
Generating a random training set is a big challenge because
the varying complexity of trees in terms of size and topolo-
gies. In order to be able to learn efficiently in the context
of dramatically different complexities, it is useful to train
the system systematically starting from simple problem in-
stances towards more complex ones over time. To do this,
we developed a random backward sampling approach that
allows to generate problem instances with particular com-
plexity bounds. In this approach, random action sequences
are sampled backward from the goal tree to the current tree,
allowing them to be grouped into approximate complexity
sets. These samples are then used as part of the training pro-
cess to provide a bias towards increasingly complex problem
instances as the system learns to address the simpler ones.

Reinforcement Learning Algorithm
Given a current tree τc ∈ φ and a goal tree τg ∈ φ(τc), our
algorithm learns an action-value functionQ(st, aj) that pre-
dicts the value of using aj in state sj and a corresponding
generative NNI policy using the SARSA algorithm with tile
coding function approximation (Sutton and Barto 2017), as
indicated in Algorithm 1. As a termination, each episode ter-
minates when either the target tree is generated or if learning
exceeds the upper-bound of time steps.

Experimental Results
To evaluate the proposed approach, we analyze the perfor-
mance of the RL method on trees with different hierarchical
structure and size.

Simulated Synthetic Data
We have used artificial tree collections to see how the al-
gorithm scales across a wide range of tree sizes and NNI

Algorithm 1 SARSA on-policy Algorithm for Estimating
δ(τi, τj)

1: procedure (:)
2: INPUT: Initial τ̄c ∈ φ and desired step complexity
R

3: OUTPUT: predicted ρy
4: Generate τ̄g using R step random walk in A from τ̄c
5: Initialize s = F (τ̄c, τ̄g)
6: Choose a from s using ε-greedy exploration on Q
7: while no termination do
8: Generate s′ by applying a on tree τ̄c in s
9: Choose a′ from s′ ε-greedy exploration on Q

10: Update tile coding parameters w = w −
α
∑

i

dQw(s,a)(
dw

(Qw(s, a)− [r(s, a) + γQw(s
′, a′))

11: return trajectory ρi

complexities. To generate our dataset, we first generated
a set of random binary leaf-labeled rooted target trees τgi
with n nodes, where n ∈ {15, 25, 50, 100, 200}. These trees
were generated randomly using the algorithm in (Arnold and
Sleep 1980) that assigns equal probability to all members of
the family of trees with n nodes. To generate the source trees
for our tests, we took the target tree and performed a number
of actions a ∈ A to generate tree pairs with a particular ap-
proximate path complexity. In our experiments, given each
generated target tree, we applied k rounds of NNI operations
to our target to generate the source trees. This put an upper
bound of k steps between our trees. This method of generat-
ing the source trees from our target trees was chosen since it
offers a clear upper bound on the maximum number of NNI
operations to get from the source tree to the target tree. If we
had selected both the source and target trees completely ran-
domly, we would not have an upper bound on the minimum
number of NNI operations separating the trees, thus being
unable to control the complexity of the training examples.

Results
To evaluate the ability of the system to learn NNI policies for
variable size trees, we train the system with increasing com-
plexity trees. In particular, we increase the trajectory dis-
tance for the training trees every 250 or 500 episodes during
training, starting with tree pairs that are solvable in a sin-
gle step, increasing it to more and more complex tree pairs.
Fig. 4 (a,b,c) show the resulting learning curve in terms of
the lognormal of the average reward.

This figures show that the system successfully learns to
solve the tree problems. Every time the complexity is in-
creased, a spike in the value indicates a drop in performance
with a subsequent improvement back to the solution value.
The spike is due in part to the system seeing new, more com-
plex problems but mainly to the fact that exploration rates
are increased to permit the system to more efficiently adapt
to the new tree pairs. Fig. 5 shows the number of steps the
learned policy requires to solve a tree pair for each of the
complexity levels. This figure shows the expected behav-
ior where the policy requires an increasing number of steps
for more complex problems. It can be observed that for the

78

(a) (b) (c)

Figure 4: Learning curves showing log-normal of the average reward. The complexity of the training tree pairs is increased
every 250 episodes in (a) and every 500 episodes in (b) and (c), and the exploration rate is set back to an initial value from
which it decays exponentially.

Figure 5: The performance of the learned policy on a test set
for different trajectory length. The y-axes shows the agent’s
steps while the x-axis represents the generation complexity.

range of problem complexities used here, the length of the
learned trajectories increases close to linearly with the com-
plexity of the problems.

Conclusions
Learning strategies for graph and tree problems is challeng-
ing due to the variable size of the underlying representation.
In this paper we introduce an approach that uses Reinforce-
ment Learning to approximately solve the NNI problem on
general size trees. To facilitate this, a representation of the
state and action space is developed as well as a means of
biasing the training set to increasingly more complex prob-
lem instances. Results obtained show that the system can
learn a strategy that can generate NNI trajectories for vari-
able size trees for a significant percentage of the tested prob-
lems. While the designed representation shows success in
the context of the tile coding approach used here, we will in
future work investigate the use of deep learning methods to
not only learn a strategy but also automatically derive appro-
priate state features to represent graph problems.

References
Arnold, D. B., and Sleep, M. R. 1980. Uniform random
generation of balanced parenthesis strings. ACM Trans. Pro-
gram. Lang. Syst. 2(1):122–128.
DasGupta, B.; He, X.; T. Jiang, M. L.; Tromp, J.; and Zhang,
L. 1997. On distances between phylogenetic trees. In Proc.
of the 8th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA ’97), 427–436.
Hon, W., and Lam, T. W. 1999. Approximating the
nearest neighbor interchange distance for evolutionary trees
with non-uniform degrees. Computing and Combinatorics
1627(1999):61–70.
Hon, W.; Kao, M.; Lam, T.; Sung, W. K.; and Yiu, S. 2004.
Non-shared edges and nearest neighbor interchanges revis-
ited. Information Processing Letters 91(3):29–134.
Jarvis, J. P.; Luedeman, J. K.; and Shier, D. R. 1983. Coun-
terexamples in measuring the distance between binary trees.
Mathematical Social Sciences 4(3):271–274.
Krivanek, M. 1986. Computing the nearest neighbor in-
terchange metric for unlabeled binary trees is np-complete.
Journal of Classification 3(1):55–60.
Li, M.; Tromp, J.; and Zhang, L. 1996. On the nearest neigh-
bor interchange distance between evolutionary trees. Jour-
nal of Theoretical Biology 182(4):463–467.
Robinson, D. F. 1971. Comparison of labeled trees with
valency three. Journal of Combinatorial Theory 11(2):105–
119.
Sutton, R., and Barto, A. 2017. Reinforcment Learning: An
Introduction. MIT press.
Waterman, M. S., and Smith, T. F. 1978. On the similarity
of dendrograms. Journal of Theoretical Biology 73(4):783–
800.
Whelan, S. 2007. New approaches to phylogenetic tree
search and their application to large numbers of protein
alignments. Systems Biology 56(5):727–740.

79

