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Abstract 
During opinion formation, interacting agents can be assumed 
to be engaging in learning and decision-making processes to 
satisfy their individual goals. These goals are determined by 
the agents’ preferences - which are often unknown, complex 
and unpredictable. Most opinion formation frameworks how-
ever, assume static preferences and fail to model practical sit-
uations where human preferences change. We propose a new 
framework to simulate the process of opinion formation un-
der uncertainty and dynamism. Agents who are unaware of 
their implicit contextual preferences utilize inverse reinforce-
ment learning to compute reward functions that determines 
their preferences. Reinforcement learning is subsequently 
used to optimize the agents’ behavior and satisfy their indi-
vidual goals. The novelty of our approach lies in its ability to 
capture uncertainty and dynamism in the agent’s preferences, 
which are assumed to be unknown initially. This framework 
is compared to a baseline method based on reinforcement 
learning, and results show its ability to perform better under 
dynamic scenarios. 

 Introduction   
An opinion is defined as a ‘personal belief’ or ‘an unsup-
ported claim’ (Damer 2008) about an issue or an object. It 
cannot be proven and it is based on intrinsic humanistic at-
tributes such as perceptions, emotions, social influence and 
other cognitive processes (Kuhne 2014). Opinions are dy-
namic and they change over time as the individual is ex-
posed to new experiences which modify his or her perspec-
tive (Lenz 2009). The process of opinion formation can be 
modeled as a learning and decision-making process in which 
agents interact to make cognitive actions that satisfy their 
goals (Yu 2013). These goals are determined by preferences 
such as the agent’s emotions, knowledge base, or percep-
tion. Through cognitive actions, agents incorporate or elim-
inate information to infer opinions about a subject. An ex-
ample could be an interview scene in which an employer 
simultaneously interviews a group of students to pick the 
best candidate. Initially, the employer knows nothing about 
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the students but learns their abilities through opinions that 
he forms as the interview progresses.   
 Opinion formation is often studied using consensus rates 
of interacting individuals in a network. The DeGroot model 
is a widely known approach that describes the process of 
reaching consensus by fitting probability distributions of all 
individuals in the network (1974). A model by Friedkin and 
Johnsen works by computing weighted averages of social 
influence that flows within the network (1990). Evolution-
ary game theory approaches simulate strategic situations for 
agents who make decisions based on the payoffs that they 
can potentially get (Ding et al. 2009). Bayesian approaches 
have also been applied specifically in situations that require 
knowledge representation to capture the causal relationships 
between variables (Gu, Santos, and Santos 2013). 
 These approaches help us to understand opinion dynam-
ics as a consequence of information spread, consensus rate 
and influence within social groups; however, they overlook 
conditions of uncertainty and dynamism that exist in opinion 
formation. Game theory models for example, often perform 
well in static environments where conditions are well-de-
fined, but poorly in environments where an agent’s behavior 
is dynamic. This often leads to improper training (Yu 2013), 
a situation where the expected experience differs from the 
observed experience during opinion formation.  
 In this paper, we strive to overcome these limitations 
through the following contributions: 1. We present a frame-
work that aims to find the context which incorporates agent 
preferences that affect opinion formation. Initially, agents 
are assumed to be unaware or uncertain of each other’s 
goals, but they acquire the full picture through reward func-
tions that they compute from past interactions. 2. This 
framework addresses the issue of dynamism and improper 
training through reward function updates over time. To 
demonstrate the effectiveness of our model, we compare its 
performance to a baseline approach discussed in the related 
works section. 
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Related Works 

In the development of our framework, we adopted an ap-

proach described by Yu and Santos, to model opinion for-

mation as both a learning and decision-making process 

(2016). Agents are defined by goal profiles which quantify 

their preferences. Agents act to maximize their rewards as 

determined by these goal profiles. They take actions to mod-

ify their knowledge and infer results on a particular subject 

that they are forming an opinion on. They make optimal ac-

tions through policies that they learn by reinforcement learn-

ing. 

 We adopted several parts of this framework due to its rig-

orous definition of opinion formation as a decision-making 

process. However, limitations arise from the crafting of a 

static reward function to determine agent behavior. A typi-

cal problem is the issue of improper training that arise when 

the agent’s learning experience differs from the actual test-

ing experience. The agent does not perform well since it 

learned a reward function that was not designed for the prob-

lem that it faces. Our work builds upon this framework to 

address these challenges. 

Technical Background 

This section explains the theory behind the main computa-

tional tools used in our framework 

Reinforcement Learning 

Reinforcement learning (RL) enables an agent to learn an 

optimal policy in an interactive environment (Sutton and 

Barto 1998). The agent learns through feedback which is 

provided by the environment in form of rewards or regret. 

The problem of RL is to find an optimal policy that maxim-

izes the cumulative reward for the agent. This problem is 

solved by a Markov Decision Process (MDP) defined as a 

5-tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾) where 𝑆 represents the states in the en-

vironment, 𝐴 represents the actions that an agent can take, 

𝑅 represents the reward function, 𝑃 represents the probabil-

ity transition function between states and 𝛾 represents the 

discount factor. Several algorithms are used to solve RL 

problems and the most widely used is Q-learning, which 

works by estimating values of state-action pairs (Watkins 

and Dayan 1992). Q-learning generates a q-vector with val-

ues for each state updated by Equation 1. 

 

𝑄(𝑠𝑡 , 𝑎𝑡) = (1 − 𝛼)𝑄(𝑠𝑡 , 𝑎𝑡) +  𝛼 [𝑅 +
                             𝛾 ∗ max 𝑄(𝑠𝑡+1, 𝑎)]                                (1) 

 

𝑄(𝑠𝑡 , 𝑎𝑡) is the value of state 𝑠 under an action 𝑎 at time 𝑡, 

𝑄(𝑠𝑡+1, 𝑎) is the value of a potential future state under a fu-

ture action 𝑎, 𝛼 is the learning rate and 𝛾 is the discount fac-

tor. 

Inverse Reinforcement Learning 

Inverse Reinforcement Learning (IRL) was originally pro-

posed by Russell (1998) as a means to derive an agent’s re-

ward function from its past behavior. The reward function 

shows the preferences that an agent utilizes in its demon-

strated behavior. IRL takes an MDP without a reward func-

tion (MDP/R) and approximates the function. Several meth-

ods are utilized to solve IRL problems and they differ based 

on the mechanisms that they use for learning. In this paper, 

we analyze the Maximum Entropy (Maxent) IRL algorithm 

(Ziebart et al. 2008) and the c-neighbor IRL algorithm (San-

tos et al. 2018). Both algorithms take as input, a set of the 

agent’s past observed trajectories: 

                                     {𝜏1, 𝜏2, … , 𝜏𝑛}.                                  (2) 

Each trajectory is defined as a sequence of states and actions 

such that: 

                          𝜏𝑖  =  {𝑠1, 𝑎1, 𝑠2, 𝑎2 . . . , 𝑠𝑇  }.                        (3) 

 For Maxent IRL, rewards, 𝑅 for a particular trajectory are 

defined as a linear combination of feature values 𝑓𝜏 such 

that: 

                               𝑅(𝑓𝜏 )  =  𝜃𝑇𝑓𝜏                                      (4) 

𝜃 refers to feature weights which the algorithm aims to find. 

Maxent IRL uses a probabilistic model to find a solution that 

maximizes entropy over all possible reward distributions. 

We decided to use this algorithm since it finds a solution that 

theoretically guarantees accuracy (Arora and Doshi 2018). 

 The c-neighbor IRL algorithm searches an agent’s trajec-

tory space to find alternative trajectories that the agent did 

not take, but were close enough to some trajectory from the 

observed set in Equation 2. Given trajectories: 

               𝜏 =  {𝑠𝑖   , 𝑎𝑖  , 𝑠𝑖+1 , 𝑎𝑖+1 , … , 𝑠𝑖+𝑘 }                     (5) 

            𝜏′  =  {𝑠𝑖
′, 𝑎𝑖

′ , 𝑠𝑖+1
′  , 𝑎𝑖+1

′  , 𝑠𝑖+2
′ , … , 𝑠𝑖+𝑘

′ }                (6) 

𝜏′ is an m-sized c-neighbor of 𝜏 if: 

|{𝑠𝑗
′|𝑠𝑗

′ ≠ 𝑠𝑗  } ∪ {𝑎𝑗
′ |𝑎𝑗

′ ≠  𝑎𝑗  }| = 𝑚 ; ∀𝑗∈  {1, … , 𝑘}     (7) 

Using the set of all observed trajectories and the derived c-

neighbors, this algorithm uses linear programming methods 

to find a solution under an optimization constraint which as-

sumes that the observed trajectories have higher value than 

the unseen neighborhood trajectories that the agent could 

have taken. We chose this algorithm since it does not treat 

the reward function as a linear combination of features.            

Double Transition Model 

A Double Transition Model is a cognitive structure that 

graphically captures the human decision-making process 

from past behavior. The DTM was originally proposed by 

Yu (2013) as a way to describe human opinion formation 
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from computational simulation and it has been applied to 

study decision-making styles (Santos et al. 2017). DTM 

nodes represent cognitive states and edges represents transi-

tions during decision-making. The DTM can be viewed as a 

cross product of a query transition graph (QTG), and a 

memory transition graph (MTG). Nodes in the MTG repre-

sents an agent’s working memory, which comprises of the 

agent’s history of past experiences. The working memory is 

sequentially updated through learning episodes that the 

agent gathers as it perceives new information. Nodes in the 

QTG represents a query at a particular time instant. Each 

query can be represented as a vector such as q =
 [? , ? , 1, 0, ? , ? ], where each entry represents a value of a 

feature with ‘? ’ denoting unknown attributes that the agent 

tries to infer a value through a new opinion.  

 An agent makes cognitive actions to transition between 

cognitive states hence modifying its working memory. In 

our opinion formation scenario, cognitive actions can add, 

maintain or remove learning episodes from the DTM’s cog-

nitive states. Since the DTM is sequentially updated during 

interactions, it provides a means of generating an MDP 

where cognitive states and transitions have a one-to-one 

mapping with an equivalent MDP. The DTM constantly up-

dates itself as new information comes, thus giving a dy-

namic MDP. 

Approach 

To develop the new framework, we adopted the testbed and 

technical setup from Yu and Santos’ framework (2016). 

Their framework is the baseline method that we use to eval-

uate our proposed framework. We use this baseline since it 

models opinion formation as both a learning and decision-

making process. Our proposed framework differs from the 

baseline by incorporating dynamism through inverse rein-

forcement learning and reward updating. Other elements 

such as inference and knowledge representation are imple-

mented differently.  

 In this section, we first describe the experimental setup 

which sets forth the driving problem to be solved.  We then 

describe details of simulations that were carried out to ana-

lyze the framework and conclude by giving a schema of the 

framework architecture. 

Experimental Setup 

The driving problem for our experiments is to study the pro-

cess of opinion formation driven by the following task: 

Train Dartmouth employees to convince the public that 

Dartmouth is a great school. To prepare our testbed, 2013 

US News rankings data were used with attributes shown in 

Table 1. Each attribute is classified as binary with 0 repre-

senting a low score, and 1, a high score. We chose binary 

attributes to ensure simplicity in state space descriptions.  

Table 1: US News 2013 College Ranking Data Attributes 

Attributes Value  = 0 Value = 1 

Ranking ≥ 100 ≤ 100 

Enrollment ≥ 20,000 ≤ 20,000 

SAT Scores  ≤ 1,010 ≥ 1,010 

Graduation Rate ≤ 71% ≥ 71% 

Class Size < 20 ≤ 47 ≥ 47% 

Acceptance rate ≥ 35% ≤ 35 

 

Using these attributes, random samples of schools were cre-

ated as shown in Table 2. Three types of agents exist: train-

ers - advocates of the college; trainees - college recruiters; 

and testers - prospective students and parents. Trainees are 

trained by trainers to convince the public that Dartmouth is 

great. Each agent is defined by a goal profile based on a mal-

leability - idealism scale, and passivity-activism scale. The 

malleability-idealism (𝛾) scale shows an agent’s willingness 

to change its opinion (0 - lowest, 1 - highest), and the pas-

sivity-activism scale (𝜍) shows an agent’s willingness en-

gage in an interaction (0 - lowest, 1 - highest). Multiple types 

of agents are generated based on different combinations of 

(𝛾, 𝜍). For our simulations, the primary focus was on malle-

able active (MA) agents (𝛾=1, 𝜍= 0) who prioritize entirely 

on reaching consensus, and idealistic active (IA) agents 

(𝛾=1, 𝜍= 1) who equally prioritize on maintaining original 

opinions and reaching consensus. 

Table 2: University Feature Vector Samples derived from US 

Rankings 2013 data 

Institution/Attribute  1 2 3 4 5 6 

Harvard  1 0 1 1 1 1 

UCLA 1 0 1 1 0 1 

Wichita 0 1 0 0 1 0 

UTEP 0 0 0 0 0 0 

Brown 1 1 1 1 1 1 

 

 Using Table 2, feature vectors representing each school 

are constructed to form the world knowledge, 𝐾𝑤. Initially, 

all agents possess a subset of 𝐾𝑤. Since we have 5 schools 

in Table 2, 𝐾𝑤  =  {𝑘1 ; 𝑘2 ; 𝑘3 ; 𝑘4 ; 𝑘5} where 𝐾𝑖  is 

the 𝑖𝑡ℎ school. From 𝐾𝑤, we derive 32 different combina-

tions of feature vectors of size 0 - 5 that an agent can initially 

possess in its knowledge base.  

 During an interaction, agents exchange information that 

is represented in form of queries. A query is represented as 

a vector with known and unknown values. Agents infer val-

ues of the unknowns to form an opinion. An example of a 

query might be: given that Dartmouth has an acceptance rate 

of 10%, is Dartmouth a highly ranked college? In this case, 

the query is represented as 𝑞 =  [? , ? , ? , ? , ? , 1]  with 5 un-

known attributes. For a two person interaction, agents (𝑖 and 

𝑗) exchange queries guided by their respective goals. At 

64



 

 

each time step, each agent decides an action that maximizes 

its reward defined as: 

                 𝑅 =  −𝛾𝑖   |𝑂𝑖
𝑡 − 𝑂𝑗

𝑡|  − 𝜍𝑖|0𝑖
{𝑡 +1}

− 𝑂𝑖
𝑡|.          (8) 

𝑂i
𝑡  is agent 𝑖’s opinion at time 𝑡, 𝛾𝑖 is agent 𝑖’s malleability-

idealism scale, and  𝜍𝑖  is agent 𝑖’s passivity-activism scale.  

 After receiving a query, an agent has 3 types of cognitive 

actions that it can use to form a learning episode, 𝐿, which 

is the inferred opinion at that time. These actions are intadd, 

intremove, and donothing. For intadd, the agent updates its 

knowledge base by adding the current learning episode such 

that 𝐾 = 𝐾𝑜𝑙𝑑 + 𝐿. For intremove, the agent updates its 

knowledge base by removing the oldest learning episode 

and adding the current learning episode, 𝐾 =  𝐾𝑜𝑙𝑑  +  𝐿 −
 𝐿𝑜𝑙𝑑. For donothing, the agent maintains its previous opin-

ion, 𝐾 =  𝐾𝑜𝑙𝑑. To infer an opinion for each query, we ap-

plied a simple reasoning algorithm for inference instead of 

Bayesian Knowledge Bases (Yu and Santos 2016) which 

were used in the baseline framework. The algorithm infers 

values of unknown attributes (𝑥) in a query vector by finding 

the mean of the prior values of that attribute in the agent’s 

knowledge base (𝐾) as shown in Equation 9: 

                               𝐸[∑ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑥𝑣∈𝐾 ]                            (9) 

 Our reasoning behind this inference is the familiarity heu-

ristic which states that an agent chooses an action that is usu-

ally familiar to its prior experiences (Metcalfe, Schwartz, 

and Joaquim 1993). Familiarity in our case is the frequency 

at which an attribute has been seen for similar types of ob-

jects by the agent. An example is as follows: Suppose an 

agent has only been exposed to 5 animals which include a 

lion, dog, hyena, giraffe, and a bird. If the agent is given a 

question to identify the diet of a newly discovered four-leg-

ged animal, the agent is likely to assume that the animal is 

carnivorous since the agent has seen mostly carnivorous 

four-legged animals. The same applies to our problem; if an 

agent has previously been exposed to highly selective 

schools, he is more likely to associate a new school with at-

tributes of highly selective schools. 

Simulations 

For each interaction phase or episode, agents exchanged 

queries until they reached consensus or reached a maximum 

of 20 query exchanges without consensus. For each simula-

tion, the trainee used some form of learned policy whilst the 

trainers/testers were guided by their goal profiles. In order 

to learn how to maximize reward, each trainee utilized an 

MDP with a state space defined by the cross product of the 

trainee and tester‘s opinions at time 𝑡,  (𝑂1, 𝑂2).  Each opin-

ion was defined by 6 binary attributes such that the state 

space spanned from (0 – 4095). All terminal states were de-

fined such that  𝑂1  =  𝑂2. For baseline simulations, trainees 

were trained by trainers via q-learning to optimize their be-

havior based on their goal profiles. After training, the train-

ees underwent a testing phase where they utilized the 

learned reward function for their decision-making. 

 For the new framework, trainees undergo a learning 

phase, where they interact with testers for a defined number 

of episodes to generate trajectories which are fed to a DTM. 

The DTM generates a dynamic MDP which the agent uses 

for IRL to create a reward function. This function is used in 

the next q-learning phase to generate a policy for the agent. 

The process is constantly updated to help the agent adapt to 

its dynamic environment.  A higher level architecture of the 

framework is summarized in Figure 1.  

 

 

Figure 1: New Framework Architecture 

Results 

To evaluate the proposed framework, we assessed our suc-

cess in addressing the original goals: 

 
1. Can we capture the contextual ground truth to 

which agent preferences are made? 

To answer this question, we carried out simulations using 

the c-neighbor and the maxent IRL algorithms. We chose 

the maxent method since it finds a solution that theoretically 

guarantees accuracy (Arora and Doshi 2018). The maxent 

algorithm assumes that the reward function is a linear com-

bination of features, hence for comparison, we tested the c-

neighbor algorithm which avoids this assumption. 

 Our assessment metric was to check if trajectories ob-

tained from IRL policies were close enough to the expert 

policy. We generated 4 types of trajectories namely: Texpert - 

expert trajectories obtained after q-learning, Tcneigh - trajec-

tories obtained from c-neighbor IRL policies, Tmaxent - tra-

jectories obtained from maxent IRL policies, and Tnopolicy - 
trajectories obtained using the agent’s goal profile without 

any learning. This is equivalent to performing q-learning at 

zero horizons. Tnopolicy trajectories were designed as a worst 

case control measure to determine if IRL policies were 

meaningful. 200 simulations were run for each policy and 

agent types were equally incorporated form the set: {IAIA 

(IA-trainees, IA-testers), MAMA, MAIA, and IAMA}  
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To assess the performance of the obtained policies, average 

discounted feature expectations of all trajectories from each 

policy were computed as shown in Equation 10 (Abbeel 

2004). 

           fexp = 𝐸[∑ 𝛾𝑡 ∗ 𝑓(𝑠𝑡 , 𝑎𝑡)|𝑠 ∈ 𝜏, 𝑎 ∈ 𝐴, 𝜋∞
𝑡=0 ]       (10) 

𝑓(𝑠𝑡 , 𝑎𝑡) is the feature of a state 𝑠 under an action 𝑎 at time 

𝑡, 𝛾 is the discount factor, and 𝜋 is the policy. Deviations of 

each policy’s average feature expectation from the expert 

demonstrations were calculated and results are in Table 4. 

Table 4: Average deviations of feature expectations of obtained 

policies to the expert policy 

Trajectories cneigh maxent no-policy 

20 2.70 1.62 1.79 

50 2.18 1.21 1.52 

100 1.47 0.99 1.53 

500 1.12 0.82 1.56 

 

Since our state space consisted of binary features on 6 at-

tributes for 2 agents, the possible range of deviations varied 

from 0 to 3.46 (√(2 ∗ 6)). As seen in Table 4, Tmaxent 

yielded the lowest deviations compared to other policies. 

Low deviations meant that the expert feature expectations 

were close enough to the derived policy. This implies that 

with the maxent IRL policy, you would traverse through 

paths with features that were close enough to what the expert 

saw. The c-neighbor algorithm performed relatively well as 

the number of trajectories increased, but poorly under few 

trajectories. With fewer trajectories, the c-neighbor method 

considered only seen states and couldn’t compute rewards 

for unseen states. As the number of trajectories increased, 

the algorithm improved in performance as more states were 

considered.  

 Since the maxent reward function was expressed in form 

of state vectors, we compared it to the ground truth which 

was in the same form. We could not do this comparison with 

the c-neighbor algorithm since its reward function was in 

form of state action triples. We computed the ground truth 

using Equation 8 for all states in the environment. Results 

obtained are shown in Figure 2. We can visually see that the 

maxent algorithm managed to match the distribution of 

ground truth rewards in terms of peaks and shape. The 

maxent policies yielded better results compared to the c-

neighbor algorithm since the state space was small and fi-

nite. The linear combination of features assumption did not 

significantly affect accuracy since we utilized a simple fa-

miliarity inference algorithm that ignored non-linearity 

when the agent was undecided in inferring a value. With 

BKBs, non-linearity of features would be factored since 

these structures incorporate incompleteness in reasoning 

(Santos and Santos 1996). The maxent assumption would 

weakly hold due to this non-linearity.  

 

 

Figure 2: Maxent IRL vs ground truth reward function 

Since the maxent algorithm gave the best matching based on 

feature expectations, we decided to use it for additional ex-

periments in (2). To address our goal, we see that both IRL 

techniques were successful in estimating the preferences 

that agents were trying to optimize even though their goal 

profiles were unknown beforehand. However, the recovered 

reward functions had some error associated with them. 

 

2. Can our framework adapt to dynamic situations, 

and reduce the problem of improper training? 

Improper training can be defined as a situation when the ex-

pected experience differs from the observed experience. If 

an agent was only trained with MA agents who are agreea-

ble, it will adopt policies that match MA behavior. However, 

in testing interactions, the agent might interact with other 

types of agents other than MA such that its learned policy 

will likely fail. 

 To test Question 2 for baseline simulations, 1000 epi-

sodes of interactions were ran for each q-learning phase and 

2000 for the testing phases. For our new IRL framework, 

500 episodes were allocated for each learning phase (maxent 

IRL and q-learning), and 2000 for testing in each update 

phase. For all testers, we gave them some randomness in 

their goal profiles such that they would randomly deviate 

from their normal behavior at a rate of 20% during interac-

tions. This models realistic situations, were humans some-

times exhibit other characteristics that differ from their nor-

mal behavior. A predominantly compliant individual often 

shows some elements of stubbornness in certain situations.  

 We applied the update phase to modify the reward func-

tion as the interaction proceeded. Obtained results are 

shown in Table 5.    

Table 5: Effect of dynamic conditions on consensus time 

Training Type mean consensus time consensus time stdev 

None  16.55 0.395 

Baseline 15.91 0.231 

IRL - 1 update 15.10 0.347 

IRL - 2 updates 14.67 0.645 

IRL - 3 updates 13.19 0.194 
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 As seen from Table 5, IRL out-performed q-learning in 

capturing the changing behaviors of testers. In q- learning, 

the training was based on the assumption that an agent‘s in-

terlocutor would behave consistently but during testing, the 

interlocutor exhibited some unknown behavior. This shows 

that q-learning based frameworks are susceptible to im-

proper training if the testing conditions are not anticipated. 

Our IRL solves this issue by modelling preferences from 

past behavior. By revising the reward function, the frame-

work improves in performance since the agent is kept up to 

date with of the changing behaviors of interlocutors. 

Conclusion and Future Work 

In this paper, we presented a framework that successfully 

combines both reinforcement learning and inverse rein-

forcement learning to model opinion dynamics. It models 

conditions that are likely to be successful in real life situa-

tions where an agent does not know its environment before-

hand. Rather than relying on pre-crafted static parameters, 

which could be incomplete, the agent learns its preferences 

via IRL to get a more thorough picture of its preferences as 

seen from past behavior. Our framework captures the dyna-

mism of opinion formation through reward updating to en-

sure that the agent captures its own changing attitudes, as 

well as other dynamic factors in the environment. The nov-

elty of our framework lies in its ability to effectively learn 

based on how the interaction goes, whilst prior reinforce-

ment learning frameworks learn based on what they expect.  

 However, our framework still presents some challenges 

for future work. The first challenge is that IRL methods usu-

ally require a large number of input trajectories to function 

well. This challenge makes it difficult to apply these frame-

works in real life situations. More research needs to be done 

to find ways of improving performance using fewer trajec-

tories. We would also like to scale the c-neighbor algorithm 

so that it can generalize to unseen states. Lastly, we plan to 

test our framework on human agents to assess its perfor-

mance in real life scenarios and find ways to improve the 

architecture though better knowledge representation and ap-

plication of more efficient heuristics. 
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